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Extreme precipitation contributes to widespread impacts in the U.S. Great Lakes

region, ranging from agricultural losses to urban floods and associated infrastructure

costs. Previous studies have reported historical increases in the frequency of extreme

precipitation in the region and downscaled model projections indicate further changes

as the climate system continues to warm. Here, we conduct trend analysis on the 5 km

NOAA NClimDiv data for the U.S. Great Lakes region using both parametric (Ordinary

Least Squares) and non-parametric methods (Theil-Sen/Mann-Kendall) and accounting

for temporal autocorrelation and field significance to produce robust estimates of extreme

precipitation frequency trends in the region. The approaches provide similar overall results

and reflect an increase in extreme precipitation frequency in parts of the U.S. Great Lakes

region. To relate the identified trends to large scale drivers, a bivariate self-organizing map

(SOM) is constructed using standardized values of 500 hPa geo-potential height and 850

hPa specific humidity obtained from the ECMWF ERA-5 reanalysis. Using a Monte Carlo

approach, we identify six SOM nodes that account for only 25.4% of all days, but 50.5%

of extreme precipitation days. Composites of days with and without extreme precipitation

for each node indicate that extreme events are associated with stronger features (height

gradient and background humidity) than their non-extreme counterparts. The analysis

also identifies a significant increase in the frequency of one SOM node often associated

with extreme precipitation (accounting for 8.5% of all extreme precipitation days) and

a significant increase in the frequency of extreme precipitation days relative to all days

across the six extreme precipitation nodes collectively. Our results suggest that changes

in atmospheric circulation and related moisture transport and convergence are major

contributors to changes in extreme precipitation in the U.S. Great Lakes region.

Keywords: Great Lakes region, climate extremes, extreme precipitation, self-organizing maps, global change

INTRODUCTION

Extreme precipitation is associated with wide-reaching impacts in the Great Lakes region of the
United States, including direct effects on localized and large-scale flooding (Winters et al., 2015),
transportation and infrastructure (Angel et al., 2018) and agriculture, and many indirect effects,
such as heightened risk of gastrointestinal illness (Drayna et al., 2010), impacts on disease vector
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habitats, and overall water quality. Improved understanding of
the changing nature and drivers of extreme precipitation is
therefore critical for reducing the impacts of current and future
climate impacts in the region.

Extreme precipitation events occur in the absence of
enhanced radiative forcing from greenhouse gases, but there
is also a theoretical expectation, and growing observational
evidence, of an increase in precipitation extremes associated
with anthropogenically-driven global warming (Allan and Soden,
2008). The Clausius-Clapeyron (C-C) relation indicates an ∼7%
increase in saturation specific humidity per degree of warming
under constant relative humidity. Because regional changes in
extreme precipitation are determined not only by background
humidity, but also by transport of atmospheric moisture to
regions of convergence, local, and regional changes in extreme
precipitation can differ substantially from the expected C-C
scaling (Lenderink and Van Meijgaard, 2010), especially for the
most extreme precipitation values and at the shortest time scales
(Pendergrass, 2018).

Multi-decadal climate projections from ensembles of climate
models indicate further increases in extreme precipitation over
most land areas (IPCC, 2021) as the atmospheric continues to
warm. Regional studies conducted with multiple generations
of climate models, statistical and dynamical downscaling
approaches, and mid- and late-century time horizons have
similarly pointed to more frequent and intense precipitation
events in the region under additional global and regional
warming (Pryor et al., 2013; D’orgeville et al., 2014; Byun and
Hamlet, 2018; Zhang et al., 2019).

The nature of historical and potential future changes in
extreme precipitation in the U.S. Great Lakes region, as well
as their drivers, need to be well-understood so that appropriate
mitigation and adaptation strategies can be identified and
implemented. Precipitation extremes results from processes
occurring across spatial scales, ranging from the micro-scale
to the upper end of the mesoscale (sometimes referred to
as synoptic scale) (Orlanski, 1975). There is growing interest
in identifying the mesoscale and synoptic scale conditions
associated with events (Barlow et al., 2019), including those
occurring at the regional scale (e.g., the Northeast USA by Agel
et al., 2018). As noted by Barlow et al. (2019), the synoptic scale
is particularly critical for understanding extreme precipitation
events as synoptic scale processes are (1) important for producing
extreme precipitation events, (2) associated with some medium-
range predictability, and (3) resolved in both weather and
climate models.

To contribute to a better understanding of changes in extreme
precipitation in the U.S. Great Lakes region, we first conduct
a historical trend analysis of daily extreme precipitation events
identified using a peaks-over-threshold framework [section
Bivariate Synoptic Classification Using the Self-Organizing Map
(SOM)]. The trend analysis includes both parametric and
non-parametric trend estimation techniques that account for
temporal autocorrelation in the time series and field significance.
We then develop a bivariate synoptic classification by applying
the self-organizing map (SOM) technique (section Linking
SOM Nodes and Regional Precipitation Extremes) to synoptic

scale atmospheric circulation and humidity fields. Finally,
we investigate relationships between trends in precipitation
extremes and their associated synoptic patterns.

STUDY REGION AND DATA

Study Region
The study region is defined as the states bordering the Laurentian
Great Lakes, plus Iowa which is mostly contained within the
convex hull of the lake-border states. The region therefore
includes Illinois, Indiana, Iowa, Michigan, Minnesota, New York,
Ohio, Pennsylvania, andWisconsin (Figure 1) and includes parts
of the drainage basin for the Great Lakes, but also for the
Mississippi and Ohio Rivers. The general pattern of annual
precipitation is characterized by a decreasing amounts from
southeast to northwest (Pryor et al., 2013), driven primarily
by variations in winter precipitation. Extreme precipitation has
widespread impacts in the region, including those on agriculture,
natural ecosystems, urban systems, and water quality, among
others (Wuebbles et al., 2019).

Data
Precipitation Data

Our analysis of extreme precipitation is based on daily
precipitation data from NOAAs NClimDiv data set (Vose et al.,
2014), a 5 km resolution gridded temperature and precipitation
product derived via climatologically aided interpolation (CAI;
Willmott and Robeson, 1995) of station data from the daily
Historical Climatological Network (HCN-D; Menne et al., 2012).
Relative to previous divisional data sets, NClimDiv includes a
larger number of stations, additional quality assurance tests,
and bias adjustments for changes in observation technique as
described in Vose et al. (2014). Daily precipitation grids are
available from 1951 to present for the contiguous United States.
The 5 km NClimDiv grid used in this study covers the labeled
states shown in Figure 1.

Because NClimDiv is derived from interpolation of available
station data, the product is spatially and serially complete. While
NClimDiv does not provide information regarding sub-daily
precipitation extremes, the consistent long-term perspective it
provides regarding daily precipitation extremes is valuable for
understanding regional changes in extreme precipitation over
time. Additional details about the NClimDiv data set, including
identification of extreme precipitation events is provided in
section Precipitation Extremes.

Reanalysis Data

To characterize the synoptic environment as it relates to extreme
precipitation events, we used the European Center for Medium-
Range Weather Forecasts (ECMWF) ERA5 reanalysis (Hersbach
et al., 2020). ERA5 represents an improvement over previous
reanalysis products as a result of improved model accuracy
and data assimilation techniques, resulting in more accurate
estimates and at higher resolution. ERA5 currently provides
global, hourly estimates of atmospheric and land surface variables
at a resolution of 0.25◦ for pressure levels ranging for 1–1,000 hPa
starting in 1979, with a plan to ultimately extend the analysis back
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FIGURE 1 | Map showing Great Lakes region used for analysis of extreme precipitation and the ERA5 0.25◦ grid used for the synoptic classification using

self-organizing map (SOM) algorithm.

to 1950. Our analysis of both precipitation extremes and their
corresponding synoptic-scale patterns therefore starts in 1979
and ends in 2019.

Reanalysis data should be used cautiously in areas with sparse
data. Because upper air conditions in the central and eastern
United States are regularly observed using radiosondes, and these
measurements are assimilated by ERA5, the reanalysis outputs
should provide an excellent representation of the upper air
conditions in the region. With high spatial resolution and spatial
and serial completeness, ERA5 is ideal for investigating synoptic
scale circulation variability and links with the surface extreme
precipitation record. Previous studies (Junker et al., 1999;
Schumacher and Johnson, 2005, 2006; Tryhorn and Degaetano,
2011; Kunkel et al., 2013; Nasri et al., 2016) have established that
synoptic scale drivers of extreme precipitation include measures
of circulation and atmospheric humidity. We therefore use
500-hPa geo-potential height to reflect circulation and 850-hPa
specific humidity to characterize moisture availability. The ERA5
grid point used in this study are shown in Figure 1. For this
application, the hourly ERA5 outputs were used to compute daily
averages for use with the daily precipitation data described in
section Precipitation Data.

METHODS

Our research design includes several types of analysis designed to
meet the stated research objectives. First, we define our extreme
precipitation metric and explore the climatology of extreme

precipitation events in the U.S. Great Lakes region, including
a detailed analysis of trends in extreme event frequency.
Second, we classify regional circulation and humidity data in a
bivariate synoptic classification to investigate large-scale drivers
of extreme precipitation. Finally, we examine changes in extreme
precipitation through the lens of the resulting synoptic classes.

Precipitation Extremes
Identification of Precipitation Extremes

Extreme values in climate science have been traditionally
investigated using either a block maximum approach, in which
the maximum value from each time block is identified and then
the collection of block maxima are studied, or by the peaks-
over-threshold approach, in which exceedances of a pre-specified
threshold are counted and explored. We chose to use the peaks-
over-threshold to ensure that no extreme events were discarded,
following Acero et al. (2011). An additional subjective decision is
the choice of an absolute or relative threshold. Because extreme
precipitation magnitude varies across the region, a relative
threshold is used. Specifically, for each grid point in NClimDiv,
the threshold applied is the magnitude of precipitation associated
with a 1-year recurrence interval based on a partial duration
series (PDS, see Bonnin et al., 2005). Since the record of study
is 1979–2019 (41 years), this value is determined by ranking the
daily precipitation values across all years from largest to smallest
and identifying the 41st ordered value.We then use this threshold
value with the daily NClimDiv data to compute the number of
exceedances per year from at each grid point in the region.
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Extreme Precipitation Trend Analysis

Changes in extreme precipitation in the U.S. Great Lakes
region are quantified by applying trend analysis to the extreme
precipitation counts from the analysis of precipitation extremes.
Because ordinary least squares (OLS) regression is sensitive to
outliers and extreme values at the series endpoints, we follow
previous studies that have considered both parametric and non-
parametric approaches (Huth and Pokorna, 2004; Asadieh and
Krakauer, 2015). The non-parametric technique adopted is Theil-
Sen estimation (Sen, 1968), which is equivalent to median-of-
pairwise slopes regression (see Lanzante, 1996). Both approaches
have advantages and disadvantage. Despite sensitivity to outliers,
OLS regression is powerful approach for estimating trends and
assessing their differences from 0. In OLS, the trend magnitude
and statistical significance are determined simultaneously. In the
non-parametric technique, a Mann-Kendall test (Kendall, 1975)
is used to assess the statistical significance of the monotonic
trend estimated by the Theil-Sen approach. Both techniques are
applied with a significance level of 0.1 (α = 0.1) under the null
hypothesis that there is no trend in the frequency of extreme
precipitation events exceeding themagnitude associated with a 1-
year recurrence interval. Rejection of the null hypothesis implies
the existence of a monotonic trend.

The significance of a temporal trend in a time series can
be inflated (deflated) in the presence of positive (negative)
autocorrelation. Although our times series of frequencies of
threshold exceedances are likely to be less persistent that
the original daily series that they are derived from, they
may still contain autocorrelation associated with persistence of
large-scale modes of climate variability. Rather than assuming
independence, modifications to the trend estimation technique
can be implemented to better assess the trend significance (Santer
et al., 2000; Yue and Wang, 2004). The modification is an
adjustment on the sample variance. In both parametric and non-
parametric techniques, this is a correction factor based on the
effective sample size. That is,

S∗ = S ·
n

n
∗ (1)

where S is the sample variance, n is the sample size, and n∗ is the
effective sample size, which is a function of the autocorrelation
present in the time series. Because the trend can contaminate the
estimate of sample autocorrelation, the estimate is based on the
detrended time series. Here, the trend is removed by subtracting
the product of the estimated trend (θ) and the position of that
year within the time series from each year. In particular,

xi
∗
= xi − θ · (i− 1) , i = 1, 2, . . . , 41. (2)

The lag-1 autocorrelation (ρ) is then determined from the
detrended time series and the effective sample size is given by:

n
∗

=
1− ρ

1+ ρ
. (3)

With a positive autocorrelation, the effective sample size is
smaller than n, which increases the variance of the test statistic,

leading to a failure to reject the null hypothesis when a naïve test
may have found the presence of a significant trend. On the other
hand, the presence of negative autocorrelation in the time series
increases the effective sample size, decreasing the test statistic
variance, and can therefore either sustain already significant grid
points or bring the non-significant points past the threshold
needed to reject the null hypothesis.

We assess the significance of the parametrically- and non-
parametrically-derived trends at the local level. However, with
such a large number of tests conducted, there is an increased
chance of identifying a significant result by chance when it
does not truly exist. To avoid these issues, Wilks (2006, 2016)
recommend the use of the false discovery rate criterion (FDR).
In this meta-test, a maximum number of significant points are
determined such that a global test of significance at all local points
is met. In this case, the FDR procedure is used to evaluate the
field significance of trends in precipitation days per year with
αglobal = 0.2 (see Wilks, 2006 for details). First, the p-values of
each local hypothesis test result are ordered from the lowest to
the highest (p1, p2, . . . , pn) and compared to the corresponding
value (i/N)∗αglobal. The maximum significant p-value is largest of
the n p-values that satisfies the inequality:

pi ≤ (i/N)αglobal (4)

Once this threshold is obtained, grid points with a lower p-
value (p1, p2, . . . , pi) are designated as significant trends having
satisfied the global meta-test.

Bivariate Synoptic Classification Using the
Self-Organizing Map (SOM)
While several approaches exist for classification of atmospheric
patterns, the self-organizing map, or SOM (Kohonen, 1998) has
emerged as a leading approach in synoptic climatology. The SOM
algorithm distributes a designated number of nodes across the
multidimensional input space and sequentially moves each node
toward the best matching input data based on a set learning rate
and a predetermined number of iterations. The result is a two-
dimensional map of nodes representative of the continuum of
the input data (Hewitson and Crane, 2002; Sheridan and Lee,
2011). The SOM technique is also selected for its demonstrated
skill in feature extraction and the interpretability of a map space
(Liu et al., 2006; Agel et al., 2018).

Prior to classification with the SOM algorithm, several data
preprocessing steps were necessary. First, the hourly ERA5
outputs of 500-hPa geo-potential height and 850-hPa specific
humidity were aggregated to daily averages, producing 14,975
daily grids for the 1979–2019 study period. SOM results can be
sensitive to the choice of spatial domain. We opted for a domain
that closely corresponds to the Great Lakes region (Figure 1)
to reduce the variability with the goal of better representation
of rare patterns (Gibson et al., 2017), but with some additional
grid points to the South and West, the predominant direction
for approaching weather systems. Finally, to consider both
geo-potential height and specific humidity, which differ by
several orders of magnitude, each variable was standardized by
subtracting the mean and dividing by the standard deviation.
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This standardization is applied to each day in the sample on
the basis of calendar year means and standard deviations. This
allows for equal weighting in the classification process, as both
geo-potential height and specific humidity input data will have a
mean of 0 and a standard deviation of 1. The data presented to
the SOM are therefore the daily standardized values of 500-hPa
geo-potential height and 850-hPa specific humidity at each of the
9,801 ERA5 grid points in the region on each of the 14,975 days,
producing a 19,602× 14,975 input array.

There are a number of additional subjective decisions required
for SOM-based classifications. Among these is the desired size
(number of nodes) in the resulting SOM space. Given the
relative rarity of the events of interest (precipitation extremes
exceeding the value associated with a 1-year recurrence interval),
the SOM dimensions must be sufficiently large to isolate the
large-scale signal associated with extremes. We investigated
SOM architectures ranging from 4 to 45 nodes in various
configurations and used two approaches to assess the viability
of the SOM and find a balance of within-type and between-
type variability. Specifically, we used the root-mean-square error
(between a sample grid and its representative node) and Sammon
mapping of the resulting SOM nodes to justify our selection
following (Jiang et al., 2015). The difference between the sample
grid and its representative node decreases as map size increases,
whereas smaller node numbers contribute to a more cohesive
mapping pattern across space. Using these approaches, we
converged on a 20 node (5 × 4) SOM solution. Given the
SOM size, the learning rate and number of iterations are also
parameters that influence the result of the mapping algorithm.
Defaulting to recommendations of the software (Matlab’s Deep
Learning Toolbox), the initial learning rate in this instance was
set to 4. The number of iterations was then set to 1,000 to ensure
the success of the training while minimizing the computation
time of the algorithm.

Linking SOM Nodes and Regional
Precipitation Extremes
The output of the SOM algorithm includes the centroid for each
node, a distance matrix relating the node centroids, and an index
of the closest node for each of the 14,975 daily ERA5 grids.
These outputs allow the construction of a synoptic catalog in
which each day is assigned to one node of the SOM, which can
then be considered in the context of the extreme precipitation
climatology. To this end, we establish a framework for connecting
the large-scale meteorological patterns with the established
extreme precipitation climatology by identifying the nodes most
associated with extreme precipitation. We classify a day as
an extreme precipitation day if at least 1% of the 81972.5km
NClimDiv grid points in the region exceeds its threshold.

Once we have identified the extreme precipitation days
belonging to each node, we conduct a Monte Carlo experiment
to determine which nodes are associated with a greater than
expected number of extreme precipitation days, following Agel
et al. (2018). For each node, a random sample of days equal to
the number of days within the node are selected and the number
of extreme precipitation days in the random sample are noted.

FIGURE 2 | Map of the study region showing the threshold used for

identification of extreme precipitation days (the magnitude of the daily

precipitation associated with a 1-year recurrence interval (mm).

Resampling 1,000 times establishes a distribution for the expected
number of extreme precipitation days corresponding to a specific
node size. A node is then established as a node associated with
extreme precipitation, and thus classified as an “extreme node,” if
the number of extreme days associated with the node exceeds the
97.5th percentile of the resulting distribution.

Further analysis places these extreme nodes in the context
of the entire SOM space and explores changes in node
occurrence over time. First, the days belonging to each extreme
node are separated into sets representing extreme and non-
extreme days. Composites of these sets denote the differences
in structure and magnitude due to internode variability and
illustrate the characteristics of weather types favorable for
extreme precipitation. After examining the structure of the
extreme nodes, trend analysis is conducted to better understand
the frequency of occurrence of extreme nodes over time, with the
trend estimated by the Theil-Sen approach and the significance
of the trend is assessed using a Mann-Kendall test.

RESULTS

Extreme Precipitation Climatology and
Trends
The threshold used to identify extreme precipitation days (the
value associated with a 1-year recurrence interval) exhibits
considerable spatial variability across the U.S. Great Lakes region
(Figure 2). There is a general south to north gradient with the
largest values, ∼70 mm/day, occurring in southeastern NY and
southern IL. The lowest values of the precipitation magnitude
associated with a 1-year recurrence interval, around 35 mm/day,
occur in the northern parts of MI and MN. The average value
over all NClimDiv grid points in the region is 44.2 mm/day.

Our examination of precipitation extremes is based on a
trend analysis designed to identify changes in Great Lakes
extreme precipitation frequency over time. As described in
section Extreme Precipitation Trend Analysis, our trend analysis
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FIGURE 3 | Results of trend analysis for extreme precipitation frequency in the Great Lakes region. The points shown reflect grid points with significant trends for the

Theil-Sen/Mann-Kendall non-parametric approach (left column) and OLS parametric approach (right column). The rows show the trends from the natïve approach

(first row, A,B) and after accounting for temporal autocorrelation (second row, C,D), and field significance (third row, E,F). The trend magnitude at points identified as

field significant are shown in the fourth row (G,H).

includes both parametric (OLS) and non-parametric (Theil-
Sen/Mann-Kendall) approaches for trend fitting and assessment
of statistical significance. In both cases, additional considerations
are made to account for autocorrelation in the time series and
test multiplicity, and we draw additional comparisons between
the parametric and non-parametric approaches at each step in
the analysis. The non-parametric approach sometimes leads to
a counterintuitive result when applied to time series containing
many zeros (such as a time series of extreme event counts).
Specifically, it is possible that the slope value will be 0, but
the Mann-Kendall test will indicate significance. We therefore

present our initial results only in terms of trend significance
(binary) and discuss trend magnitude only for our final trend
analysis results.

Significant trends in extreme precipitation frequency
identified by the naïve Theil-Sen/Mann-Kendall and OLS
approaches are shown in Figures 3A,B, respectively. Both
approaches identify a large number of grid points in the U.S.
Great Lakes region exhibiting significant trends (Figure 3,
Table 1). The maps show strong qualitative similarity, with a
slightly larger number of significant trends identified by the
Theil-Sen/Mann-Kendall relative to OLS. Despite the greater
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TABLE 1 | Summary of trend analysis.

Theil-Sen/Mann-Kendall Ordinary least squares (OLS) Either Both

Standard test 25,044 (31.4%) 18,363 (23.0%) 25,607 (32.1%) 17,800 (22.3%)

Accounting for temporal autocorrelation 23,328 (29.3%) 18,380 (23.1%) 25,145 (31.5%) 16,563 (20.8%)

Accounting for temporal autocorrelation and field significance 12,773 (16.0%) 10,799 (13.6%) 14,241 (17.9%) 9,331 (11.7%)

Table entries show the number of Great Lakes region NClimDiv grid cells (out of 79,679) for which computed trends were statistically significant (α = 0.1). Results are shown for the

standard test (top row), after accounting for temporal autocorrelation (middle row), and after also accounting for field significance (bottom row). The columns show the results from the

non-parametric Theil-Sen/Mann-Kendall method and the parametric Ordinary Least Squares method. The final two columns reflect the level of agreement between the results, indicating

how may grid points exhibit statistically significant trends using either method and both methods.

extent of significant trends from the Theil-Sen/Mann-Kendall
approach, the region of significance overlaps well. A total of
25,607 out of 79,679, or 32.1% of points within the region, are
identified as having significant trends by either approach with
69.5% of these 25,607 points identified as having significant
trends by both approaches. Spatially, the locations with
significant extreme precipitation frequency trends are scattered
in clusters across the region but tend to be more widespread in
the western portion.

To account for temporal autocorrelation in the time series,
modified tests, which alter the sample variance based on the
lag-1 autocorrelation, were conducted. As described in section
Extreme Precipitation Trend Analysis, this correction is needed
because an autocorrelated series violates the assumption that
time series values are independent. The most common outcome
is that significance is reduced by the presence of positive
autocorrelation. However, in cases where the autocorrelation
is negative, the effective sample size can be larger than
the actual sample size. This can lead to points that were
previously below the significance threshold becoming significant.
Autocorrelation in our extreme precipitation time series (not
shown) is highly variable over space and does not exhibit a
clear spatial pattern. For the Theil-Sen/Mann-Kendall approach,
accounting for autocorrelation reduced the number of points
with significant trends in extreme precipitation frequency
slightly (cf. Figures 3A,C, Table 1). The modified OLS approach,
on the hand, led to virtually no change in the number of
significant grid points (cf. Figures 3B,D, Table 1). In both cases,
the maps before and after accounting for autocorrelation are
qualitatively and quantitatively similar and agreement between
the non-parametric and parametric approaches remains strong.
A total of 25,145 grid points (31.5%) exhibit significant extreme
precipitation frequency trends according to either approach
and 65.9% of these points have significant trends under both
approaches after accounting for autocorrelation.

When conducting a large number of hypothesis tests, there
is potential for rejecting a substantial number of hypothesis
incorrectly by chance or due to spatial autocorrelation.
Consideration of field significance addresses these issues by using
the false discovery rate (FDR) criterion. As described in section
Extreme Precipitation Trend Analysis, for each approach, the
number of field significant points is determined by ordering the
p-values of the local tests and identifying their intersection with
the false discovery rate threshold. Any grid point where the p-
value is lower than the p-value at this intersection is said to

have a regionally significant trend. For both the non-parametric
and parametric approaches, accounting for field significance
decreases the spatial extent of significant trends in extreme
precipitation frequency (Figures 3E,F). For the Theil-Sen/Mann-
Kendall approach, the ordered p-value curve intersects the FDR
threshold at a p-value of 0.0328, so that 12,773 grid points in the
regionmeet field significance criteria (i.e., those with p< 0.0328).
In the OLS approach, the ordered p-value curve intersects the
FDR threshold at a p-value of 0.0271, yielding 10,799 points
meeting field significance criteria. Although accounting for field
significance reduced the overall extent of significant trends in
extreme precipitation frequency, there is still relatively strong
agreement between the approaches with 65.5% of points with a
significant result from either approach have a significant result
from both approaches.

After accounting for both autocorrelation and field
significance, we are left with considerable parts of the U.S.
Great Lakes region exhibiting significant trends in extreme
precipitation frequency regardless of the methodological
approach used for trend analysis.

The magnitude of the estimated trends in extreme
precipitation frequency is shown in Figures 3G,H. The
greater spatial extent of the OLS-derived trends relative to those
derived from the Theil-Sen/Mann-Kendall approach is related to
the presence of significant trends with no magnitude, resulting
from separately assessing the slope magnitude (Theil-Sen) and
significance (Mann-Kendall) within this approach. As noted, this
results from the time series being characterized by a relatively
high proportion of zeros so that the median of pairwise slopes
using in the Theil-Sen estimator is zero. Because of this, only
a fraction (1,694 of 12,773, or 13.3%) of points with significant
trends according to the Mann-Kendall test have a non-zero
Theil-Sen slope estimate. These points are located primarily in a
block along the Illinois-Iowa border, with some smaller regions
of significance scattered in other parts of the domain. The
average magnitude of significant non-zero trends is 0.328 days
per decade, ranging from 0.125 to 0.556 days per decade. In the
OLS approach, the trend magnitude and significance are more
directly connected, so that any grid point found to be significant
will have a non-zero slope. For the 10,799 points identified as
having a significant trend in extreme precipitation frequency, the
resulting trends varied from 0.085 to 0.706 days per decade, with
an average of 0.324 days per decade.

Despite the differences resulting from the tendency of
the Theil-Sen/Mann-Kendall approach to produce significant
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FIGURE 4 | The 20-node (5 × 4) SOM solution showing standardized anomalies of 500 hPa geo-potential height (black contours) and 850 hPa specific humidity

(shaded in color). Nodes are numbered 1–20 for reference within text.

trends without magnitude, both parametric and non-parametric
approaches indicate positive trends in the number of extreme
precipitation days in the region, with strikingly similar location

and magnitude. Overall, the clear indication from our trend
analysis is that extreme precipitation frequency is increasing
in the region, even when applying conservative approaches
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to account for temporal and spatial autocorrelation and test
multiplicity. These robust changes can now be explored in the
context of the large-scale climate influencing the region.

Weather Type Classification
To better understand the large-scale circulation and humidity
regimes associated with extreme precipitation in the U.S. Great
Lakes region, we applied a bivariate self-organizing map (SOM)
to 500 hPa geo-potential height and 850 hPa specific humidity as
described in section Bivariate Synoptic Classification Using the
Self-Organizing Map (SOM). Following experimentation with
the SOM architecture, we developed a 20-node (5 × 4) solution,
which is displayed in Figure 4. The right-hand side of the SOM is
largely characterized by patterns with negative height anomalies
over the western (top rows), central or eastern (bottom rows)
parts of the region. Conversely, the left side of the SOM space
is characterized by generally characterized by positive height
anomalies over the central and western parts of the region. In
terms of 850 hPa specific humidity, nodes with positive anomalies
tend to be clustered along the top of the SOM space with
drier patterns along the bottom of the SOM space. Considering
both variables together, the SOM allows for identification of
patterns that couple high values of humidity with strong height
gradients, leading the moisture transport into the study region
(e.g., Node 3).

To determine the association between the SOM nodes and the
extreme precipitation days, we first computed the distribution
of total days by node and extreme precipitation days by node
(Table 2). The SOM classifies the original 14,975 days into 20
nodes ranging in size from 405 days (2.70%, Node 1) to 965
days (6.44%, Node 18). Using the criteria in section Linking
SOM Nodes and Regional Precipitation Extremes, we identified
a total of 1,024 extreme precipitation days. The share of these
days belonging to each node is also shown in Table 2 and
ranges from just 15 days (1.46%, Nodes 9, 15, and 18) to 123
days (12.01%, Node 3). To identify nodes that are associated
with a higher-than-expected share of extreme precipitation days,
we apply a Monte Carlo approach (see section Linking SOM
Nodes and Regional Precipitation Extremes), which identifies
six nodes: 1, 2, 3, 4, 7, and 8, that account for 517 (50.5%) of
the extreme precipitation days. More than half of the extreme
precipitation days correspond to just 30% of the nodes that
collectively represent 25.4% of all days.

Structurally, the nodes associated with extreme precipitation
belong to the top portion of the SOM space and therefore
have some common physical characteristics, including high
standardized values of specific humidity across the domain.
Aside from the nodes with the highest average specific humidity
anomalies (1 and 2), the remaining nodes associated with
extreme precipitation are characterized by high specific humidity
anomalies and a geo-potential height gradient across the
region with the lowest heights anomalies toward the west.
This configuration leads to moisture transport into the region
and may be reflective of mesoscale convective systems and/or
frontal systems, which account for a large majority of the
extreme precipitation events in the Central US (Schumacher
and Johnson, 2005; Kunkel et al., 2012). While a majority of

TABLE 2 | (a) Frequency of occurrence for each SOM node (out of 14,975) and

(b) frequency of occurrence of extreme precipitation days for each SOM node (out

of 1,024).

(a)

All days

405 (2.70%) 631 (4.21%) 561 (3.75%) 706 (4.71%)

706 (4.71%) 812 (5.42%) 815 (5.44%) 683 (4.56%)

803 (5.36%) 874 (5.84%) 816 (5.45%) 807 (5.39%)

905 (6.04%) 926 (6.18%) 952 (6.36%) 680 (4.54%)

615 (4.11%) 965 (6.44%) 607 (4.05%) 706 (4.71%)

(b)

Extreme precipitation days

42 (4.10%) 87 (8.50%) 123 (12.01%) 71 (6.93%)

47 (4.59%) 57 (5.57%) 100 (9.77%) 94 (9.18%)

15 (1.46%) 56 (5.47%) 36 (3.52%) 61 (5.96%)

44 (4.30%) 18 (1.76%) 15 (1.46%) 39 (3.81%)

32 (3.13%) 15 (1.46%) 17 (1.66%) 55 (5.37%)

Each table entry contains the number of occurrences and percentage [of all days in (a), of

extreme precipitation days in (b)] corresponding to the same position in the 5 × 4 SOM

(Figure 3).

extreme precipitation days fall into the six extreme patterns, just
13.6% of the days within those patterns are classified as extreme,
reflecting within-node variability. We therefore considered
differences between non-extreme precipitation days and extreme
precipitation days within each node using compositing. Figure 5
displays each extreme node, along with composites of the non-
extreme and extreme precipitation days for that pattern. In
each case, we found that the overall structure of the pattern in
the node (i.e., the location of height/humidity extrema) does
not differ between extreme and non-extreme days. However,
we often identified a stark difference in the magnitude of
those extrema. For each extreme precipitation node, extreme
precipitation days are characterized by stronger 500 hPa geo-
potential height gradients and similar or larger 850 hPa specific
humidity anomalies (Figure 5).

Examination of these specific nodes also reflects their
association with extreme precipitation frequency across the U.S.
Great Lakes region (Figure 5). As expected, for each node, the
areas with the greatest extreme event frequency are located
directly east of the negative geo-potential height center and near
the area of positive specific humidity. Nodes 1 and 4 tend to
produce extreme precipitation in the north-west part of the
region, while Nodes 2, 3, and 7 produce extreme precipitation in
the west-central part of the region, and Node 8 produces extreme
precipitation in the east-central part of the region. Although
(Schumacher and Johnson, 2005) use a much higher extreme
precipitation threshold (the precipitation amount associated
with the 50-year recurrence interval), our extreme nodes reflect
some of the processes described in their work. For example,
the circulation and humidity patterns characterized by Node
2 and Node 7 are consistent with the east-west orientation of
the training line/adjoining stratiform (TL/AS) type of mesoscale
convective system identified in their study. While a full analysis
of node transitions is beyond our scope, we did assess the
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FIGURE 5 | SOM nodes associated with extreme precipitation in the Great Lakes region. For each of the six nodes, the figure shows the original SOM node from

Figure 4 (1st column), the composite pattern of days without extreme precipitation (2nd column), the composite pattern of days with extreme precipitation (3rd

column), and the location of extreme precipitation associated with the SOM node events within the region, defined as the frequency of extreme precipitation at each

NClimDiv grid cell on days belonging to the SOM node (4th column).
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TABLE 3 | Seasonal characteristics of SOM nodes associated with extreme precipitation.

DJF MAM JJA SON ANN

Node 1 7/129 (5.4%) 12/145 (8.3%) 15/56 (26.8%) 8/75 (10.7%) 42/405 (10.4%)

Node 2 2/145 (1.4%) 18/161 (11.2%) 38/161 (23.6%) 29/164 (17.7%) 87/631 (13.8%)

Node 3 6/123 (4.9%) 21/129 (16.3%) 52/151 (34.4%) 44/158 (27.9%) 123/561 (21.9%)

Node 4 0/168 (0.0%) 9/160 (5.6%) 34/183 (18.6%) 28/195 (14.4%) 71/706 (10.1%)

Node 7 10/205 (4.9%) 21/210 (10.0%) 51/229 (22.3%) 18/171 (10.5%) 100/815 (12.3%)

Node 8 14/178 (7.9%) 16/172 (9.3%) 17/115 (14.8%) 47/218 (21.6%) 94/683 (13.8%)

All extreme nodes 39/948 (4.1%) 97/977 (9.9%) 207/895 (23.1%) 174/981 (17.7%) 517/3,801 (13.6%)

For each node and season (and for the full year), each entry shows the number of extreme precipitation days relative to the total number of occurrences and the resulting season- and

node-specific frequency of extreme precipitation days.

TABLE 4 | Summary of trend analysis on SOM nodes associated with extreme

precipitation days.

All days Extreme precipitation days

Trend P-value Trend P-value

(days/decade) (days/decade)

Node 1 0.00 0.76 0.00 0.46

Node 2 2.91 <0.01 0.48 0.02

Node 3 0.91 0.09 0.00 0.29

Node 4 −1.88 0.03 0.00 0.36

Node 7 2.00 0.07 0.26 0.15

Node 8 –0.71 0.36 0.00 0.38

All Extreme Nodes 4.43 0.08 1.27 0.03

Trends (days/decade) and their associated p-values are shown for all days within the node

and for days associated with extreme precipitation. Entries that are significant (with α =

0.05) are in bold.

persistence of each node by examining the days preceding and
following and extreme precipitation day. Nodes 2 and 7 were
the most persistent nodes consistent with a stationary east-west
moisture maximum across the region. Nodes 3 and 8, on the
other hand, are the least persistent and are likely to be associated
with faster moving synoptic systems and their associated fronts.

Extreme precipitation in the region exhibits notable seasonal
variability which is evident in the seasonal frequencies of the
associated SOM nodes. While the six specific nodes highlighted
in Figure 5 occur approximately evenly across the seasons,
40.0% of the extreme precipitation events (207 of 517 events)
occur during the summer and 33.6% (174 of 517 events) occur
during the autumn (Table 3). Most of the remaining events
(97 of 517 or 18.6%) occur in the spring and only 7.5%
(39/517) occur during the winter. Therefore, even across the
nodes associated with extreme precipitation, winter extreme
precipitation events are relatively uncommon. This may result
partially from the SOM design, which uses daily standardized
values of 500-hPa geo-potential height and 850-hPa specific
humidity. Even anomalously high 850-hPa specific humidity
in winter may be insufficient to support extreme precipitation.
However, our results are consistent with previous studies (e.g.,
Schumacher and Johnson, 2006) that have identified a strong
summer maximum in extreme precipitation. During the winter,

within-type variability is also larger, and the percentages of each
node associated with extreme precipitation are at a minimum.
During summer, the six key nodes produce extreme precipitation
on nearly 25% of days on which they occur, and for Node 3,
extreme precipitation occurs onmore 1/3 of summer days. Trend
analysis of the frequency of SOM nodes associated with extreme
precipitation provides an initial perspective on how synoptic-
scale variability and change may be related to changes in extreme
precipitation. The number of extreme precipitation days in the
U.S. Great Lakes region is increasing at a rate of 1.27 days/decade,
which may be at least partially explained by variations in
the frequency of days belonging to those specific SOM nodes
associated with elevated extreme precipitation frequency. We
find that two extreme precipitation nodes exhibit significant
trends over time (Table 4). Node 2 has a significant positive trend
of 2.91 days/decade (p < 0.01), while Node 4 has a significant
negative trend of−1.88 days/decade (p∼ 0.03). The other nodes
associated with extreme precipitation have positive trends that do
not meet the criteria for significance (with α = 0.05). Finally, we
assessed trends in the occurrence of extreme precipitation days
within each extreme node and across all extreme nodes. Results
indicate that across all extreme nodes, there is a significant
trend of 1.27 extreme precipitation days per decade (p ∼ 0.03).
This is driven primarily by Node 2, which has a significant
positive trend (p ∼ 0.02) of 0.48 days/decade in days meeting
the extreme precipitation criteria. The impact location associated
with Node 2 (Figure 5) corresponds very well with the extreme
precipitation trends presented in section Extreme Precipitation
Climatology and Trends and Figure 3, suggesting a potentially
substantive role for mesoscale and synoptic processes in the
observed extreme precipitation increases.

SUMMARY AND DISCUSSION

The objectives of this study were to quantify changes in extreme
precipitation frequency in the U.S. Great Lakes region and
their links with large-scale circulation and humidity. We first
conducted an analysis of trends in extreme event frequency, using
both parametric and non-parametric trend estimation techniques
and accounting for autocorrelation and field significance. While
accounting for autocorrelation and field significance reduced
the spatial extent of the identified trends, we identified the
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existence of positive extreme frequency trends in the region using
both techniques. No negative precipitation trends were identified
in the region. To relate regional extreme precipitation events
to atmospheric drivers, we applied a bivariate self-organizing
map to assign each day in the record to one of 20 distinct
nodes characterized by their standardized 500 hPa geo-potential
height and 850 hPa specific humidity anomalies. A Monte Carlo
approach was then used to identify six nodes associated with
regional extreme precipitation occurrence. Each of these extreme
nodes featured a unique structure, typically with a strong geo-
potential height gradient and corresponding low-level humidity
maximum. When considering only the extreme precipitation
days within each node, we found these features to be exaggerated
(i.e., a stronger gradient and higher humidity), indicating that
structure and magnitude of these weather types are both essential
for relating them to extreme precipitation. Finally, for each of
the extreme nodes, and for all extreme nodes collectively, we
quantified the trend in overall frequency and in the frequency of
extreme precipitation days associated with the node. Collectively,
the frequency of these extreme nodes is increasing over time (not
significant) and the frequency of extreme days within the nodes
is also increasing over time (significant with α = 0.05). Node
2 specifically exhibits significant increases in overall frequency
and in the frequency of extreme days within Node 2. The
spatial structure of extreme precipitation frequency under Node
2 qualitatively matches the observed trend structure.

Our results are consistent with results of previous students,
such as the significant increase in the frequency of heavy
precipitation over the central United States reported by
Mallakpour and Villarini (2015). Because they used alternative
data sources with different spatial resolutions and time periods,
a direct comparison is not possible. However, the greater
spatial extent of extreme precipitation trends in the parts
of their domain that overlap with ours, could result from
our consideration of autocorrelation in the time series. We
recommend that time series studies account for autocorrelation
to avoid overconfidence in identified trends. The results of
our synoptic classification (and the identified nodes associated
with extreme precipitation) are also in agreement with previous
studies. For example, each of the nodes that we associated with
extreme precipitation are instantiations of the “Midwest water
hose” pattern denoted by Zhang et al. (2019). In that study,
the authors used a broader domain to identify a connection
between extreme precipitation and circulation. In the current
study, we’ve used a narrower domain leading to a wider array
of identified circulation/humidity types. As discussed in section
Results, Nodes 2 and 7 are consistent with the east-west “training”
events described by Schumacher and Johnson (2005) that are
responsible for a large number of extreme precipitation events
identified in their study.

The vast majority of previous synoptic classifications with the
SOM algorithm have relied on a single classification variable,
usually geo-potential height or sea level pressure, to reflect the
primary circulation features. Our results, based on a bivariate
SOM, demonstrate that consideration of additional variables, 850
hPa specific humidity in our case, can improve the interpretation
of the resulting weather types and their associations with extreme

precipitation. Each of the nodes that we associated with extreme
precipitation occurrence is characterized by a combination of
geo-potential height and specific humidity anomalies in specific
geographic regions. The SOM nodes that are not associated with
extreme precipitation occurrence may exhibit similar structure
in either geo-potential height or specific humidity, but not both.
We also found that the magnitude of both of these parameters
is vital. Our study suggests that extreme days are related to both
steepened geo-potential height gradients and amplified specific
humidity. Agel et al. (2019) similarly reported that extreme
precipitation events were related to enhancedmoisture transport.

Previous studies focused on the central United States have
identified disparate drivers of extreme precipitation changes.
Specifically, Kunkel et al. (2012), attributed increasing extreme
events to be related to frontal systems, while Schumacher
and Johnson (2005, 2006) and Barlow et al. (2019) identified
mesoscale convective systems occurring during spring and
summer as a major cause. These differences may result from
different definitions and the extreme nodes identified in this
study are consistent with both mesoscale convective systems
and frontal systems. While direct comparison with previous
studies is difficult, our results indicate that extreme precipitation
frequency is increasing in many parts of our region, with
substantial contributions from unique combinations of large-
scale circulation and humidity patterns. Future studies may
benefit from including additional information from reanalyses,
such as the convective vs. large-scale rain rates to better
differentiate between the large-scale mechanisms that produce
extreme precipitation. The strength of the links between SOM
nodes and extreme precipitation may be further improved by
incorporating greater specificity regarding regional precipitation
drivers, perhaps including aspects of the Great Plains low-level
jet (Junker et al., 1999) or consideration of multi-day events and
their associated large-scale drivers.

While our results contribute to greater understanding of
changes in precipitation extremes in the U.S. Great Lakes
region, there are some limitations worth noting. In synoptic
classification problems, the goal is to minimize within-type
variability and maximize between-type variability, but resulting
nodes often suffer from a large degree of within-type variability
(Brinkmann, 1999). Although we identified six patterns that
account for more than half of all extreme precipitation days,
each of the nodes identified as an extreme precipitation
node also includes a large number of days without extreme
precipitation. This limitation is also noted by Gibson et al.
(2017) in the context of using SOMs to explore extreme event
environments. Our analysis of the difference between large-scale
patterns associated with extreme and non-extreme precipitation
days within the nodes, determined by simple compositing,
indicates that the pattern magnitudes are greater on extreme
precipitation days, reflecting within-type variability. Another
limitation is related to our use of standardized anomalies. While
this was necessary to include both geo-potential height and
specific humidity which differ by several orders of magnitude,
it can also mask important seasonal variations in extreme
precipitation drivers. For example, anomalously high specific
humidity during winter may still be insufficient to produce
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extreme precipitation. Specific analysis focused on each season
may therefore provide greater insight into the physical processes
involved. Despite these caveats, this study was successful in
identifying trends in extreme precipitation in the U.S. Great
Lakes region and relating them to specific circulation/humidity
regimes. Key contributions of our work include insights gained
from estimating trends using multiple techniques that account
for autocorrelation and field significance and relating those
trends to combinations of large-scale geo-potential height and
humidity. The framework developed here could easily be
expanded to other regions or to include more than two large-
scale variables.

Projections from contemporary climate models indicate
additional increases in the frequency of extreme precipitation
under further large-scale warming (IPCC, 2021). However,
regional changes in precipitation are still a challenge for
climate models (Tabari et al., 2019), which often fail to
produce the key precipitating systems, such as mesoscale
convective systems (Gutowski et al., 2020). Analyses like
those presented here can provide a basis for evaluation of
climate models by specifically assessing the frequency with
which they produce the large-scale conditions required for
extreme precipitation. Studies in other regions (e.g., the NE
by Agel et al., 2020) have begun to assess the ability of
climate models to simulate extreme precipitation and its related
circulation. Future work will expand upon these results to

assess representation of the extreme precipitation nodes in
contemporary climate models.
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