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An integrated temporal study of a long-term ecological research andmonitoring database

of the St. Lawrence River was carried out. A long and mostly uninterrupted high

temporal resolution record of fluorometric data from 2014 to 2018 was used to examine

phytoplankton fluorometric variables at several scales and to identify temporal patterns

and their main environmental drivers. Sets of temporal eigenvectors were used as

modulating variables in a multiscale codependence analysis to relate the fluorometric

variables and various environmental variables at different temporal scales. Fluorometric

patterns of phytoplankton biomass in the St. Lawrence River are characterized by large,

yearly-scale patterns driven by seasonal changes in water temperature, and to a lesser

extent water discharge, over which finer-scale temporal patterns related to colored

dissolved organic matter and weather variables can be discerned at shorter time scales.

The results suggest that such an approach to characterize phytoplankton biomass in

large rivers may be useful for processing large data sets from remote sensing efforts

for detecting subtle large-scale changes in water quality due to land use practices and

climate change.

Keywords: limnology, phytoplankton fluorescence, scale, temporal study, water quality

INTRODUCTION

The Upper St. Lawrence River (CA, US) represents an ecological, economic, cultural, and socially
important ecosystem (Lean, 2000; Twiss, 2007; Marty et al., 2010). Increased knowledge of the
patterns of water quality and its main drivers is valuable for the assessment and management of
priority resources such as fish populations. To this end, detection of tributary and point-source
inputs that result in nutrient enrichment and fecal bacterial contamination (Bramburger et al.,
2015), mercury mobilization from changing water levels (Brahmstedt et al., 2019), and harmful
cyanobacterial blooms with related taste and odor issues (Watson et al., 2008), are necessary.
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However, the possible existence of patterns at several temporal
scales makes the inference of results strongly dependent on
the respective scale of the study. Scale becomes an important
factor not only for ecological studies, but also for management
purposes, as management projects can fail if they use information
based on small-scale patterns to modify larger-scale patterns
when there is a disconnect between the two. For example, if
the variables affecting daily variation are different than those
affecting yearly variation, then considering them to develop
programs at the yearly scale will possibly lead to failure.

Long-term ecosystem research and monitoring (LTERM)
programs are essential to assess and study various temporal scales
simultaneously. Long-term datasets represent the best possible
approach to studying multiple scales in a single analysis. In
addition, an important approach to LTERM is the application
of techniques that can handle such data so that processes that
impact environmental change can be detected and understood
with the aim of informing ecosystem-based management actions
(Parr et al., 2003). Within the Great Lakes-St. Lawrence River
system there are a limited number of sensor arrays capable of
supporting LTERM with very few deployed in the large rivers
that provide lake-to-lake drainage throughout this system. There
is also the limitation that buoy-based sensors are restricted
to ice-free periods, typically May to December (Twiss and
Stryszowska, 2016). Here we use a novel observation platform
by placing water quality sensors inside of a hydroelectric power
dam, which affords year round observations at high degrees of
temporal resolution (minutes) over the span of years. In situ
phytoplankton fluorescence techniques have been widely used
in aquatic systems to estimate phytoplankton biomass levels and
dynamics (reviewed by Bae and Park, 2014); however, studies are
typically limited to episodic surveys over short time frames.

This study represents an integrated temporal study of a
LTERM database of phytoplankton fluorescence in the St.
Lawrence River. Using a mostly uninterrupted dataset that
covers a moderate temporal extent (∼5 years between 2014 and
2019 including several record high water years), phytoplankton
fluorometric variables at several temporal scales were examined
to identify temporal patterns and their main drivers to better
understand the patterns of phytoplankton variables in the
region of the Upper St. Lawrence River. Sets of temporal
eigenvectors were used as modulating variables in multiscale
codependence analysis (MCA) to relate the fluorometric variables
and various environmental variables at different scales. The
temporal eigenvectors related to the environmental variables
from the MCA were combined into tables that represent
biologically interesting environmental drivers and their influence
on fluorometric variables assessed using variation partitioning.

METHODS

Study Site and Data Acquisition
The Moses-Saunders hydropower dam is located on the St.
Lawrence River, between the state of New York (USA) and the
province of Ontario (Canada). A multi-sensor array installed
in Unit 32 power turbine of the Moses-Saunders hydroelectric
dam, along the New York shoreline of the St. Lawrence River

(45◦0.253′N, 74◦47.945′W, Figure 1) gathered water quality data.
The array consists of a Turner Designs (Sunnyvale, CA) C6
multi-sensor platform equipped with Cyclops-7 sondes. The
array measures numerous water quality variables at 1–2min
intervals. Of interest in this analysis are water temperature, in
vivo chlorophyll a, in vivo phycocyanin and colored dissolved
organic matter (CDOM) fluorescence. Water from the penstock
was drawn via a 30 cm diameter pipe used to cool the stator of the
turbine-driven electric generator. This water is effectively mixed
surface and bottom (∼20m depth) river water but is restricted
to water that flows along the southern shoreline of the river
owing to the location of the Unit 32 turbine, which is nearest
to that shore. The C6 was housed in a watertight flow-through
cell and is connected to the cooling water pipe via a stainless-
steel pipe (1 cm diameter) with a pressure reduction gate valve.
The array is equipped with an anti-fouling brush, which performs
three revolutions prior to recording water quality observations to
prevent any fouling by debris or organisms on the optical sensor
surfaces. The entire system was visited at 2–3-week intervals to
download data, clean instruments, and recalibrate.

In addition to the data from the C6, two additional
independent datasets were used. The first of these is a dataset
of local atmospheric variables from the National Oceanic and
Atmospheric Administration website (https://www.ncdc.noaa.
gov) for a weather station near the study region (station number
WBAN:94725; located 9 km distant at the Massena, NY airport).
Variables that were measured on an hourly basis were retained
for the analysis. These consist of air temperature (dry bulb
temperature), wind speed and direction, visibility, precipitation,
weather type and sky clarity (in oktas). Details regarding the
NOAA variables and their measurement are available at https://
www.ncdc.noaa.gov/cdo-web/datasets. The second of these is a
dataset of daily water discharge in the St. Lawrence River at
this site were obtained from the United States Geological Survey
website (https://www.usgs.gov) through its National Water
Information System web interface (station number 04264331).

Data were cleaned to remove any data collected during periods
of water flow restrictions due to instrument clogging (infrequent)
or maintenance by the dam operators (intermittent). Data were
averaged into 4-h blocks to avoid overly long computing times
and memory roadblocks during analyses. We found that this
was the best value that offered a tradeoff between computational
efficiency and obtaining results within reasonable amounts of
time. Additionally, a previous study (Mimouni et al., 2020)
showed that few variables in the region reflect daily patterns and
if they did then they were much less important in magnitude than
those at larger scales.

Linear regression models and covariances are sensitive to
outlier values, so it is often best to consider transformations of the
variable (Legendre and Legendre, 2012). The measured variables
were individually transformed to reduce skewness as much as
possible. Hourly chlorophyll a and phycocyanin fluorescence,
hourly wind speed and daily chlorophyll a and phycocyanin
fluorescence were square root transformed. Hourly precipitation
and daily precipitation were fourth root transformed. Hourly
CDOM, daily CDOM and daily discharge were log transformed.
Qualitative variables (weather type and sky clarity) were recoded
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FIGURE 1 | Geographical location of the Unit 32 power turbine of the Moses-Saunders hydroelectric dam on the Upper St. Lawrence River.

as binary variables. Even though sky clarity is an ordinal variable,
it was treated as a qualitative variable because of the presence of
different cloud layers and because data were averaged into blocks,
implying that several classes of sky cover could be observed in
the same block. Due to the circular nature of wind direction,
it was decomposed into eastern and northern components by
computing the sine and cosine of the angular direction. The
average of each wind direction was computed, and the resulting
vectors were then normed to obtain components that lay on the
unit circle.

Construction of Temporal Variables
Due to the long extent (∼5 years) and high sampling frequency
(4-h or daily blocks) of the datasets, several patterns at various
scales can be present. Direct multiscale ordination (DMSO;
Wagner, 2004) indicated that regression coefficients were not
homogeneous across scales as the sums of the explained
and residual variance of a multiple linear model between
the fluorometric variables and the environmental variables
often stepped out of the computed intervals (results not
shown). Therefore, we opted to compute distance-based Moran
Eigenvector Map (dbMEM, Dray et al., 2006) variables that
express the structures at various scales and study these structures
rather than the environmental variables directly. Fluorometric
variables were regressed against a numeric variable expressing
the time since the data started being recorded to test for linear
trends in the data. These regressions were tested using 9,999

permutations of the reduced model residuals. Phytoplankton
fluorescence variables showed significant linear trends over time.
Consequently, residuals of the regression were considered as new
response variables.

A variety of sets of dbMEM variables were computed and
confronted against the fluorometric variables to find the best set
of temporal predictors. As in Dray et al. (2006), we considered
a simple binary connection scheme, a linear weighing function

of distances f1
(

dxy|dmax

)

= 1 − dxy
dmax

, a concave-up weighing

function of distances f2
(

dxy|dmax,α
)

= 1 −
(

dxy
dmax

)α

and a

concave-down weighing function of distances f3
(

dxy|β
)

= 1

d
β
xy

.

The value of dmax was set at 149.17 days for the hourly dataset and
149 days for the daily dataset, the value of the longest gap in each
dataset. We introduce a family of distance weighing functions,
which we refer to as “exponentially weighted distances.” The
general form of the weighing functions is:

A[i,j] = fexpo

(

D[i,j]|g (.) , λ
)

= e
−λg

(

D[i,j]

)

(1)

Where g (.) is a mathematical function and λ is a real coefficient.
Using this formula, it turns out that all of the weighing functions
of Dray et al. (2006) are special cases of the exponentially
weighted distances family. For example, the concave-down
function f3 considers g (x) = log (x) and λ = β . We considered
a square-root transformation of distances (g (x) =

√
x) and no
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transformation of distances [g (x) = x]. We also considered
a weighing function that is similar to the concave-up function
f3, but more flexible. The function considers g (x) = xk1 and
λ = 2−k2 . An additional advantage of this function over f2 is that
it never crosses the abscissa, therefore allowing for the weighing
of any distance. The best-fitting dbMEM was selected based on
maximizing the adjusted multiple determination coefficient, R2

adj
.

Codependence Analysis
The set of dbMEM variables that maximized R2

adj
values were

retained and used in multiscale codependence analysis (MCA,
Guénard et al., 2010) to relate the different structures to
environmental variables. All explanatory variables were also
regressed on the linear trend expressing time and the residuals
retained to avoid the appearance of spurious relationships
before carrying out the MCA. Tests of significance for each
codependence coefficient were carried out by parametric means.

The values of the codependence coefficients between the
response and the explanatory variables were computed for
each dbMEM variable. A positive codependence coefficient is
indicative of a positive relationship between the two variables
at the considered scale and conversely, a negative codependence
coefficient is indicative of a negative relationship between the two
variables. These values would allow us to separate among the
positive and negative influences of the explanatory variables on
phytoplankton fluorescence.

Variation Partitioning and Comparison of
Fractions
The significant dbMEM variables in the MCA analysis were
combined into different tables depending on the explanatory
variable that showed the highest absolute codependence
coefficient. Three tables were constructed for the hourly dataset
and four tables for the daily dataset so that they represent
biologically interesting environmental drivers. The first table
consisted of air and water temperature (X1), the second table
consisted of weather condition variables (X2) and the third table
consisted of wind speed and direction, visibility as well as sky
clarity (X3). The fourth table consisted of CDOM and, for the
daily dataset only, water discharge (X4). Variation partitioning
(Borcard et al., 1992; Borcard and Legendre, 1994) was used
to compare the fractions of variation explained by each of
the tables. Coefficients of multiple determination values were
adjusted following Ezekiel’s formula (Ezekiel, 1930; Peres-Neto
et al., 2006). The significance of each individual fraction was
tested using conditional regression and 9,999 permutations of the
reduced model residuals.

RESULTS

Environmental Conditions
The variables examined showed a considerable amount
of variation (Table 1). A published database containing
the sensor data collected from 2014 to 2019 is found at
doi: 10.17632/8fpgm26drj.1. As expected from seasonal changes,
water temperature varied between ∼0.0◦C in winter and up to
24.3◦C in the summer. Wind direction was quite variable, even

within 4-h blocks. At the largest scales, no clear structure was
observed in the direction of the wind. Nonetheless, winds did not
blow in an indiscriminate manner. Observation of the directional
values of wind on the unit circle showed that northeasterly and
southwesterly winds were the most common and southeasterly
and northwesterly winds were the rarest. In terms of wind speed,
values of up to 48 km·h−1 were recorded.

In vivo chlorophyll a fluorescence showed some amount of
seasonal pattern, but it was not completely apparent. Even though
seasonal highs of 0.4 µg·L−1 and above in summer and lows
of around 0.0 µg·L−1 in winter could be observed, there were
several more localized peaks, especially in late fall. In late fall of
2015, 2016, and 2017, a second peak of chlorophyll a was noted,
after the summer peak had begun to subside. The peak in late
2015 was especially important, as it was on par with the summer
peak of 2015. Phycocyanin also showed a seasonal pattern, but
this was much clearer and stronger than chlorophyll a. Despite
being more clearly periodic than chlorophyll a, phycocyanin also
showed some localized peaks but the timing of these peaks were
variable and did not always follow the late fall pattern found for
chlorophyll a.

Construction of Temporal Variables
The best-fitting set of dbMEM variables differed depending
on the considered fluorometric variable. For the hourly
datasets, chlorophyll a was best explained by dbMEM variables
constructed using parameters g (x) =

√
x and λ = 5 and

phycocyanin using values of g (x) =
√
x and λ = 5. For the daily

datasets, chlorophyll a was best explained by dbMEM variables
constructed using parameters g (x) = log (x) and λ = 2 and
phycocyanin using values of g (x) = log (x) and λ = 1.

Main Drivers of Fluorometric Variables
Tests of the significance of the MCA showed that, for the
hourly datasets, 472 dbMEM variables were significant for
chlorophyll a and 428 variables were significant for phycocyanin
(in all cases, p ≤ 0.05). Likewise, for the daily datasets, 45
dbMEM variables were significant for chlorophyll a and 47
variables were significant for phycocyanin (in all cases, p≤ 0.05).
Codependence coefficients between the fluorometric variables
and the environmental variables were quite variable, both in sign
and magnitude.

For hourly datasets, adjusted fractions of variation explained
by eigenvectors associated with each explanatory variable
(Table 2) showed that dbMEM variables associated with water
and air temperature explained most of the variation, as they
explained close to three quarters of the variation in chlorophyll
a and phycocyanin fluorescence. dbMEM variables associated
with CDOM explained over 10% of the variation. Wind, weather
and sky variables individually explained much smaller amounts
of variation. However, the results somewhat differed for daily
datasets (Table 3). For both chlorophyll a and phycocyanin,
dbMEM variables associated with water temperature still showed
the strongest total coefficient of multiple determination, with
their value being slightly less than for the hourly data. Likewise,
dbMEM variables associated with CDOM also explained over
10% of the variation. However, water discharge proved to be a
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TABLE 1 | Table of daily averages and ranges of the quantitative variables considered.

2014 2015 2016 2017 2018 Range

CDOM (µg·L−1) 5.17 4.97 5.64 7.41 6.42 [3.06, 14.12]

Chlorophyll a (µg·L−1) 0.18 0.19 0.16 0.17 0.17 [0.00, 0.52]

Phycocyanin (µg·L−1) 0.01 0.01 0.00 0.01 0.01 [0.00, 0.04]

Wind speed (m·h−1) 6.72 7.56 8.12 7.54 7.25 [0.30, 20.44]

Wind Northing 0.14 0.16 0.27 0.21 0.16 [−1.00, 1.00]

Wind Easting −0.37 −0.36 −0.30 −0.29 −0.40 [−1.00, 1.00]

Water temperature (◦C) 18.59 11.27 6.78 11.25 12.18 [0.10, 24.30]

Air temperature (◦C) 15.69 7.56 1.61 8.30 12.10 [−25.63, 29.05]

Visibility (miles) 8.88 8.38 8.21 8.50 8.90 [1.58, 10.00]

Precipitation (inches) 0.01 0.01 0.00 0.01 0.01 [0.00, 0.20]

Discharge (ft3·s−1) 280139.9 265762.5 252047.9 302487.5 297787.9 [208000, 368000]

Values have been tabulated by year.

TABLE 2 | Table of adjusted coefficients of multiple determination (R2
adj )

associated with the constructed dbMEM variables depending on the explanatory

variable with which they showed the highest absolute codependence coefficient

for hourly data of chlorophyll a (a) and phycocyanin (b).

T P N

(a)

CDOM 18.24 4.61 13.58

Water temperature 36.13 31.64 2.68

Wind speed 2.90 0.21 2.68

Wind Northing 1.40 0.87 0.52

Wind Easting 3.27 2.87 0.39

Air temperature 13.34 8.94 4.38

Visibility 2.40 0.62 1.77

Snow 3.21 2.59 0.62

UPrecip 1.66 0.25 1.40

Overcast 2.11 0.31 1.80

(b)

CDOM 14.37 2.32 12.01

Wind temperature 45.16 44.69 0.44

Wind speed 1.92 1.00 0.91

Wind Easting 7.34 6.96 0.35

Air Temperature 10.28 10.29 −0.01

Snow 1.10 0.23 0.87

Thunder 1.07 0.57 0.50

Overcast 3.36 1.21 2.15

Values have been divided into a total row (T) and R2
adj associated only with positive

codependence coefficients (P) or only with negative codependence coefficient (N). Only

variables for which the total value was higher than 1% are shown.

variable that explained a sizeable amount of variation, especially
for chlorophyll a, where it explained approximately a quarter of
the variation.

Computation and visualization of the fitted values of the
fluorometric variables based on the different sets of dbMEM
variables allowed visualization of the scales at which the patterns
occurred for fluorometric variables. For both hourly datasets of

TABLE 3 | Table of adjusted coefficients of multiple determination (R2
adj )

associated with the constructed dbMEM variables depending on the explanatory

variable with which they showed the highest absolute codependence coefficient

for daily data of chlorophyll a (a) and phycocyanin (b).

T P N

(a)

CDOM 13.82 3.98 9.77

Wind temperature 35.85 34.40 1.41

Air temperature 2.37 2.44 −0.07

BlSnow 1.42 NA 1.42

Snow 1.82 NA 1.82

Obscured 3.26 NA 3.26

Discharge 23.46 3.21 20.16

(b)

CDOM 14.92 3.92 10.91

Wind temperature 43.98 43.98 NA

Air temperature 10.35 10.35 NA

Visibility 2.48 NA 2.48

Fog 4.04 1.96 2.07

Rain 1.18 0.91 0.27

Snow 1.23 NA 1.23

Clear 2.07 2.00 0.07

Few 2.90 2.90 NA

Discharge 4.40 1.77 2.61

Values have been divided into a total row (T) and R2
adj associated only with positive

codependence coefficients (P) or only with negative codependence coefficient (N). Only

variables for which the total value was higher than 1% are shown.

phytoplankton fluorescence, dbMEM variables associated with
water temperature were responsible for large-scale patterns,
as the curve for the fitted values reflected seasonal patterns
(Figure 2), especially for phycocyanin. In contrast, dbMEM
variables associated with weather and sky variables were more
localized and seemed to be associated with shorter-scale patterns.
For daily of phytoplankton fluorescence, water temperature
was still responsible for most of the large-scale variation, but
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FIGURE 2 | Line plots of hourly chlorophyll a and phycocyanin flurorometry,

along with their fitted values according to the sets of dbMEM variables related

to water temperature. Observed values are in black, fitted values relating to

dbMEM variables related to water temperature are in red.

only for phycocyanin (Figure 3). For chlorophyll a, it was
still responsible for some large-scale pattern, but to a much
smaller extent.

It should be noted that the relationship between
phytoplankton fluorescence and the explanatory variables could
be either positive or negative. For water and air temperature,
most of the variation was associated with positive codependence
coefficients. This highlights a positive influence of temperature
on phytoplankton fluorescence. However, for the daily datasets,
some of the late fall peaks were shown to be negatively related
to water discharge (see Figure 4). For other variables, adjusted
fractions of variation associated with both negative and positive
codependence coefficients were appreciable.

FIGURE 3 | Line plots of daily chlorophyll a and phycocyanin flurorometry,

along with their fitted values according to the sets of dbMEM variables related

to water temperature. Observed values are in black, fitted values relating to

dbMEM variables related to water temperature are in red.

Variation Partitioning and Comparison of
Fractions
Variation partitioning revealed that the most important part
of the variation for both fluorometric variables in the hourly
datasets was accounted for by dbMEM variables associated
with temperature. This observation was more pronounced for
phycocyanin than for chlorophyll a. dbMEM variables associated
with temperature explained around half of the variation in
chlorophyll a (54.1%) and phycocyanin (60.0%). For dbMEM
variables associated with sky condition and CDOM, these
variables accounted for less variation and respectively accounted
for 18.1% and 20.3% of the variation for chlorophyll a and
19.0% and 16.0% of the variation for phycocyanin (see Figure 5).
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FIGURE 4 | Line plots of daily chlorophyll a and phycocyanin flurorometry,

along with their fitted values according to the sets of dbMEM variables related

to water discharge. Observed values are in black, fitted values relating to

dbMEM variables positively related to water discharge are in red and

negatively related are in blue.

dbMEM variables associated with weather variables accounted
for less variation and respectively accounted for 11.4% of
the variation for chlorophyll a and 7.9% of the variation for
phycocyanin (see Figure 5). Tests of partial RDA showed that all
fractions were significant (pvalue ≤ 0.05 in all cases).

For daily chlorophyll a fluorescence, dbMEM variables
associated with temperature explained the most variation
(40.3%), followed by those associated with water discharge and
CDOM (39.7%), then those associated with sky condition (5.9%)
and finally those associated with weather variables (4.9%). For
daily phycocyanin fluorescence, dbMEM variables associated
with temperature explained the most variation (57.0%), followed

FIGURE 5 | Variation partition diagram of hourly chlorophyll a and

phycocyanin flurorometry between the three sets of dbMEM variables, as

divided into ecologically interesting groups. See text for variable group

explanations and denominations.

by those associated with water discharge and CDOM (21.4%),
then those associated with sky condition (12.1%) and finally
those associated with weather variables (6.2%). The inclusion
of dbMEM variables related to water discharge considerably
changed results (see Figure 6). Tests of partial RDA showed that
all fractions were significant (pvalue ≤ 0.05 in all cases).

DISCUSSION

Both chlorophyll a and phycocyanin fluorescence showed
discernable yearly patterns. These patterns are most likely related
to yearly cycles in phytoplankton populations associated with
annual variations in drivers of phytoplankton communities
between the seasons in this temperate climate zone. This was
especially true for phycocyanin, which showed a stronger yearly
pattern than chlorophyll a. Chlorophyll a patterns differed
considerably, as they were much more variable and showed
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FIGURE 6 | Variation partition diagram of daily chlorophyll a and phycocyanin

flurorometry between the four sets of dbMEM variables, as divided into

ecologically interesting groups. See text for variable group explanations

and denominations.

several peaks late in the year after the summer peak. High
resolution monitoring demonstrates that late fall chlorophyll
a peaks are common in the Upper St. Lawrence River, as
they occurred almost every year during the extent of the
study. These events go against the established notion that
phytoplankton productivity is only positively associated with
increasing temperature and calls for a better understanding of the
drivers of phytoplankton fluorescence in this large river system
(annual average discharge in the Upper St. Lawrence River is
∼8,000 m3·s−1).

Nonetheless, it makes sense to consider temperature a prime
driver of phytoplankton populations. Temperature can act
positively both directly by influencing growth rate, as well
as indirectly by influencing other variables in the water and
positively correlates with light availability at this latitude in a
temperate climate zone. In addition, the seasonal cyclical nature
of temperature is well-suited to explain the yearly high values of

fluorescence in summer and low values in winter. This hypothesis
is supported by the results, as not only was a large fraction
of the variation of phytoplankton fluorescence explained by
temperature (either air or water) but was mostly comprised of
structures that had a positive codependence coefficient.

However, temperature is not the only driver of phytoplankton
fluorescence, and other driving variables should be considered.
Light availability (day length) strongly relates to water
temperature in this temperate climate and latitude (45◦N).
High light intensity can cause non-photochemical quenching
of the phytoplankton photosynthetic apparatus, which is more
sensitive to light regime than nutrient levels (Silsbe et al., 2015).

Using in vivo fluorescence (IVF) of chlorophyll-a is a rapid
technique but requires appreciation of caveats. Chlorophylll-
a IVF is affected by seasonal changes in phytoplankton
populations, nutritional stress, and diel changes in ambient light
levels (Loftus and Seliger, 1975; Kruskopf and Flynn, 2006). In
this study there was diel variation of IVF of chlorophyll-a, with
quenching occurring during daylight hours; the variation was
suppressed during winter when ice cover and reduced day length
reduced quenching of IVF (data not shown). For the statistical
analyses conducted here, we binned data into 4-h bins, which
reduced diel variation.

Late fall peaks in phytoplankton fluorescence were negatively
related to water discharge. Therefore, the reduction of water
discharge in the late fall would serve to increase the fluorescence
of some phytoplankton groups. Yet, it is possible that each
year’s peak in chlorophyll a could be brought on by a
combination of factors, rather than a single variable. An increase
in phytoplankton biomass is expected in fall in the Upper St.
Lawrence River for a number of biological and physicochemical
reasons. As cooler weather sets in, thermocline erosion deepens
and enrichens the epilimnion of Lake Ontario and this water
is the source of the river. During the same time, increased
grazing of zooplankton by zooplanktivorous young of the year
fish and predatory zooplankton decreases grazing pressure on
phytoplankton (Warner et al., 2006). Nutrient inputs due to run
off are expected to increase in fall owing to a combination of
increased precipitation coupled with less nutrient retention on
land due to senescing plant life and agricultural harvests. In
addition, an increase in phytoplankton biomass is typically seen
in the river water as it enters into fluvial Lake St. Lawrence where
water velocity decreases as residence time increases (Twiss et al.,
2010); this is exacerbated in autumn as river flow decreases by
dam regulation in order to retain water in Lake Ontario needed
for establishment of land fast ice in the headwater pool (fluvial
Lake St. Lawrence of the Moses-Saunders hydropower dam).

In this study, very few structures were associated with weather
and sky variables. These structures were mostly small-scale
variation and local effects. This is supported by the fact that the
wind variables were significant for the hourly dataset, but not
for the daily dataset, where means consider more variation. To
a certain extent, this result was expected, as the water studied was
river water that was well-mixed and represented an integrated
water sample from 0 to 20m depth. At such a depth, some
portion of the water may be shielded from weather events such as
winds and precipitation. Stronger effects associated with weather
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variables might have been detected if the rate of mixing was
slower than the rate of photoadaptation (Cullen and Lewis, 1988);
yet weather and sky variables still explain a sizeable amount of
variation in phytoplankton fluorescence in this large river.

Fluorometric patterns in the region are best understood as
yearly patterns that are related to fluctuations in temperature
and water discharge, over which smaller-scale patterns related
to variations in weather and sky variables are overlain.
This was especially the case for phycocyanin, which showed
exceptionally strong relationship between its yearly patterns
and those of temperature. The stronger relationship between
phycocyanin and yearly patterns could be because phycocyanin
is a pigment unique to the Cyanobacteria, and to a lesser extent
cryptophycean algae, whereas chlorophyll a is present in all
members of the phytoplankton community (Cyanobacteria and
eukaryotic algae). Chlorophyll a patterns are the result of several
phytoplankton groups rather than one group in particular.
Therefore, phycocyanin patterns in the region should be more
easily predictable than chlorophyll a patterns.

The present study considered the importance of temporal
structures (i.e., dbMEMs) associated with each set of
environmental variables rather than by the environmental
variables themselves. Such an approach is valid but entails
a conceptual switch due to the fact that influence of the
environmental variables themselves are not directly assessed,
but rather that of the dbMEMs. This distinction is important,
as there is not a one-to-one link between the variables and
the structures represented by the dbMEMs and, despite being
significant, several codependence coefficients were somewhat
low. Such an approach was used because the effects of the
considered variables were not consistent across scale. However,
this could have the effect of overestimating the influence of
each set of environmental variables. Further research to relate
environmental drivers of phytoplankton populations over
scale is required. Understanding changes to phytoplankton
populations can be used to detect known, suspected, or unknown
stressors that can cause the changes that potentially threaten
ecosystem health.

Numerous riverine early warning systems exist across the
globe. By far, the majority indicate threats from flooding [see
reviews by Alfieri et al. (2012), Acosta-Coll et al. (2018),
Perera et al. (2019)]. Fewer riverine early warning systems use
physico-chemical parameters to provide information to protect
drinking water or minimize impacts of contaminant spills, e.g.,
the Susquehanna River (NY, PA, MD) basin early warning
system [Susquehanna River Basin Commission (SRBC), 2021].
Monitoring turbidity, pH and specific conductivity supports
a statistical model used to detect anomalous water quality
conditions as a part of an early warning system in the Milwaukee
River (WI) (Nafsin and Li, 2021). Even fewer early warning
systems employ responses by living organisms using automated
instrumentation, such as phytoplankton fluorescence (Bae and
Park, 2014) as used here. The statistical approach used in the
present study provides an example of a technique applicable to
understanding the scale of influences on biological responses
and a base for interpreting how changes in water quality might
affect biological (e.g., chlorophyll-a fluorescence, abundance
of phycocyanin) response in a river environment. Although

this study focused on a temperate river system with strong
seasonality, the statistical and theoretical approaches used herein
are applicable to other aquatic systems.

Modeling ecosystems is difficult due to the inherent
complexity and the sparseness of data. However, remote sensor
networks, as utilized here, provide the opportunity to support
modeling approaches that can support early warning systems to
detect changes or impending change to ecosystems (e.g., Uusitalo
et al., 2018). Unknown stressors can be detected, from other
known variables that are directly measured through observed
changes in ecosystem properties such as changes in the variance
of state variables or rate of a process. The approach for detecting
unknown variables is latent variable analysis, where analysis
of variables are not directly observed but are inferred using
mathematical models. Observatories, such as that described here,
are capable of gathering large datasets that enable data mining
using machine learning and artificial intelligence techniques to
detect change. One advantage of data treatment in this manner is
that it can provide one aspect of an early warning system to work
in a near-automated manner. Of course, there would have to
be an evaluation step involved where changes in phytoplankton
fluorescence related to potentially toxigenic Cyanobacteria would
require risk assessment.

However, the use of latent variables is not necessarily the
best option. Indeed, using latent variables requires that a certain
number of conditions bemet before being able to use themethod.
First off, most of the pertinent explanatory variables must be
considered in the analysis. Second, the system must be extremely
well-known from an ecological point of view. Finally, the system
must have clear and independent unknown sources of variation.
Only in these cases can one be justified in using latent variables
as they represent unmeasured but known variables. Therefore,
in cases where too many unknowns are present, this method is
difficult to consider and apply.

In summary, this study describes a method by which
changes in phytoplankton abundance in a large river system, as
inferred by pigment (phycocyanin, chlorophyll a) fluorescence,
can be related to environmental variables at several scales of
observation (from daily to annual). The variation partitioning
approach applied can support sociologically relevant needs
such as understanding the conditions that relate closely to the
onset of harmful blooms of Cyanobacteria that adversely affect
water quality for human consumption and understanding large
scale changes in water quality due to land use practices and
climate change.
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