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Efficient Stochastic Simulation of
Seawater Intrusion, With Mixing, in
Confined Coastal Aquifers
Evangelos Rozos*, Katerina Mazi and Antonis D. Koussis

Institute for Environmental Research and Sustainable Development, National Observatory of Athens, Athens, Greece

We present a high-efficiency method for simulating seawater intrusion (SWI), with mixing,

in confined coastal aquifers based on uncoupled equations in the through-flow region of

the aquifer. The flow field is calculated analytically and the tracer transport numerically,

via spatial splitting along the principal directions (PD) of transport. Advection-dispersion

processes along streamlines are simulated with the very efficient matched artificial

dispersivity (MAD) method of Syriopoulou and Koussis and the system of discretized

transverse-dispersion equations is solved with the Thomas algorithm. These concepts

are embedded in the 2D-MADPD-SWI model, yielding comparable solutions to those of

the uncoupled SWI equations with the state-of-the-art FEFLOW code, but faster, while

2D-MADPD-SWI achieves an at least hundredfold faster solution than a variable-density

flowmodel. We demonstrate the utility of the 2D-MADPD-SWI model in stochastic Monte

Carlo simulations by assessing the uncertainty on the advance of the 1,500 ppm TDS

line (limit of tolerable salinity for irrigation) due to randomly variable hydraulic conductivity

and freshwater flow rate.

Keywords: seawater intrusion, mixing zone, Monte Carlo simulations, fast modeling, principal direction, matched

artificial dispersivity

1. INTRODUCTION

The annual global groundwater abstraction is estimated at 734 km3/yr (Wada et al., 2010). This
amount is almost 20% of the total annual freshwater withdrawal of 3,853 km3/yr (Aquastat, 2016)
and exceeds the replenishment rate, resulting in a depletion of 300 km3/yr (Wada et al., 2010). The
depletion rate is even more intensive in the coastal zones (regions within 100 km of the coast),
where about 40% of the world population presently lives (United Nations, 2021). In some cases
the coastal aquifers are overexploited to an extent that their natural hydrologic regime is strongly
disturbed (Custodio, 2010) and become vulnerable to seawater intrusion (SWI). However, coastal
aquifers are threatened by SWI not only due to human-induced disturbances (more pumping
for increased demand) but also due to the long-term fluctuations of the hydrologic cycle (lower
recharge, sea-level rise). It is thus evident that the sustainable exploitation of coastal aquifers
“essential for the prosperity of a large part of the world population” is a complex problem that
requires resilient management (Werner et al., 2013).

The need for resilient management of coastal aquifers has fostered the development of SWI
models of widely ranging complexity, from sharp-interface flow (SIF) models (Ghyben andDrabbe,
1889; Herzberg, 1901) to variable-density flow (VDF) models. SIF models yield analytical solutions
for idealized aquifers that allow making rapid calculations, gaining useful insights of a regional
aquifer’s salinization risk at the survey level. However, dividing the SWI field in a freshwater zone
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and a salty wedge ignores mixing, rendering SIF models
unable to estimate the salinity field. On the other hand,
solving the VDF equations requires sophisticated numerics and
great effort, supported by considerable data. Multiple VDF
runs demand prohibitive CPU times to assess scenarios of
optimal aquifer management (Kourakos and Mantoglou, 2009;
Christelis and Mantoglou, 2016), or uncertainty, e.g., via Monte
Carlo simulations.

Simple SWI-SIF computational tools became available to
groundwater scientists in the 1960s, triggering a series of studies
on the management of coastal aquifers. Glover (1959) adapted
the solution of Kozeny (1953) of potential flow through a dam
to describe the freshwater flow in a confined coastal aquifer
of infinite depth. Henry (1959) estimated SWI intrusion into
coastal aquifers of finite depth by applying conformal mapping,
as did Bakker (2014) also accounting for anisotropy. Van der
Veer (1977) developed analytical solutions of the freshwater flow
in a phreatic coastal aquifer of infinite depth. The models of
Glover and Van der Veer are relevant for the work reported here.
Recent studies have improved the accuracy of analytical interface
expressions. Pool and Carrera (2011) corrected the buoyancy
factor δ = (ρs − ρf)/ρf to account for transverse dispersion;
ρs and ρf are the respective densities of sea- and freshwater.
Koussis et al. (2015) and Koussis and Mazi (2018) elaborated
further on this correction, adjusting also the interface shape and
length, by introducing an outflow gap, through which brackish
groundwater exits to the sea, and by fitting a vertical edge at
the interface toe. However, while such corrections enhance SIF
solutions, the underlying concept of separate fresh- and seawater
regions limits them to screening-level analyses.

A review of the literature shows that, up until very recently,
no solution methodology enabled describing the salinity field
with satisfactory accuracy and high efficiency, over a wide range
of field conditions. Mazi and Koussis (2021) computed SWI
in confined aquifers by completely decoupling the interacting
water flow and salt transport governed by the VDF equations.
Key to that approach is using as solution domain the through-
flow region of a coastal aquifer. This modeling choice is justified
by the fact that the high levels of salinity outside the through-
flow region render this water economically far less suitable for
most applications. The through-flow region is bounded below
by the interface that fits the separation streamline, on which the
salinity is set at one-half of the sea-salinity. Considering then the
through-flow as unaffected by the salinity (salt as tracer) yields
useful salinity distributions in a wide range of SWI conditions
very efficiently.

The uncoupled SWI equations were solved much faster than
the VDF equations (Mazi and Koussis, 2021). In that approach,
however, after calculating the interface analytically to identify
the through-flow region, the flow and the salinity fields were
determined by numerical integration. In this work we simplify

Abbreviations: BOD, biochemical oxygen demand; MAD, matched artificial

dispersivity; PD, principal directions; PR, performance ratio; SIF, sharp-interface

flow; SWI, seawater intrusion; TDS, total dissolved solids; VDF, variable-density

flow.

the solution procedure. We evaluate the flow in the through-
flow region by analytical methods [confined aquifers, Glover
(1959); unconfined aquifers, Van der Veer (1977)] and obtain the
flow net. The solution efficiency is thus significantly increased.
The flow net becomes the basis for discretizing the through-
flow region in which the transport of dissolved salt (salinity)
is computed. The proposed methodology is faster than the
original approach of Mazi and Koussis (2021) and much easier to
automate, which is necessary for repeated simulations in aMonte
Carlo stochastic framework.

2. MATERIALS AND METHODS

2.1. Governing Equations
The equations governing steady variable-density flow in a
homogeneous aquifer, without sources or sinks, are: Darcy’s
law for the specific discharge q [L T−1], with concentration-
dependent water density ρ(c) [M L−3] (Equation 1), and the
mass conservation statements for water (Equation 2), and for salt
(Equation 3) (e.g., Segol, 1994; Diersch and Kolditz, 2002):

q =
k

µ
[∇p+ ρ(c)g] = −K(∇h+ 1Zδ

c

cS
) (1)

∇ · (ρ(c)q) = 0 (2)

∇ · [qc− D∇c] = 0 (3)

The constitutive equation for the density ρ(c) = ρf(1 + δc/cs)
closes the system, with cs the concentration of salt in seawater
and δ the relative density excess of seawater (index “s”) over
freshwater (index “f”):

δ =
ρs − ρf

ρf
, δ = 1/40 for the ocean-average salinity. (4)

Dependent variables are the specific discharge q, the pressure
p [M L−1T−2], or the equivalent freshwater head h =

p/(ρfg) + z, [L], with g [L T−2] the gravitational acceleration,
z [L] the elevation, 1z the vertical unit-vector, and the salt
concentration c [M L−3]. The parameters are the hydraulic
conductivity K = kρfg/µ [L T−1] (tensor K in case of non-
homogeneous anisotropic aquifer), with k [L2] the aquifer’s
intrinsic permeability and µ [M L−1T−1] the fluid’s dynamic
viscosity, and the dispersion tensor D [L−2T−1], which may
include molecular diffusion: D → D + InpD, with D [L−2T−1]
the molecular diffusion coefficient, I the identity matrix and
np [-] the porosity. Boundary conditions are specified to define
the particular problem, as sketched in Figure 1: at the confined
aquifer’s impervious top and base, zero-fluxes, ∂h/∂z = 0
and ∂c/∂z = 0; on the land- and sea-boundaries, hydrostatic
pressure, expressed respectively as freshwater heads h(L, z) = h0
and h(0, z) = zs + δ(zs − z), with zs = 1zs + d and d the aquifer
thickness; fresh groundwater, c = 0, enters through the land-
boundary, while at the sea-boundary the transport boundary
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FIGURE 1 | Schematized 2-D confined coastal aquifer, with nominal interface and boundary conditions. Reprinted from Mazi and Koussis (2021).

condition is seawater concentration cs over the part of inflowing
seawater and advective transport (∂c/∂x = 0) on the part of
outflowing brackish groundwater.

Upon normalizing the VDF equations by scaling, non-
dimensional parameters appear as ratios of characteristic
quantities of the SWI-controlling processes. Equations (5–8)
present the dimensionless ratios introduced by Mazi and Koussis
(2021), in which L [L] is the distance from the shoreline to the
aquifer cross-section where the hydraulic head above sea-level
is 1h0 [L], d [L] the aquifer thickness, and αL [L] and αT [L],
are the dispersivities in the principal directions of transport, i.e.,
longitudinal and transverse to the flow:

α = δ/(1h0/L) = δL/1h0, the coupling parameter (5)

P = L/αL, the Péclet number (6)

rd = αT/αL, the ratio of dispersivities (7)

ξ = d/L, and the aspect ratio (8)

The coupling parameter α compares the regional flow and the
convection caused by density differences, or flow resistance
vis-á-vis buoyancy, measured by the ratio of the characteristic
velocities due to variable density, Kδ, and in its absence,
K1h0/L (Dentz et al., 2006). The Péclet number P measures
the importance of transport by advection to that by longitudinal
dispersion. Mazi and Koussis (2021) showed that the above
parameters are related to the dimensionless ratios derived by
Henry (1964). Aside from assuming mixing by diffusion instead
of dispersion, Di = (|q|/np)αi, the main difference is that Henry

took the freshwater flow Q [L−2T−1] as known, as opposed to
the hydraulic gradient 1h0/L corresponding to the nominal flow
rateQ0 = K(1h0/L)d. Henry’s parameter aH = Q/(Kdδ) and the
coupling parameter α are linked via the equation αaH = Q/Q0.
The freshwater flow Q depends on α, ξ and the submergence
depth1zs of the aquifer top at the coast (Mazi andKoussis, 2021):

Q = Kd(1h0/L)[1− δd/(21h0)− δ1zs/1h0]

= Qo(1− αξ/2− α1zs/L) (9)

In the unsubmerged case, 1zs = 0, α and aH are related as
follows (Dentz et al., 2006):

α = (aH + ξ/2)− 1, or aH = 1/α − ξ/2 (10)

2.2. Solution Approaches of the VDF
Equations
To date, the VDF equations have only been solved numerically
by applying various discretization methods, all demanding
considerable effort and CPU-times. The so-called pseudo-
coupled VDF equations (Simpson and Clement, 2003) are a
compromise in SWI modeling: fluid flow and salt transport are
coupled only on the sea-boundary; the salinity distribution is
calculated inside the aquifer by neglecting the impact of salinity
on the density. However, pseudo-coupled solutions hold only for
weak coupling, α ≤ 1 (Simpson and Clement, 2003; Dentz et al.,
2006), while under typical field conditions α is on the order of 10
or higher (Mazi and Koussis, 2021).

To bypass this limitation and improve the solution efficiency
beyond that of pseudo-coupling, Mazi and Koussis (2021) (1)
replaced the seaside boundary by the interface that approximates
the streamline separating the through-flow region from the
circulating saltwater flow below it, which was taken as stagnant,
and (2) prescribed c = 0.5cs on the interface, from where
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dissolved salt transverse-disperses into the through-flow zone,
while at the outflow gap brackish groundwater exits to the sea by
advection, ∂c/∂x|x=0 = 0. With the salinity in the through-flow
zone c ≤ 0.5cs, the density contrast δ is halved, as is the coupling
parameter α. This enlarges the application range of an SWImodel
that considers flow and transport as entirely decoupled in the
through-flow region, bypassing the high-salinity region near the
seaside boundary.

In the present study, we define the through-flow zone
and compute the flow field using the analytical solution
of Glover (1959). Then, we calculate the mixing of salt
along streamlines and their normals, the principal directions
(PD) of transport, with the highly efficient 2D-MADPD
tracer transport code of Syriopoulou and Koussis (1991) (see
Appendix A). The 2D-MADPD model employs the matched
artificial dispersivity (MAD) method to resolve the dilemma
of numerical diffusion/dispersion vs efficiency in advection-
dominated transport. 2D-MADPD is very fast not only because
it solves a linear differential equation (hence avoiding the need
for iterations to converge at each time step) but also because
of employing the principal directions for discretization, which
allows to split locally the 2D problem in two 1-D equations.
Fast execution of an algorithm is critical when repeated runs are
required, as e.g., in Monte Carlo (MC) simulations to handle
uncertainties. Uncertainty in this work concerns the hydraulic
conductivity and the natural and human-induced stresses of the
aquifer. We embed the uncoupled “analytical flow and MADPD
tracer transport” SWI model in a stochastic MC modeling
framework and estimate the salinity field in the through-flow
zone, with uncertainty limits.

2.3. The 2D-MADPD-SWI Model
The application of the 2D-MADPD model (Appendix A)
requires prior definition of the flow net as grid for calculating the
transport. The concentrations are computed at the intersections
of equipotentials and streamlines. In this study the flow net
is determined from Glover’s (1959) solution for a confined
coastal aquifer of infinite depth; its implementation in a finite-
depth aquifer is given in Appendix B. The flow net extends
landward to the location where the separation streamline reaches
the aquifer base. Glover provides also the specific discharges
along streamlines (parameters of the 2D-MADPD model).
Regarding the transport boundary conditions, c = 0.5cs is
assumed on the separation streamline and zero-flux through
the aquifer top, ∂c/∂z = 0. The inflow concentration is
zero (freshwater), while no concentration is specified at the
outflow section (advection, ∂c/∂x = 0). The solution is
algorithmically efficient and straightforward. It is implemented in
two stages, grid generation with Glover’s solution and integration
of the advection-dispersion equation with 2D-MADPD. This
application to simulate SWI in the through-flow region of a
confined coastal aquifer will be called 2D-MADPD-SWI.

As already mentioned, Glover’s solution holds for confined
aquifers of infinite depth that real-world aquifers evidently are
not. When Glover’s solution is applied to a finite-depth aquifer,
the separation streamline (interface) crosses the bed at an angle
(a streamline coincides with a no-flow boundary). However, we

do not expect this error to be significant. A conflict arising
due to ignoring the infinite-depth is the incompatibility of the
conditions where the separation streamline reaches the aquifer
bed. According to the uncoupled solution approach (Mazi and
Koussis, 2021), c = 0.5cs is specified on the separation streamline,
whereas the aquifer base is a no-flux boundary. To avoid this
singularity, Koussis and Mazi (2018) introduced at the interface
toe a blunted edge that bends the interface to terminate vertically
on the aquifer bed, consistent with the no-flux condition ∂c/∂z =
0, also reducing the interface length. This correction affects the
concentrations, not the flow net. However, we use the blunted
edge to improve the estimation of the position of the interface toe.

The MAD scheme, though unconditionally stable, can suffer
from spurious oscillations. These can be suppressed via grid
constraints in terms of the Courant number C and the weighting
factor θ (Appendix A). As C is proportional to the specific
discharge, it increases rapidly as the streamlines converge toward
the outflow and the grid constraints may not be satisfied
in the entire through-flow region. Thus, spurious oscillations
cannot be eliminated, but can be constrained. Because the MAD
scheme derives from an advection equation, it cannot transmit
perturbations upstream. For this reason, and since spurious
oscillations at a node can affect only its seaward nodes, it is
preferable to adjust the grid density and time step to satisfy the
Courant number constraints at the nodes closer to the inflow
section. This helps to contain the spurious oscillations in the
region near the exit to the sea.

2D-MADPD-SWI was tested generically in four hypothetical
confined aquifers, with coupling parameters α = 5, 10, 25, and
50. These α-values correspond to a constant hydraulic head
(datum at sea level h0 = 1h0) at the inflow section h0 = 5,
2.5, 1, and 0.5 m, respectively. The Péclet number was P =

1, 500 in all cases, corresponding to field-relevant dispersive
mixing; the aspect ratio was ξ = 0.01 (common in real-world
SWI applications), and the dispersivities ratio was rd = 0.1.
SWI into the hypothetical aquifers was simulated with FEFLOW
(Diersch, 2006a,b) using the coupled VDF equations, to obtain
the reference solutions. Steady-state hydraulic conditions were
assumed, without hydraulic stress (no pumping). All aquifers
were assumed to be homogeneous and isotropic, with hydraulic
conductivity K = 103.68 m/d. The sea salinity was assumed to be
equal to 35,000ppm TDS and δ = 1/40.

2.4. Monte Carlo Simulations
In this study, we employ MC simulations to assess the aquifer
response due to uncertainty in the hydraulic conductivity and
hydraulic head at the inflow section. To this end, 20 values of
the hydraulic conductivity and 20 values of the hydraulic head
were generated with a random number generator. A customized
random number generator following the triangular distribution
(Rozos et al., 2020) was used to avoid the clustering of values.
Representative values were obtained over the whole feasible range
with a density resembling the assumed (triangular) distribution,
even with a limited number of generated values. The triangular
distribution has three parameters corresponding to the lowest
and highest values of a parameter and to the most probable one
(Sprow, 1967). The parameters of the triangular distribution for
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FIGURE 2 | Lines of constant salinity [ppm TDS] of the FEFLOW and

2D-MADPD-SWI solutions for α = 5.

the hydraulic conductivity were equal to the 50, 150, and 100%
of the conductivity of the aquifers. Similarly, the parameters of
the triangular distribution for the hydraulic head were equal
to the 50, 150, and 100% of the hydraulic head of the aquifer
with α = 10.

The Cartesian product of the 20 hydraulic conductivity
random values times the 20 hydraulic head random values gives
400 pairs of values. With these pairs of values the 2D-MADPD-
SWI model produced 400 solutions, from which 400 salinity
lines of 1,500 ppm TDS were obtained. This salinity value was
selected because it is the suitability limit for irrigation. These 400
salinity lines were sorted according to the mean value of their
x-coordinates, their “x-center.” Then, the lines of which the x-
centers correspond to the 5 and 95% percentiles of the 400 x-
centers were used to define the 90% confidence interval of the
1,500 ppm TDS line.

The 2D-MADPD-SWI was implemented in MATLAB
language and was run in Octave with the parallel package
(Watterson, 2021) to allow a parallel execution of the
MC simulations.

3. RESULTS

The Figures 2–5 display the equal-salinity lines simulated with
FEFLOW and 2D-MADPD-SWI for the aquifer with α = 5, 10,
25, and 50. The corresponding blunted edge correction lengths
are 0.75, 1.84, 6.41, and 18.49 m.

Figure 6 displays the confidence interval of the 1500 ppm
TDS line obtained from the MC simulations of the aquifer with
α = 10. The realization of a 1,500 ppm TDS line seaward of lines
5 and 95 of this figure has a probability of 5 and 95%, respectively.

FIGURE 3 | Lines of constant salinity [ppm TDS] of the FEFLOW and

2D-MADPD-SWI solutions for α = 10.

FIGURE 4 | Lines of constant salinity [ppm TDS] of the FEFLOW and

2D-MADPD-SWI solutions for α = 25.

4. DISCUSSION

In the computational complexity theory, there is a category of
problems, the nondeterministic polynomial-time complete ones,
that is notoriously difficult to solve (Garey and Johnson, 1979).
The accurate solution to these problems requires exponential
running times; therefore, it is of no practical use. For this reason,
for this kind of problem, the heuristic approach is to substitute
for the accurate solution a “good solution.” That is a solution that
provides an “acceptable accuracy” in a reasonable computational
time. A solution is deemed of “acceptable accuracy” if the
worst-case performance ratio (PR) is between 2/3 and 4/3
(Balakrishnan et al., 1994). PR is the ratio of the value of a metric
obtained for the solution of the heuristic substitute method to
the value obtained for the accurate solution. The definition of
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FIGURE 5 | Lines of constant salinity [ppm TDS] of the FEFLOW and

2D-MADPD-SWI solutions for α = 50.

FIGURE 6 | Confidence interval (90%) of the 1,500 ppm TDS line for the

aquifer with α = 10.

this metric depends on what characteristics of the solution are
considered important.

The method applied in this study can be considered as
heuristic, because it does not use the full VDF governing
equations. To evaluate its performance, we have defined two
metrics that can be considered as the important geometrical
characteristics of the mixing zone: (1) the position of the SWI
interface toe, and (2) the ratio of the position of the interface
toe to the horizontal width of the mixing zone. The worst
performance of 2D-MADPD-SWI is observed in the aquifer
with α = 50. In that case, the values of the two metrics
for FEFLOW are 150 m and 120/150, respectively, whereas the
corresponding values of the metrics for 2D-MADPD-SWI are
173 m and 90/173. The corresponding worst-case PR for these
two metrics is 173/150, which is well within the [2/3, 4/3] range,
and (90/173)/(120/150), which is slightly lower than the lower

FIGURE 7 | This borehole has roughly 30%chance of yielding water of

unsuitable quality within the 90% confidence interval of the 1,500 ppm

TDS line.

limit (2/3). Therefore, from a heuristic analysis perspective, 2D-
MADPD-SWI may be considered a “good solution.” It should be
noted that the value α = 50 is 5 times larger than the common
aquifer value, α = 10, reported by Mazi and Koussis (2021).

As mentioned previously, Glover’s solution, employed to
obtain the groundwater flow net, assumes a confined aquifer of
infinite depth. However, the aquifer of the case study has an
aspect ratio ξ = 0.01, not an infinite depth. An estimation of
the error due to this difference (the overall error is discussed in
the previous paragraph) is obtained by comparing the solution
of Mazi and Koussis (2021) (their Figure 5) with the solution
of 2D-MADPD-SWI (Figure 5). This comparison makes evident
that the error due to this is not significant. In fact, 2D-MADPD-
SWI provides a better estimation of the mixing zone close to
the interface toe compared to the estimation of the uncoupled
solution of Mazi and Koussis (2021).

Regarding the CPU times, Mazi and Koussis (2021) mention
that the uncoupled solution took 1s under steady-state flow on
a PC with an Intel Core 2 CPU 6,300 at 1.86 GHz, whereas
the solution of the coupled VDF equations took 193s. The time
required to complete 400 runs of the 2D-MADPD-SWI on a PC
with a 2-cores AMD EPYC Processor (with IBPB) at 2.5 GHz
was 70 s. Therefore, 2D-MADPD-SWI appears to be 5 times
faster than the uncoupled solution of Mazi and Koussis (2021).
It should be noted that the time reported for 2D-MADPD-SWI
includes also the evaluation of the Glover solution to obtain the
flow net (which is also the discretization grid of the 2D-MADPD-
SWI), whereas the time reported for the uncoupled solution does
not include the times required to calculate the SWI interface
and to generate the grid. All these render the 2D-MADPD-SWI
solution suitable for applications that require multiple runs.

To demonstrate the influence of the uncertainty of the
hydraulic properties and conditions on the solution, 2D-
MADPD-SWI was embedded in MC simulations. It is noted
that a simple simulation with the two most extreme pairs of
values (e.g., most favorable and most unfavorable in terms
of SWI) would not estimate the likelihood of these extreme
values. In contrast, MC can offer vital information in decisions
regarding the management of coastal aquifers. For example,
the results of the MC simulation shown in Figure 6 can be
used to decide on the siting of an irrigation pumping well.
If the bottom of that well is placed to the right of the 95%
line, then, most likely, the pumped water will be suitable for
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irrigation (assuming steady conditions). In contrast, placing the
borehole inside the confidence interval region increases the risk
of withdrawing water of degraded quality. For example, Figure 7
displays a borehole located 30m up-gradient of the toe of the
1,500 ppm TDS line, but within the 90% confidence interval of
a hypothetical aquifer that has the same dimensionless ratios as
the aquifer of Figure 6 (therefore identical hydraulic behavior).
According to the deterministic approach, the water abstracted
from that borehole is guaranteed to be suitable for irrigation.
However, according to the probabilistic approach, with the MC
simulations, there is (roughly) a 30% chance that at some point
this borehole will yield water of salinity >1,500 ppm TDS, which
is unsuitable for irrigation (Masters, 1991).

It should be noted that a careful estimation of the parameter
values of the distributions is important. For example, the
values of the triangular distribution parameters regarding the
hydraulic conductivity should take into account the possible
variations dictated by the hydrogeological reconnaissance. The
parameter values regarding the hydraulic stress should reflect
the short- and long-term hydrologic fluctuations. Ideally,
the latter would require a hydrological model to allow
the propagation of the uncertainty of the main driver, the
precipitation, to the aquifer stresses. In any case, the use of
MC simulations to obtain confidence intervals suffers much
less from subjectivity compared to any naive interval definition
with only two runs, one for the lowest and one for the highest
parameter value.

MADPD-SWI can be applied to any type of aquifer.
However, Glover’s solution can be applied only in homogeneous,
isotropic, and confined aquifers of infinite depth to obtain
the flow net. Van der Veer’s solution can be used in case of
unconfined, homogeneous, isotropic, and infinite-depth aquifers.
A numerical method could be used to obtain the flow net in the
case of an arbitrary aquifer, though in this case the computational
complexity would increase, but still remain low compared to a
complete VDF model.

5. CONCLUSIONS

In this study we have presented an efficientmethod for simulating
SWI with mixing. This method has been motivated by the need
for fast execution to facilitate carrying out multiple runs in
Monte Carlo simulations or for identifying optimal management
strategies. The method is based on two concepts. The first
concept relates to the use of uncoupled SWI equations in the
through-flow region of the aquifer (Mazi and Koussis, 2021),
instead of the coupled VDF equations in the whole flow domain,
combined with analytical calculation of the flow via the solution
of Glover (1959). The second concept concerns the use of the
principal directions of transport as coordinates on which the
computational grid is also defined and as basis for directional
splitting of the transport calculations, and the use of the matched
artificial dispersivity method (Syriopoulou and Koussis, 1991)
to efficiently simulate the longitudinal advection-dispersion
processes. Embedding these concepts in the 2D-MADPD-SWI

model enabled an at least hundred-fold faster solution than
the VDF model. 2D-MADPD-SWI was tested on hypothetical
aquifers, the characteristics of which were selected to represent
a wide range of real-world situations. The results of the 2D-
MADPD-SWI model are comparable to the ones obtained from
solving the uncoupled equations with the FEFLOW model.
The results of those applications indicate that the worst-case
performance of 2D-MADPD-SWI is within what is considered
as “acceptable accuracy” in terms of heuristic analysis (Garey and
Johnson, 1979).

The CPU time required for a single 2D-MADPD-SWI run
on a common modern-day PC was 0.2 s, whereas the time
required with FEFLOW for the uncoupled solution was reported
to be 1s and for the VDF solution 193 s. The 2D-MADPD-SWI
time also includes the automatic generation of the discretization
grid along the principal directions of transport. This feature
is important, since the grid generation for the finite element
method is a demanding process requiring proper care for
accuracy and stability.

The low CPU times of 2D-MADPD-SWI allow realizing
applications demanding multiple runs. Monte Carlo simulations
were applied in one of the hypothetical aquifers to derive the
confidence intervals of the 1,500 ppm TDS line (maximum
tolerable salinity for irrigation). That example demonstrated the
impact of the uncertainty of the hydraulic conductivity and the
freshwater flow rate on the advance of the 1,500 ppm TDS
line. The management of the coastal aquifers via stochastic
simulations is important for two reasons: (1) it provides the
means to treat the inherent uncertainty of the properties and
conditions controlling the natural processes, and (2) the scientists
conducting the study can communicate this inherent uncertainty
quantitatively to the responsible decision-making authorities.
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APPENDIX A

FIGURE A1 | Principal directions co-ordinates and space-time computational

grid. Reprinted from Syriopoulou and Koussis (1991).

Principal directions of transport have been proven
advantageous for numerical simulation in certain kind
of problems. For example Frind and Germain (1986),
Kinzelbach and Frind (1986), and Syriopoulou and
Koussis (1991) have used principal directions (the cross-
sectional flow net) to efficiently simulate tracer transport.
Natural coordinates, such as streamlines and their
orthogonals, are similarly advantageous in the solutions
of groundwater flow problems (Rozos and Koutsoyiannis,
2010).

Tracer transport in steady groundwater flow, without internal
sources or sinks, is modeled by the advection-dispersion (A–
D) equation on the orthogonal Principal Directions of transport
(S,T) (streamlines and equipotentials in isotropic aquifers),
Figure A1 (Syriopoulou and Koussis, 1991):

∂c

∂t
+ u

∂c

∂S
= DS

∂2c

∂S2
+ DT

∂2c

∂T2
(A1)

where c is the concentration of a conservative solute, u the linear
pore velocity along S, and t time; dispersion coefficients are
Di = uαi + D, with αi the dispersivity in the i-direction (S
or T), and D the molecular diffusion coefficient. Advantages of
the PD formulation are a single advective flux term, (q/np)c =

uc, with np the porosity, and only two dispersive-flux terms,
−DL∂c/∂S and −DT∂c/∂T (diagonal dispersion tensor). At
each time step 1t, Equation (A1) is split locally in two 1-D
equations (Yanenko, 1971), an A–D equation along streamlines
S and a dispersion equation in the direction T transverse to
the flow:

∂c∗

∂t
+ u

∂c∗

∂S
= DS

∂2c∗

∂S2
(A2)

∂c

∂t
= DT

∂2c

∂T2
(A3)

Derivatives are approximated as finite differences (FDs) ratios
on irregular PD grids. Coincident natural co-ordinates and
curvilinear gridlines avoid numerical (i.e., artificial) transverse
diffusion “essential if dispersive contrast is high (Frind and
Germain, 1986)” and help eliminate spurious reactions in
reactive-species transport (García-Delgado and Koussis, 1997;
Koussis et al., 2003). c∗ is computed by solving Equation
(A2) with the method of Matched Artificial Dispersion (MAD)
(Syriopoulou and Koussis, 1991) for one 1S along each
streamline and becomes initial condition for Equation (A3).
Equation (A3) is discretized in the transverse T-direction by
centered FDs, centered- or backward-in-time; the resulting
tridiagonal system of equations is solved with the Thomas
algorithm. This completes integrating Equation (A1) for one 1t
over the first strip of elements 1S,1T. Repeating the procedure
advances the solution to a user-defined edge of the plume (c ≤

ctolerance) and initializes the field for the next time step. The
FORTRAN source code (without the Crank-Nicolson option) is
listed in Syriopoulou and Koussis (1987).

The MAD numerics solve the wiggles vs smearing dilemma
posed by steep fronts in advection domination on the premise
that the advection equation approximates the A–D Equation
(A2) to first order. The dispersion term is truncated and the
remaining advection equation is discretized over a grid cell
1S = Si+1 − Si,1t = tn+1 − tn as follows (Cunge, 1969):
∂c∗/∂t ≈ θ(1c∗/1t)i + (1 − θ)(1c∗/1t)i+1, with 1c∗/1t =

((c∗)n+1−(c∗)n)/1t; ∂c∗/∂S ≈ 0.5[(1c∗/1S)n+(1c∗/1S)n+1],
with 1c∗/1S = ((c∗)i+1 − (c∗)i)/1S; i, n mark discrete space
and time and θ is a spatial weighting factor. The resulting explicit
scheme is

(c∗i+1)
n+1 = a1(c

∗
i )

n + a2(c
∗
i )

n+1 + a3(c
∗
i+1)

n, ai = f (C, θ),

6ai = 1; Courant number C = u1t/1S(A4)

Expanding the grid functions in Taylor series about (Si, tn) to
second order and converting second derivatives to second spatial
derivatives via the advection equation yield ∂c∗/∂t + u∂c∗/∂S =

DN∂2c∗/∂S2. The right-hand side is the second-order truncation
error with numerical diffusion coefficient DN = (0.5 − θ)u1S.
Matching DN = DS, via θ = 0.5 − DS/(u1S) = 0.5 − 1/P1,
models longitudinal dispersion; Equation (A4) is unconditionally
stable for θ < 0.5 (DN = DS > 0) and ensures c∗ ≥ 0 for
P1 = u1S/DS ≥ 2 and ai ≥ 0, or 2θ ≤ C ≤ 2−2θ (Cunge, 1969;
Bowen et al., 1989; Koussis, 2009); for pure advection θ = 0.5 and
C = 1. Variable flow is accommodated by averaging velocities
over each 1S. The MAD scheme can be expanded to account for
a solute undergoing first-order decay reaction, e.g., BOD (Koussis
et al., 1990).

APPENDIX B

The grid density is defined by the number of equipotential and
streamlines of the flow net, respectively, and must be selected
carefully, because it not only influences the resolution of the
method, but also the MAD scheme’s behavior (Appendix A). The
potential on each equipotential line is (2δQx/K)0.5, where x [L]
the distance of the equipotential line at the aquifer top from
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the shoreline and Q the freshwater flow rate per unit shoreline-
length. The equipotential lines are equidistant. The streamlines
are calculated at equal streamfunction intervals, obtained by
dividing the maximum streamfunction value, Q/K, by the
number of streamlines. The coordinates of the intersections of
the equipotentials and the streamlines (the nodes of the PD grid)
are calculated by Glover’s complex Equation (1). The specific

discharge at the intersections is calculated analytically by Darcy’s
law and Equation (2) of Glover. Also required is the freshwater
flow rate Q. If instead the hydraulic head at the inflow section
is provided (the outflow section is at the sea boundary), Q is
computed from Equation (9) for 1zs = 0. Finally, the buoyancy
factor δ is corrected according to Koussis and Mazi (2018), to
account for the effects of transverse dispersion.

Frontiers in Water | www.frontiersin.org 11 August 2021 | Volume 3 | Article 720557

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles

	Efficient Stochastic Simulation of Seawater Intrusion, With Mixing, in Confined Coastal Aquifers
	1. Introduction
	2. Materials and Methods
	2.1. Governing Equations
	2.2. Solution Approaches of the VDF Equations
	2.3. The 2D-MADPD-SWI Model
	2.4. Monte Carlo Simulations

	3. Results
	4. Discussion
	5. Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	References
	Appendix A
	Appendix B


