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A deep learning (DL) model learns a function relating a set of input variables with a set of

target variables. While the representation of this function in form of the DL model often

lacks interpretability, several interpretation methods exist that provide descriptions of the

function (e.g., measures of feature importance). On the one hand, these descriptions may

build trust in the model or reveal its limitations. On the other hand, they may lead to new

scientific understanding. In any case, a description is only useful if one is able to identify

if parts of it reflect spurious instead of causal relations (e.g., random associations in the

training data instead of associations due to a physical process). However, this can be

challenging even for experts because, in scientific tasks, causal relations between input

and target variables are often unknown or extremely complex. Commonly, this challenge

is addressed by training separate instances of the considered model on random samples

of the training set and identifying differences between the obtained descriptions. Here,

we demonstrate that this may not be sufficient and propose to additionally consider

more general modifications of the prediction task. We refer to the proposed approach as

variant approach and demonstrate its usefulness and its superiority over pure sampling

approaches with two illustrative prediction tasks from hydrometeorology. While being

conceptually simple, to our knowledge the approach has not been formalized and

systematically evaluated before.

Keywords: interpretable deep learning, statistical model, machine learning, spurious correlation, causality,

hydrometeorology, geoscience

1. INTRODUCTION

A deep learning (DL) model learns a function relating a set of input variables with a set of
target variables. While DL models excel in terms of predictive performance, the representation
of the learned function in form of the DL model (e.g., in form of a neural network) often
lacks interpretability. To address this lack of interpretability, several interpretation methods have
been developed (see e.g., Gilpin et al., 2018; Montavon et al., 2018; Zhang and Zhu, 2018;
Molnar, 2019; Samek et al., 2021) providing descriptions of the learned function (e.g., measures of
feature importance, FI). On the one hand, such descriptions can build trust in a model (Ribeiro
et al., 2016) or reveal a model’s limitations. Lapuschkin et al. (2019), for example, analyzed FI
scores and found that their image classifier relied on a copyright tag on horse images. Similarly,
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Schramowski et al. (2020) analyzed FI scores and found (and
corrected) that their DL model classified sugar beet leaves as
healthy or diseased while incorrectly focusing on areas outside
of the leaves.

On the other hand, descriptions of the learned function
can lead to new scientific understanding. Ham et al. (2019),
for example, analyzed FI scores and identified a previously
unreported precursor of the Central-Pacific El Niño type; Gagne
et al. (2019) analyzed FI scores to gain a better understanding
of the relations between environmental features and severe
hail; McGovern et al. (2019) analyzed FI scores to gain a
better understanding of the formation of tornadoes; and Toms
et al. (2020) analyzed FI scores and identified regions related
to the El Niño-Southern Oscillation (ENSO) and regions
providing predictive capabilities for land surface temperatures at
seasonal scales. Roscher et al. (2020) provide a general review
of explainable machine learning for scientific insights in the
natural sciences.

Whether descriptions of the function that a DL model learns
are computed to build trust in the model, study the model’s
limitations, or gain new scientific understanding, it is important
to identify if parts of a description reflect spurious instead of
causal relations (e.g., random associations in the training data
instead of associations due to a physical process). Examples
for spurious relations are the above-mentioned copyright tag
on horse images and the area outside of the classified sugar
beet leaves. However, especially in prediction tasks involving
physical, biological or chemical systems with several non-
linearly interacting components, identifying spurious relations
is challenging even for experts. Note that this does not only
apply to the identification of spurious relations in descriptions
of functions that DL models learn, but in general to the
identification of spurious relations in descriptions of functions
that any statistical model learns.

Commonly, this challenge is addressed by training separate
instances of the considered model on random samples of
the training set and aggregating or comparing the obtained
descriptions. De Bin et al. (2015), for instance, compared
subsampling and bootstrapping for the identification of relevant
input variables in multivariable regression tasks. They applied
a feature selection strategy repeatedly to samples of the
original training set obtained by subsampling or bootstrapping,
respectively, and identified relevant features by analyzing feature
selection frequencies. As another example, Gagne et al. (2019)
trained 30 instances of different statistical models on sampled
training and test sets to take into account that the models’ skills
and the relations between input and target variables that the
models learn might depend on the specific training and test set
composition. Here, we propose to not only consider sampling,
but also more general modifications of the original prediction
task. We refer to this more general approach as variant approach.
In the approach, separate instances of the considered statistical
model (referred to as variant models) are trained on modified
prediction tasks (referred to as variant tasks) for which it is
assumed that causal relations between input and target variables
either remain stable or vary in specific ways. Subsequently,
the descriptions of the functions that original and variant

models learn are compared and it is evaluated whether they
reflect the assumed stability or specific variation, respectively,
of causal relations. If this is not the case for some parts of the
descriptions, these parts likely reflect spurious relations. The
approach constitutes a generalization of sampling approaches in
that sampling is one of many ways for modifying the original
prediction task in order to obtain a variant task.

A similar concept to ours has, to the best of our knowledge,
only been pursued systematically in a strict causality framework
[for details on this framework see e.g., Pearl, 2009 or for a more
methodological focus (Guo et al., 2020)]. Peters et al. (2016), for
example, consider modifications of an original prediction task
for which they require the conditional distribution p(y|ExS) of
the target variable y given the complete set ExS of variables that
directly cause y to remain stable. Exploiting this requirement,
they aim to identify the subset S of (direct) causal predictors
within all observed features. While this approach is conceptually
related to the proposed variant approach, the latter does not
require the strict causality framework but is applicable to any
machine learning prediction task. Note that in our work the terms
causal and spurious do not refer to an underlying causal graph or
other concepts from the strict causality framework but should be
interpreted with common sense: a pixel in an image, for instance,
is causally related to the label “dog” if and only if it belongs to
a dog in the image, and the value of a meteorological variable at
a specific location and time is causally related to the value of a
meteorological variable at another location and time if and only
if one value influences the other via some physical process.

Other approaches in machine learning that consider
modifications of an original prediction task predominantly aim
to improve the predictive performance of a statistical model
rather than to analyze the relations between input and target
variables. Transfer learning (Pan and Yang, 2010), for instance,
aims to extract knowledge from one or more source tasks to
apply it to a target task, e.g., training a neural network first on
a similar task before fine-tuning the weights on the target task.
Adversarial training, as another example, optimizes the loss over
a set of perturbations of the input (Goodfellow et al., 2015; Sinha
et al., 2018) to become less susceptible to adversarial attacks
(Szegedy et al., 2014), imperceptible changes to the input that can
change the model’s prediction. Traditional importance weighting
(Shimodaira, 2000) or more recent methods (Lakkaraju et al.,
2020), as further examples, shift the input distribution in order
to perform better on a known or unknown test distribution.

In this work, we demonstrate the proposed variant approach
with two illustrative prediction tasks from hydrometeorology.
First, we predict the occurrence of rain at a target location,
given geopotential fields at different pressure levels in a
surrounding region. Second, we predict the water level
at a location in a river, given the water level upstream
and downstream 48 h earlier. As statistical models, we
consider linear models and neural networks. After training
a model on one of these tasks, we apply an interpretation
method to obtain a description of the learned function. This
description indicates the average importance of the different
input locations for the predictions of the model. To identify
if this importance reflects spurious instead of causal relations
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between input and target variables, we apply the proposed
variant approach.

The article is structured as follows: in section 2, we formalize
the variant approach and define the two prediction tasks
and variants thereof that illustrate the approach. Further, we
introduce the statistical models and interpretation methods used
in this work. Subsequently, we present and discuss the results
obtained when training the statistical models on the considered
prediction tasks and applying the variant approach. In section
4, we summarize our main findings and discuss perspectives for
future research and applications of the variant approach.

2. MATERIALS AND METHODS

2.1. Variant Approach
During the training phase, a statistical model learns a function
f :Rn → R

k relating an input space X ⊆ R
n with a target space

Y ⊆ R
k given a training set T = {( Exi, Eyi)}

N
i=1 with Exi ∈ X,

Eyi ∈ Y . As the representation of f in form of the statistical model
(e.g., in form of a neural network) often lacks interpretability,
several interpretation methods have been developed (see e.g.,
Gilpin et al., 2018; Montavon et al., 2018; Zhang and Zhu, 2018;
Molnar, 2019; Samek et al., 2021). Most of these methods yield

vector-valued descriptions Ed ∈ R
d of f (e.g., measures of feature

importance). These descriptions can be global or local, in the
latter case not only depending on f but on a subset Xd ⊂ X
as well. An example of a global description are the weights of a

linear regression model. An example of a local description Ed(Ex) is
the gradient of a neural network evaluated at a location Ex ∈ X.

A description Ed reflects the relations between input and
target variables that the statistical model learned. Whether

the user aims to use Ed to build trust in the model, reveal
the model’s limitations, or gain new scientific understanding,

it is important to identify if parts of the vector Ed reflect
spurious instead of causal relations. In many cases, this is
challenging even for experts. Therefore, we propose a variant
approach. The approach consists of three steps. First, the original
prediction task is modified in such a way that causal relations

reflected in specific parts of Ed are assumed to either remain
stable or vary in a specific way. We refer to the modified
prediction task as variant task. Second, a separate instance of
the considered statistical model (referred to as variant model)
is trained on the variant task and a corresponding description
Edv (referred to as variant description) of the function f v

that the variant model learns is computed. Third, original
and variant descriptions are compared and it is evaluated
whether the previously specified parts of original and variant
descriptions reflect the assumed stability or specific variation,
respectively, of causal relations. If this is not the case, the

respective parts of the vector Ed or of the vector Edv reflect
spurious relations.

Formalizing the approach, we define a variant task by an
input space Xv ⊆ R

nv , a target space Yv ⊆ R
kv , a training set

Tv = {( Exvi ,
Eyvi )}

Nv

i=1 with Exvi ∈ Xv, Eyvi ∈ Yv, an interpretation
method (in most cases the same as for the original task) that

provides a description Edv ∈ R
dv of the learned function

f v :Rnv → R
kv , two sets of m boolean vectors EIj ∈ {0, 1}d and

EIvj ∈ {0, 1}d
v
, j = 1, . . . ,m, and m corresponding smooth (not

necessarily symmetric) distance functions distj :R
d × R

dv →

R
≥0, j = 1, . . . ,m. We denote by Ed(EIj) [and analogously by
Edv( EIvj )] the restriction of Ed to the dimensions specified by the

boolean vector EIj and refer to Ed(EIj) as a part of Ed. The distance
function distj incorporates the user’s assumption about how the

part Ed(EIj) of Ed changes for the variant task if it reflects causal
relations, and quantifies the deviation of this stability or specific
variation, respectively. In other words, distj computes a value

distj(Ed, Edv) which is 0 if Ed(EIj) and Edv( EIvj ) exhibit the assumed

stability or systematic variation, respectively, of causal relations.
In turn, the more they deviate from this assumed stability or

specific variation, respectively, the larger the value distj(Ed, Edv)
should be.

Let us consider some examples of variant tasks. As already
mentioned in the introduction, one way to modify the original
prediction task in order to obtain a variant task is to consider
a sampled training set, e.g., obtained by randomly sampling
the original training set in the context of subsampling or
bootstrapping (De Bin et al., 2015). In this case, we assume
that all causal relations remain stable. Hence, we may choose
to evaluate the dimensionwise distance between an original

description Ed ∈ R
d and the corresponding variant description

Edv ∈ R
d of the function f v that a separate instance of the

original model learns when trained on the sampled training set.
Using the above formalism, this corresponds to defining the

boolean vectors (EIj)i = ( EIvj )i = δji ∈ R
d (vectors with 0

components in all dimensions except from dimension j where

the component is 1) and the distance functions distj(Ed, Edv) =

|Edj − Edvj| for j = 1, . . . ,m = d. Now, distj(Ed, Edv) ≫ 0 for some

j ∈ {1, . . . , d} indicates that the part Ed(EIj) = Edj of the original

description, or the part Edv( EIvj ) = Edvj of the variant description,

reflects spurious relations. Note that we can repeat the sampling
procedure several times, leading to multiple variant tasks of the
same type.

A second example for the definition of a variant task is to
consider a modification of the input space. Later, for instance,
we consider the task to predict a rain event at a target location
given input variables in the 60 × 60 pixels neighborhood (see
Figure 1A). As a variant task, we consider the input variables in
the 80× 80 pixels neighborhood instead. As original description
Ed ∈ R

60×60, we consider a measure of the average importance
of each pixel in the 60 × 60 pixels neighborhood for the
predictions of the original model, and as variant description
Edv ∈ R

80×80, we analogously measure the average importance
of each pixel in the 80 × 80 pixels neighborhood for the
predictions of the variant model. In this case, we assume
that causal relations between pixels in the 60 × 60 pixels
neighborhood and rain events at the target location remain
stable when enlarging the considered neighborhood by 10 pixels
on each side. Hence, we choose to evaluate the dimensionwise
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FIGURE 1 | Set up of the two original prediction tasks. (A) Predict whether the precipitation averaged over the red 2×2 pixels target patch in the center of the 60×60

pixels input region exceeds 1 mm in the next 3 h. (B) Predict the water level at the red pixel given the water level 48 h earlier at the red pixel and the pixels upstream

and downstream marked dark blue in the inset. Light blue indicates pixels with ponded water at the land surface during the entire simulation period (rivers, lakes, …).

distance between the original description Ed and the central

60 × 60 pixels of the variant description Edv. Using the above
formalism, this corresponds to defining the boolean matrices
(EIj1j2 )i1i2 = δj1j2 ,i1i2 ∈ R

60×60 (matrices with 0 components in
all dimensions except from dimension j1j2 where the component
is 1), the boolean matrices ( EIvj1j2 )i1i2 = δj1+10j2+10,i1i2 ∈ R

80×80

(10 corresponds to the offset between the neighborhoods for
original and variant task, i.e., input index (j1 + 10, j2 + 10)
in the variant task corresponds to the same location as input
index (j1, j2) in the original task) and the distance functions

distj1j2 (
Ed, Edv) = |Edj1j2 − Edvj1+10,j2+10| for j1, j2 = 1, . . . , 60.

Now, distj1j2 (
Ed, Edv) ≫ 0 for some j1, j2 ∈ {1, . . . , 60}2 indicates

that the part Ed(EIj1j2 ) = Edj1j2 of the original description, or

the part Edv( EIvj1j2 ) = Edvj1+10,j2+10 of the variant description,
reflects spurious relations. Note that for some statistical models,
this type of variant task might require slight changes to the
model architecture.

A third example for the definition of a variant task is to

consider a modification of the target variable. Later, for instance,

we predict the water level at a location in a river given the water

level in some specified segment of the river (see Figure 1B).
As a variant task, we consider the same segment of the river
but shift the target location by τ pixels along the river (see

Figure 2B). As original and variant descriptions Ed, Edv ∈ R
d, we

consider a measure of the average importance of each pixel in
the specified river segment for the predictions of the original
model and the variant model, respectively. In this case, we

assume that causal relations are shifted along the river by the
same distance as the target location is (i.e., by τ pixels). Hence,
we choose to compute the dimensionwise distance between the

original description Ed and the variant description Edv shifted by

τ dimensions (i.e., we consider the distance |Edj − Edvj+τ | for all
j for that j + τ ∈ {1, . . . , d}). Using the above formalism, this

corresponds to defining the boolean vectors (EIj)i = ( EIvj )i+τ = δji

and the distance functions distj(Ed, Edv) = |Edj − Edvj+τ | for all

j = 1, . . . , d for that j + τ ∈ {1, . . . , d}. Now, distj(Ed, Edv) ≫ 0

indicates that the part Ed(EIj) = Edj of the original description,

or the part Edv( EIvj ) = Edvj+τ of the variant description, reflects

spurious relations.
In this example, it might be more realistic to assume that

causal relations are not shifted along the river by exactly τ pixels,
but that the shift distance depends on the flow velocity and
potentially further influences. The proposed formalism allows

to take this into account by varying the definition of EIj, EI
v
j and

distj. Suppose, for instance, that the flow velocity around the
original target location is twice as high as around the shifted
target location. In this case, we might assume that the sum of
importance of the two pixels upstream of the original target
location should be identical to the importance of the single pixel
upstream of the shifted target location. Hence, we might decide

to consider (EIj)i = δji + δj−1,i, ( EI
v
j )i+τ = δji (as above), and

distj(Ed, Edv) = |(Edj+Edj−1)− Edvj+τ |, where the index j corresponds

to the original target location. In this case, distj(Ed, Edv) ≫ 0
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indicates that the part Ed(EIj) (corresponding to Edj and Edj−1) of the

original description, or the part Edv( EIvj ) = Edvj+τ of the variant

description, reflects spurious relations.
In general, however, it is difficult to take variations of flow

velocity and further influences into account when defining EIj, EI
v
j

and distj. This is for example due to unavailable data on flow
velocity and nonlinear behavior (e.g., that the sum of importance
of the two pixels upstream of the original target location should
be identical to the importance of the single pixel upstream of
the shifted target location if the flow velocity in the respective
river segment is twice as high, likely represents a too strong
assumption on linearity). We will come back to this in the
discussion of the results.

Let us return to the formal definition of the variant approach.
The first step was to define a variant task. The second step consists
of training a separate instance of the original model (a variant
model) on this task and computing a variant description. The
third step of the approach consists of comparing original and

variant description and evaluating distj(Ed, Edv) ≫ 0 for all j =

1, . . . ,m. If distj(Ed, Edv) ≫ 0 for some j ∈ {1, . . . ,m}, the user

infers that Ed(EIj) or Edv( EIvj ) reflects spurious relations. Note that the

converse is not possible, i.e., if distj(Ed, Edv) ≈ 0, the user cannot

infer that Ed(EIj) reflects causal relations (as it might be that both
Ed(EIj) and Edv( EIvj ) reflect spurious relations). Note further that the

specification of the condition distj(Ed, Edv) ≫ 0 should in general
take into account the specific original and variant task, the choice
of the distance function distj, and the certainty of the assumed
stability or systematic variation, respectively, of causal relations.
Moreover, in case the user does not need a binary identification

of parts of Ed that reflect spurious relations, it might be better not

to consider the binary condition distj(Ed, Edv)≫ 0, but to consider

raw values distj(Ed, Edv), where higher distances indicate a higher

probability that Ed(EIj) or Edv( EIvj ) reflects spurious relations.

For all variant tasks defined in this work, the expression

distj(Ed, Edv) corresponds to the relative distance between a single

component Edj1 of an original description and a single component
Edvj2 of a corresponding variant description, i.e., it takes the form

distj(Ed, Edv) =
|Edj1 −

Edvj2 |

|Edj1 | + | Edvj2 | + ε
, (1)

with some regularization parameter ε ≥ 0. By considering
relative distances rather than absolute distances, we define, for
instance, that Edj1 = 100, Edvj2 = 101 agree better than Edj1 = 1,
Edvj2 = 2, or, in other words, in the latter case it is more likely that

the value Edj1 or the value
Edvj2 reflects spurious relations. Further,

an advantage of considering relative distances is that all distances
lie between zero and one (when neglecting ε) which allows to

apply a threshold t ∈ (0, 1) to specify the condition distj(Ed, Edv)≫0

and to mark all parts Ed(Ij) of the original description as spurious

for which distj(Ed, Edv) > t. In this study, we use t = 0.5 as
threshold and ε = 1e − 3 as regularization parameter. Choosing
a smaller threshold, more values are marked as spurious (with

all values marked as spurious for t = 0), and choosing a larger
threshold, fewer values are marked as spurious (with no values
marked as spurious for t = 1) by definition. For the examples
considered below, t = 0.5 seems to be a good choice.

2.2. Illustrative Tasks
In this section, we define two prediction tasks and corresponding
variant tasks that illustrate the proposed variant approach.
We chose simplified tasks and global descriptions of the
learned functions to be able to decide whether parts of the
descriptions that the variant approach marks as spurious do
indeed reflect spurious relations. The data underlying both
tasks is 3-hourly data at 412 × 424 pixels over Europe. The
data was obtained from a long-term (January 1996–August
2018), high-resolution (≈ 12.5 km) simulation (Furusho-
Percot et al., 2019) performed with the Terrestrial Systems
Modeling Platform (TSMP), a fully integrated groundwater-soil-
vegetation-atmosphere modeling system (Gasper et al., 2014;
Shrestha et al., 2014). Note that the statistical models and
interpretation methods applied in this work are described in
section 2.3.

2.2.1. Task 1 – Rain prediction
In the first example, we predict the occurrence of rain at a 2 × 2
pixels target patch, given the geopotential fields at 500, 850, and
1,000 hPa in the 60×60 pixels neighborhood (see Figure 1A).We
model this as a classification task and define that rain occurred, if
the precipitation averaged over the target patch exceeds 1 mm
in the following 3 h. Previous works (Larraondo et al., 2019;
Pan et al., 2019) have used CNNs to predict precipitation
given geopotential fields to improve the parameterization of
precipitation in numerical weather prediction models. Thus,
apart from the simplifications of only one target location and a
binary target, this is a realistic prediction task.

As statistical models, we consider a logistic regression model
and two convolutional neural networks (CNNs) of different
depth and complexity. As description of the function that the
logistic regression model learns, we consider the absolute values
of the model weights averaged over the pressure level axis. As
descriptions of the functions that the CNNs learn, we consider
saliency maps averaged over the pressure level axis and over all
training samples. These descriptions can be seen as measures
of the average importance of each pixel in the 60 × 60 pixels
input region for the predictions of the models (for details see the
respective sections below).

To identify whether parts of the descriptions reflect spurious
relations that the models learned, we compute descriptions for
variant models trained on three types of variant tasks. The first
type (later referred to as sampling type) considers the same task,
but a modified training set obtained by randomly sampling 70 %
of the original training set without replacement. In this case, we
assume that all causal relations remain stable. Hence, we compute
the pixelwise distance between original and variant descriptions.
We repeat the sampling procedure 10 times obtaining 10 variant
tasks of this type. The second type of variant tasks (later referred
to as size type) considers the same task but the input variables
in the 80 × 80 pixels neighborhood of the target patch. In
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this case, we assume that causal relations between pixels in the
60 × 60 pixels neighborhood and rain events at the target patch
remain stable when enlarging the considered neighborhood by
10 pixels on each side. Hence, we compute the pixelwise distance
between the original descriptions and the central 60 × 60 pixels
of the variant descriptions. The third type of variant task (later
referred to as location type) considers the same task but for eight
different target patches obtained by moving the original target
patch by five pixels to the left or right, and up or down. The
input regions are shifted accordingly (see Figure 2A). In this case,
we assume again that all causal relations remain stable. Hence,
we again compute the pixelwise distance between original and
variant descriptions.

Note that to compute the variant descriptions for the
functions that separate instances of the CNNs learn when trained
for different target locations, we average the saliency maps over
all training samples from the original task. This is because
the distribution p(Ex) of geopotential fields differs at different
locations. Thus, if we averaged the saliency maps for a variant
CNN over all training samples from a variant task, the obtained
variant description would differ from the original description
even if original and variant models learned the exact same
function relating geopotential fields and rain events.

We obtained the geopotential fields and precipitation
data from the aforementioned simulation. We selected the
geopotential fields in the considered input regions and created
the binary rain event time series for the corresponding target
patches. Next, we split the time series using the first 56,000 time
steps as training candidates and the last 10,183 time steps as
validation candidates. Finally, training and validation sets were
obtained by selecting all time steps followed by a rain event at the
considered target patch and an equal amount of randomly chosen
additional time steps for non-rain events from the training and
validation candidates, respectively. This resulted in balanced
training and validation sets of a total of approximately 10,000
time steps for each target patch. Handling strongly unbalanced
data sets as it would be necessary without such a selection of time
steps is out of scope for this work.

2.2.2. Task 2 – Water Level Prediction
As a second example, we predict the water level at a location in a
river, given the water level in a specific segment of the river 48 h
earlier (see Figure 1B).

As statistical models, we consider a linear regression model
and a multilayer perceptron (MLP). As description of the
function that the linear regression model learns, we consider
as in Task 1 the absolute values of the model weights. For the
MLP, we consider again the saliency maps averaged over all
training samples. Analogously to Task 1, these descriptions can
be seen as measures of the average importance of each pixel in
the considered river segment for the predictions of the models
(for details see the respective sections below).

To identify whether parts of the descriptions reflect spurious
relations that the models learned, we compute descriptions for
variant models trained on two types of variant tasks. The first
type (later referred to as sampling type) considers the same task,
but a modified training set obtained by randomly sampling 70 %

of the original training set without replacement. In this case, we
assume that all causal relations remain stable. Hence, we compute
the pixelwise distance between original and variant descriptions.
We repeat the sampling procedure 10 times obtaining 10 variant
tasks of this type. The second type of variant tasks (later referred
to as location type) considers the same river segment as input, but
target locations closely upstream and downstream of the original
target location (see Figure 2B). In this case, we assume that causal
relations are shifted along the river by the same distance as
the target location is. Hence, we compute the pixelwise distance

between the original description Ed and the variant description Edv

shifted by τ pixels, where τ is the number of pixels that the target

location was shifted (i.e., we consider the distance |Edj− Edvj+τ | for
all j for that j+ τ ∈ {1, . . . , d}).

We obtained the water level data from the aforementioned
simulation. In contrast to Task 1, this task is not a classification
but a regression task; discarding time steps to obtain a balanced
data set is not necessary. Hence, we use water level data for all
64,240 3-hourly time steps between January 1996 and December
2017. We randomly selected the years 1997, 2004, 2008, and
2015 as test data, covering the whole period of time, and use the
remaining years to train the models.

2.3. Statistical Models and Descriptions
In this section, we present the statistical models used in this study.
Further, we describe saliency maps, the interpretation method
applied to obtain descriptions of the functions that the neural
networks (MLP and CNNs) learn. Note that for the considered
examples, layerwise relevance propagation (LRP) and Grad-
CAM give very similar results to saliency maps. The section is
ordered with respect to the complexity of the described methods
from simple to complex.

2.3.1. Linear Regression
Given training samples (Exi, yi)

n
i=1 with Exi ∈ R

N , yi ∈ R, a linear
regression model learns a function f :RN → R of the form

f (Ex) = β0 + ExT · Ēβ , (2)

where Eβ = (β0,
Ēβ) = (β0,β1, . . . ,βN) ∈ R

N+1 are the weights
of the model. Those weights are obtained by minimizing the
squared error on the training set

n
∑

i=1

(f (Exi)− yi)
2. (3)

Optionally, a regularization term can be added to the objective.
We calculate theminimizing weights Eβ using the implementation
of scikit-learn (Pedregosa et al., 2011). In our case, the inputs Exi
are elements of R30 representing the water level at the 30 pixels
in the considered river segment (see Figure 1B) and the targets
yi ∈ R represent the water level at the target pixel 48 h later.

As description of the function that a linear regression model

learned, we consider the absolute values of the weights Ēβ . This
can be seen as a measure of the average importance of each pixel
in the river segment for the predictions of the model (Molnar,
2019).
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FIGURE 2 | Location variant tasks. (A) Original target patch (center) with its input region and eight additional target patches and their (overlapping) input regions. (B)

Original target location (center) and two additional target locations closely upstream and downstream.

2.3.2. Logistic Regression
Given the task to predict a binary target y ∈ {0, 1} from an input
Ex ∈ R

N , a logistic regression model yields

P(y = 1|Ex, Eβ) =
1

1+ exp(−(β0 + ExT · Ēβ))
, (4)

where Eβ = (β0,
Ēβ) = (β0,β1, . . . ,βN) ∈ R

N+1 are the
weights of the model. These weights are obtained by minimizing
the function

−

n
∏

i=1

P(yi = 1|Exi, Eβ)
yi · (1− P(yi = 1|Exi, Eβ))

1−yi + λR( Eβ) (5)

with respect to Eβ . Here, (Exi, yi)
n
i=1 are training samples with

Exi ∈ R
N , yi ∈ {0, 1}, and λR( Eβ) is a regularization term.

The product represents the probability with that – according
to the logistic regression model with weights Eβ – the targets yi
are observed given the input samples Exi. Thus, minimizing the
negative product with respect to Eβ corresponds to finding the
Eβ for that the highest probability is assigned to observing the
targets yi given the inputs Exi from the training set. We use scikit-
learn (Pedregosa et al., 2011) (solver “liblinear”) to approximate
the minimizing weights Eβ . In our case, the inputs Exi are the
geopotential fields at 500, 850 and 1000 hPa flattened to vectors in
R
3·60·60 and the targets yi ∈ {0, 1} represent whether a rain event

took place or not.

As description of the function that a logistic regression model

learned, we consider the weights Ēβ . We reshape the vector Ēβ to
the shape of the original input, 3×60×60, take the absolute value
and build an average over the first (pressure level) axis. This can
be seen as a measure of the average importance of each pixel in
the 60 × 60 pixels input region for the predictions of the model
(Molnar, 2019).

2.3.3. Multilayer Perceptron
Multilayer Perceptrons (MLPs), also referred to as fully-
connected neural networks, are feedforward artificial neural
networks. They are composed of one or more hidden layers
and an output layer. Each layer comprises several neurons. Each
neuron in the first hidden layer builds a weighted sum of all input
variables, while each neuron in the subsequent layers builds a
weighted sum of the outputs of the neurons in the respective
previous layer. In case of a neuron in a hidden layer, the sum
is passed through a nonlinear activation function and forms the
input to the next layer. In case of a neuron in the output layer, the
sum is optionally passed through a nonlinear activation function
and forms the output of the neural network. The weights of
the MLP are learned by minimizing a loss function on training
samples (Exi, Eyi)

n
i=1, Exi ∈ R

N , Eyi ∈ R
K , using backpropagation

(LeCun et al., 2012).
In our case, the inputs to the MLP are elements Ex of R30

representing the water level at the 30 pixels in the considered river
segment (see Figure 1B). The targets yi ∈ R represent the water
level at the target pixel 48 h later. Section 2.3.5 describes how
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we obtained a description of the function that the MLP learned.
The network and training of the MLP were implemented using
the deep learning library Pytorch (Paszke et al., 2019). A detailed
description of the used architecture and training procedure can
be found in the Supplementary Material.

2.3.4. Convolutional Neural Networks
Convolutional Neural Networks (CNNs) are frequently
employed DL models designed to process stacks of multiple
arrays containing spatially structured data. This can, for
example, be a stack of 2-dimensional arrays for an RGB image
(Exi ∈ R

3×height×width) or, as in our case, a stack of 2-dimensional
geopotential fields at different pressure levels in the atmosphere
(Exi ∈ R

3×60×60). Typically, a CNN consists of three types of
layers: convolutional layers, pooling layers and fully-connected
layers. In the following short review of the typical CNN layers,
we consider the case of one or multiple 2-dimensional input
arrays. A generalization of the concepts to N-dimensional input
arrays is straightforward.

The input to a convolutional layer is a stack of cin 2-
dimensional arrays and its output is a stack of cout 2-dimensional
arrays. The convolutional layer is characterized by cout kernels,
which are 3-dimensional tensors of shape cin × k × k, where
the kernel size k is usually between 1 and 7. The output of the
layer are the cout 2-dimensional arrays obtained by convolving
the input with each kernel along the last two dimensions. Usually,
a convolutional layer is directly followed by a nonlinear activation
function which is applied elementwise to the layer’s output.
In contrast to a fully-connected layer, a convolutional layer
preserves the spatial structure of the input: only neurons in a
neighborhood defined by the kernel size influence the output of a
specific neuron.

As for convolutional layers, the input to a pooling layer is a
stack of cin 2-dimensional arrays of shape n × m. Pooling layers
reduce the dimensionality of the 2-dimensional arrays creating
invariances to small shifts and distortions. A typical form of
pooling is max-pooling with a kernel size of two. This reduces
the resolution along both axes of each of the cin 2-dimensional
arrays by a factor of two, picking always the maximum value of a
2× 2 patch of the original array. Thus, the output of this pooling
layer is a stack of cout = cin 2-dimensional arrays of shape n

2 ×
m
2 .

After several alternating convolutional and pooling layers
which extract features of increasing complexity, the resulting
c 2-dimensional arrays are flattened into a single vector and
one or more fully-connected layers, as described for the MLP,
follow. The weights for the kernels in the convolutional layers
and the fully-connected layers are learned by minimizing a loss
function on training samples (Exi, Eyi)

n
i=1, Exi ∈ R

N , Eyi ∈ R
K ,

using backpropagation (LeCun et al., 2012). To prevent CNNs
from overfitting, dropout regularization (Srivastava et al., 2014)
and batch normalization (Ioffe and Szegedy, 2015) are commonly
employed techniques.

In our case, the inputs Exi are the geopotential fields at 500,
850 and 1000 hPa, Exi ∈ R

3×60×60. The targets yi ∈ {0, 1}
represent whether a rain event took place or not.We consider two
convolutional neural networks of different depth and complexity.
CNN1 is a shallow CNN with only two convolutional layers

followed by a single fully-connected layer. CNN2 is a commonly
employed, much deeper CNN architecture called resnet18 (He
et al., 2016) for which the last fully-connected layer was adapted
to have only two output neurons to fit our binary prediction
task. Section 2.3.5 describes how we obtained descriptions
of the functions that the CNNs learned. The networks and
training were implemented using the deep learning library
Pytorch (Paszke et al., 2019). A detailed description of the used
CNN architectures and training procedure can be found in the
Supplementary Material.

2.3.5. Saliency Maps
A common subgroup of interpretation methods providing
descriptions of the functions that neural networks (NNs) learn,
are methods that assign an importance to each dimension of
individual input samples Ex ∈ R

N (local feature importance
scores), see e.g., Samek et al., 2021. Among the most employed
and well-known methods for that purpose are saliency maps
(Simonyan et al., 2014), layerwise relevance propagation (LRP)
(Bach et al., 2015) and Grad-CAM (Selvaraju et al., 2017). In the
examples presented in this work, all three methods yield similar
results. Therefore and for the sake of brevity, we focus on saliency
maps (although e.g., Montavon et al., 2018 argue that saliency
maps provide a bad measure of feature importance because they
indicate how the prediction of a model changes when the value of
a feature is changed, rather than indicating whatmakes themodel
make a prediction).

Note that in contrast to the weights of linear and logistic
regression models, saliency maps are local descriptions of the
learned functions, i.e., the importance assigned to an input
dimension (in our case an input pixel) depends on the input
sample Ex. To get a global description of the learned function and a
measure of the average importance of each input pixel, we average
the saliency maps over all training samples.

In the rain prediction task, the NN defines an (almost
everywhere) differentiable function f that maps geopotential
fields Ex ∈ R

3×60×60 to probabilities f (Ex) = y ∈ (0, 1) that a rain
event occurs. The partial derivative

wcij(Ex) =
∂f

∂xcij
(Ex), c = 1, 2, 3, i, j = 1, . . . , 60 (6)

indicates how a small perturbation of the c-th geopotential field
at pixel (i, j) affects the prediction of the NN. The saliency map

Mij(Ex) =
1

3

3
∑

c=1

|wcij(Ex)|, i, j = 1, . . . , 60 (7)

considers the absolute value of the partial derivatives averaged
over the pressure level axis to obtain for each pixel in the 60× 60
pixels input region a measure of its importance for the model’s
prediction for sample Ex.

In the water level prediction task, the neural network maps
water levels Ex ∈ R

30 to a water level prediction f (Ex) = y ∈ R.
The saliency map

Mi(Ex) = |wi(Ex)| =

∣

∣

∣

∣

∂f

∂xi
(Ex)

∣

∣

∣

∣

, i = 1, . . . , 30 (8)
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FIGURE 3 | (A) Description Ed of the function that CNN1 learned when it was trained on the original rain prediction task (see Figure 1A). The description is a measure

of the average importance of each pixel in the 60× 60 pixels input region for the predictions of the model. Yellow color indicates high and blue color low importance.

(B–D) As (A), but pixels for which the relative distance between the original description Ed and one of the variant descriptions Edvi obtained for the sampling, size, and

location variant tasks, respectively, exceeds the threshold of t = 0.5, are masked.

provides for each pixel in the considered river segment a measure
of its importance for the model’s prediction for sample Ex.

3. RESULTS AND DISCUSSION

3.1. Task 1 – Rain Prediction
Figure 3A shows the description Ed of the function that CNN1
learned when it was trained on the original rain prediction task.
Remember that the considered description is a measure of the
average importance of each pixel in the 60 × 60 pixels input

region for the predictions of the model. Our objective is to
apply the variant approach to identify parts of the description

that reflect spurious relations. To that purpose, we defined

several variant tasks above. As a next step, we computed the
corresponding variant descriptions, i.e., the descriptions of the

functions that separate instances of CNN1 learned when trained

on these variant tasks. For illustration, Figure 4 shows the
original description (center, same as Figure 3A) and the variant

descriptions Edvi , i = 1, . . . , 8, obtained for the eight location
variant tasks (see Figure 2A).

For each of these variant descriptions Edvi ∈ R
60×60, i =

1, . . . , 8, we evaluated the pixelwise relative distance to the

original description Ed ∈ R
60×60 (see Equation 1), and masked all

pixels of the original description Ed for which this distance exceeds

the threshold of t = 0.5 for any Edvi . The resulting masked version

of Ed is shown in Figure 3D. Note that in this case, there is no
pixel for which the relative distance between original description
and any of the variant descriptions exceeds 0.5, hence Figure 3D
is identical to Figure 3A. Analogously to Figures 3B,D shows

the masked version of Ed obtained when masking all pixels for

which the pixelwise relative distance between Ed and one of the

variant descriptions Edvi obtained for the sampling variant tasks
exceeds 0.5. We observe that some pixels in the west of the
inner area of importance are masked, indicating that the inner
area of importance might actually extend further to the west.

Figure 3C shows themasked version of Ed obtained whenmasking

all pixels for which the pixelwise relative distance between Ed and

the central 60 × 60 pixels of the variant description Edvi obtained
for the size variant task exceeds 0.5. Notably, all the boundary
pixels with high values in Figure 3A are masked, indicating that
these values likely reflect spurious relations.

Figure 5 shows the same as Figure 3 but for CNN2. Only few
pixels are masked for the sampling and location variant tasks.
However, the mask obtained for the size variant task indicates
that the checkerboard pattern in the original description Ed, which
is shown in Figure 5A, likely reflects spurious relations. Note that
this checkerboard pattern is indeed a known artifact of strided
convolutions and max-pooling layers used in CNN2 (Odena
et al., 2016).

Figure 6 shows the same as Figures 3 and 5 but for the logistic
regression model. For the sampling variant tasks, large parts of

the original description Ed are masked. This indicates that these
parts likely reflect spurious relations. For the size variant task, on
the other side, only few pixels are masked. Lastly, for the location
variant tasks, nearly all pixels are masked. This indicates that the

original description Ed shown in Figure 6A likely reflects spurious
relations only.

For this task, we know that the physical importance of
a pixel averaged over a long time period decreases with the
pixel’s distance to the central target patch. Further, due to the
predominantly westerly winds, the average physical importance
of pixels is slightly shifted to the west. Given this knowledge,
we can confirm that the variant approach successfully identified
all pixels in Figures 3A, 5A, 6A which reflect spurious relations.
Note that the sampling approach alone (see Figures 3B, 5B, 6B),
which is the commonly applied method, is not sufficient to
identify all pixels reflecting spurious relations.

Note further that the examples emphasize once again the
following: even if parts of a description are not indicated as
spurious by any considered variant task, we cannot conclude
that they reflect causal relations. Imagine, for instance, that

Frontiers in Water | www.frontiersin.org 9 September 2021 | Volume 3 | Article 745563

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Tesch et al. Variant Approach for Identifying Spurious Relations

FIGURE 4 | Descriptions obtained when training separate instances of CNN1 for the nine different locations depicted in Figure 2A. Each description is a measure of

the average importance of each pixel in the 60× 60 pixels input region for the predictions of the respective instance of CNN1. Yellow color indicates high and blue

color low importance. The central location is the original target location, hence the central description identical to Figure 3A.

we had only considered the size variant task. For this variant
task and the logistic regression model, only a small number
of pixels is masked although Figure 6A seems to exclusively
reflect spurious relations. Hence, variant tasks can only indicate
parts of an original description as likely reflecting spurious
relations and do not allow for any direct inference about
other parts of the description. Nevertheless, this can be
useful already.

3.2. Task 2 – Water Level Prediction
Figure 7A shows the description Ed of the function that the MLP
learned when it was trained on the original water level prediction
task. Remember that the considered description is a measure
of the average importance of each pixel in the considered river
segment for the predictions of the model. Our objective is to
apply the variant approach to identify parts of the description
that reflect spurious relations. To that purpose we computed
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FIGURE 5 | Same as Figure 3 but for CNN2. (A) Original. (B) Sampling. (C) Size. (D) Location.

FIGURE 6 | Same as Figure 3 but for the logistic regression model. (A) Original. (B) Sampling. (C) Size. (D) Location.

the variant descriptions Edvi for all sampling and location variant

tasks, and masked all pixels of Ed for which the relative distance

between the original description Ed and one of the (shifted) variant
descriptions exceeds the threshold of t = 0.5. The resulting
masked versions of Figure 7A are shown in Figures 7B, C.

For this task, we know that the development of the water
level at the target location depends only on the water level
closely upstream and downstream. Hence, Figure 7A is [apart
from the moderately high importance of pixel (11,17)] close to
our understanding of the physical importance of the considered
pixels. Nevertheless, especially in Figure 7C, many of the
pixels further upstream and downstream of the target location
are masked, i.e., the variant approach indicates (mistakenly)
that the low feature importance of these pixels likely reflects
spurious relations. We suspect that this happened because
we considered relative rather than absolute distances between
original and variant descriptions (see Equation 1), which can
cause two small values to have a large distance which in turn
causes the corresponding pixel to be mistakenly masked as
spurious. Apart from pixels with low feature importance, also
pixel (11,11) closely upstream of the original target location
seems to be mistakenly masked as spurious in Figure 7C. We
suspect that this is due to our assumption that causal relations

are shifted along the river by the exact same number of
pixels as the target location is. While this assumption enables
us to simply consider pixelwise relative distances between

original description Ed and shifted variant descriptions Edvi

(see section 2), it might be overly simplified as for example
the flow velocity at different locations in the river might
differ, and the river might cross some pixels diagonally and
others straight.

Here, a visual assessment of the individual variant descriptions
seems to be superior to the formal evaluation of distances
performed for Figure 7C because it allows a softer comparison

between original and variant descriptions Ed and Edvi . Indeed, upon
visual assessment of the location variant descriptions depicted in
Figure 8, and with the assumption in mind that causal relations
approximately reflect the shift of the target location, the only
pixel in Figure 7A that we would mark as potentially reflecting
spurious relations, is pixel (11,17).

Figures 9, 10 show the same as Figures 7, 8 but for the linear
regression model. In this case, the formal evaluation of distances
between original and location variant descriptions performed for
Figure 9C indicates that Figure 9A reflects spurious relations
at nearly all pixels except from the target location and the
neighboring pixel upstream. In this case, the formal evaluation
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FIGURE 7 | (A) Description Ed of the function that the MLP learned when it was trained on the original water level prediction task (see Figure 1B). The description is a

measure of the average importance of each pixel in the considered river segment for the predictions of the model. Yellow color indicates high and blue color low

importance. (B,C) As (A), but pixels for which the relative distance between the original description Ed and one of the sampling and (shifted) location variant

descriptions Edvi , respectively, exceeds the threshold of t = 0.5, are masked. Gray marks pixels outside the considered river segment.

FIGURE 8 | Descriptions of the functions that separate instances of the MLP learned when trained for the different target locations [From left to right the target

location is at (10,10), (12,12), (12,15), see Figure 2B]. Note that (B) shows the same as Figure 7A. Gray marks pixels outside the considered river segment. (A)

Lower target location. (B) Central target location. (C) Upper target location.

agrees well with the visual assessment of the location variant
descriptions depicted in Figure 10. Indeed, visual assessment of
Figure 10 also indicates that the neighboring pixel upstream of
the target location and maybe the target location itself are the
only two pixels for which the assigned importance approximately
reflects the shift of the target location between Figures 10A–C.

4. CONCLUSIONS

Given a description Ed ∈ R
d of the function that a statistical

model learned during a training phase, we proposed a variant

approach for the identification of parts of Ed that reflect spurious
relations. We successfully demonstrated the approach and its
superiority over pure sampling approaches with two illustrative
hydrometeorological predictions tasks, various statistical models
and illustrative descriptions. For the rain prediction task, where
we assumed causal relations to remain stable between original
and variant tasks, the formal evaluation of distances between
original and variant descriptions enabled us to correctly identify
all spurious relations that the statistical models learned. For
the water level prediction task, where formally specifying the
assumed variation of causal relations was more involved, we
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FIGURE 9 | Same as Figure 7 but for the linear regression model. (A) Original. (B) Sampling. (C) Location.

FIGURE 10 | Same as Figure 8 but for the linear regression model. (A) Lower target location. (B) Central target location. (C) Upper target location.

found the formal evaluation of distances to be of limited use.
However, visual assessment enabled us again to correctly identify
all spurious relations that the statistical models learned.

In this work, we considered simplified tasks and global
descriptions of the learned functions to be able to decide
whether parts of the descriptions that the variant approach
identifies as spurious do indeed reflect spurious relations. This
was necessary to evaluate the variant approach. However, we
expect the approach to be beneficial for a wide range of more
complex prediction tasks. Naming two possible applications
outside the geosciences, it might be used to identify spurious
relations reflected in (local) descriptions of functions that
DL models trained on electroencephalography (EEG) data
(Sturm et al., 2016) learned by comparing them to variant
descriptions obtained for variant models trained for different
(groups of) patients; or to automatically detect spurious

relations reflected in (local) descriptions of functions that
a DL model trained on a common image data set learned
(Lapuschkin et al., 2019) by automatically comparing them
to variant descriptions for variant models trained on different
image data sets. Applications of the variant approach to more
complex prediction tasks in the geosciences and beyond, and
to local descriptions of the learned functions, are planned
in future.

A challenge when applying the proposed variant approach
may be to define variant tasks beyond random sampling of
the training data. However, a data set is often composed of
different sources constituting in themselves variants. Further, the
modification of the rain prediction task, where we were able to
identify parts of the original description as spurious by merely
changing the size of the input region, indicates that even small
modifications of the original prediction task can be useful.
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Apart from the variant approach, which considers a fixed
statistical model and modifications of an original prediction
task, another approach for identifying spurious relations that
a considered statistical model learned might be to compare
the relations between input and target variables that different
models learn when trained on the (fixed) prediction task. In
such an approach, the degree of variation between models may
differ from varying configurations in Monte-Carlo dropout,
over random seeds for the weight initialization of otherwise
identical models to completely different statistical models.
Formalization and evaluation of this approach is out of scope of
this work.
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