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Rice is the staple food of most Asians, including Sri Lankans. It is cultivated extensively in

the dry zonal regions in Sri Lanka such as the Polonnaruwa district, where the prevalence

of chronic kidney disease of unknown etiology (CKDu) is higher. We investigated the

concentrations of potentially toxic heavy metal(loid)s in groundwater and locally produced

rice and correlated their exposure with the prevalence of CKDu. We studied human

health exposure risks such as total daily intake (TDI), hazard quotient, hazard index,

and carcinogenic risk (CR) from the consumption of groundwater and rice. In well-

water, the concentrations of heavy metal(loid)s, cadmium (Cd), arsenic (As), and lead

(Pb) were below the World Health Organization (WHO) stipulated allowable limits. Except

for Pb, contents of other heavy metal(loid) in all rice samples were lower than maximum

permissible limits by the WHO (0.02 mg/kg). Twenty-three per cent (23%) of rice samples

analyzed exceeded the permissible limit for TDI of Pb, and analysis of hazard index for

Cd, As, and Pb revealed 26% of rice samples could result in a health risk through the

consumption of rice in this population. Further, the outcome depicted no CR of Cd,

As, and Pb by consuming rice in this study area. We recommended further studies

and investigations to minimize or eliminate potential risks from chronic Pb exposure

to consumers.

Keywords: carcinogenic risk, chronic kidney disease of unknown etiology, hazard index, heavy metals, total daily

intake

INTRODUCTION

During the past couple of decades, exposure to toxic-heavy metal(loid)s through groundwater and
food has garnered attention in Sri Lanka and elsewhere. This is in part due to the expanding
chronic kidney disease of unknown etiology (CKDu) in dry zone regions, mostly affecting male
paddy farmers in the north central province (NCP) in Sri Lanka. Most important risk factors
for the common chronic kidney disease (CKD) are long-standing diabetes, hypertension, and
glomerulonephritis (Wimalawansa, 2014). The majority of CKD patients in the NCP of Sri
Lanka, however, is not associated with the above pre-existing risk factors (Athuraliya et al.,
2011). Considering the published data, environmental exposure to multiple risk factors over time,
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is considered to be the main etiology for CKDu incidents in
Sri Lanka (Wimalawansa, 2016; Wimalawansa and Dissanayake,
2019). The literature shows numerous researchers proposing a
relationship between the occurrence of CKDu with exposure to
Cd, As and Pb (Jayatilake et al., 2013; Jayasumana et al., 2015a).
Nevertheless, no study to date has supported this hypothesis
(Vlahos et al., 2018; Nanayakkara et al., 2019; Wimalawansa and
Dissanayake, 2019).

People are exposed to these elements via drinking water and
food, and also through inhalation (air pollution) from vaporized
metal particles (Jaishankar et al., 2014; Islam et al., 2021).
Chronic dietary exposure to higher doses of heavy metal(loid)s
could pose a considerable health risk to humans (Wijayawardena
et al., 2017). Most heavy metals are bio-accumulative, not
only in plants but also in humans with chronic exposure.
Therefore, to avoid adverse effects World Health Organization
(WHO) has recommended maximum allowable limits (MAL)
(Wimalawansa, 2016). The researches have reported nephrotoxic
heavy metal(loid)s such as Cd, As, and Pb in blood, nails,
and urine of CKDu patients. These include, Cd in blood,
concentrations between 0.25 µg/L (Nanayakkara et al., 2014)
and 2.5 µg/L (Jayatilake et al., 2013; Jayasumana et al., 2015a)
and concentration of 0.017 mg/kg in patients’ nails (Jayatilake
et al., 2013). Further, As content in nails was 0.144 mg/kg
(Jayatilake et al., 2013) and in urine ranged from 20 to 37
µg/L (Nanayakkara et al., 2014; Jayasumana et al., 2015a) among
CKDu patients. Importantly, 3.6 µg/L of Pb in blood (Levine
et al., 2016) and 0.69 µg/L of Pb in urine were detected in
patients (Jayatilake et al., 2013). Those studies indicated that
residents in CKDu endemic areas were exposed to multiple
heavy metal(loid)s which potentially can cause serious health
problems. However, comprehensive information on the total
daily intake and exposure pathways of those elements was limited
(Mahendranathan and Thayaruban, 2018) to understand the
health impacts of those contaminants.

Rice is the staple diet; on average, a Sri Lankan adult consumes
300 g/day in dry weight basis (Jayawardena et al., 2014). Only
11.6 and 2.1% of adults in Sri Lanka consume the minimum
daily recommended servings of vegetables and fruits, respectively
(Jayawardena et al., 2013). Thus, rice for Sri Lankans is the
primary source of carbohydrate, proteins, phosphorus, iron, and
some vitamins, and covers 45% of daily total calories and 40% of
total daily protein in adults (Senanayake and Premaratne, 2016).
Therefore, consumption of rice could have a significant impact
on dietary exposure to toxic elements (Islam et al., 2016).

It is worth noting that the ability to bio-accumulate toxic-
heavy metal(loid)s was greater in edible part of the rice crop
compared to other cereal crops (Zhao et al., 2012). However,
most metal(loid)s remain in the lower part of the rice plant and
a lesser proportion are embedded in rice seeds (Satpathy et al.,
2014; Kong et al., 2018). Other common food items consumed
by the residents in CKDu endemic area are either imported
from other countries, i.e., lentil, milk powder, and sugar, or from
various other parts of the country (e.g., vegetables and tea from
upcountry) as with other parts of the country.

The rice consumed in CKDu endemic areas is mostly
local origin. Considering CKDu is endemic to geographically

demarcated areas (Chandrajith et al., 2011a; Wimalawansa,
2014) of Sri Lanka, heavy metal(loid) exposure through locally
originated food items is feasible. We hypothesized that in
addition to groundwater, locally produced food, especially rice,
could have an impact on CKDu. Therefore, we opted to
investigate the local groundwater and locally-produced food
items, especially rice, to assess potential linkage between dietary
exposure to heavy metal(loid)s and the prevalence of CKDu.

Previously reported, comparative studies of South Asian rice
have shown that Sri Lankan rice contains nephrotoxic metals
such as Pb andCd (Meharg et al., 2013; Norton et al., 2014;Mwale
et al., 2018). However, human health risk impact, particularly the
exposure over a longer period through rice consumption has not
been explored in CKDu endemic areas in Sri Lanka. Over the
past decade, several studies have reported chemical composition
of groundwater used in CKDu affected regions in Sri Lanka, in
comparison with non-endemic areas (Chandrajith et al., 2011b;
Jayasumana et al., 2015b; Diyabalanage et al., 2016; Wasana
et al., 2016; Herath et al., 2018). None of these studies, however,
reported higher levels of metal(loid)s toxins in groundwater or
varying concentrations across the region.

The primary water source for the inhabitants in the NCP
region’s inhabitants in Sri Lanka is shallow, dug-wells (Silva et al.,
2015). These well water are subjected to leaching contaminants
from irrigation water from agricultural lands, natural processes
like weathering, mineral dissolution, ion exchanges and redox
reactions (Saha et al., 2020). Heavy metal(loid)s in groundwater
is mostly present in ionic and (more toxic) inorganic forms
(Habib et al., 2020). Hence, bioavailability can be higher than
in other environmental media. However, there is no scientific
evidence to suggest a change of heavy metal(loid) content of
groundwater in the country. Therefore, metal(loid)s exposure
through groundwater is unlikely to have changed over the
lifetime of people living in CKDu endemic area. The current
cross-sectional assessment therefore, can be extrapolated to
previous exposure to water-derived exposure of people to heavy
metal(loid)s in the NCP. Therefore, in this study, we have
explored the overall exposure–health risks from groundwater and
rice consumption by the residents in the CKDu affected areas.

METHODOLOGY

Study Area
This study was carried out from February to April 2018 in
Medirigiriya divisional secretariat (DS) of Polonnaruwa district,
where 23% of adults affected by CKDu (Weaver et al., 2015).
Medirigiriya DS comprises of 54,404 hectares of land area
with ∼ 40% used for agriculture and settlements. About 51%
of the land area is covered by forest, small reservoirs, and
the archeologically-protected regions. The approximate annual
cultivation for paddy was 14,000 ha, and 102 hectares for
vegetables and other cereals.

This region belongs to poorly-drained low-land, dry zonal
agro-ecological zone, that is subjected to east-west monsoon
as the main cultivation season. The maximum and minimum
temperatures in this area were 36.5 and 22◦C respectively. People
accessed drinking water from many sources, but dug-wells is
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the predominant source. For instance, protective dug-wells were
used by 71.30% (8,923 wells), unprotected dug-wells by 18.66%
(2,335 wells), tube wells used by 4.26% (534 tube wells), village
community water supply (pipeline) by 0.29% (36 projects), and
rainwater harvesting by 5.48% (686 tanks).

Sample Collection
According to the hospital records of district hospital in
Polonnaruwa, Medirigiriya DS area has a total of 1,914 CKD
patients who were obtaining medical treatments for the disease
as at the end of November 2017; of these, 396 patients
were diagnosed as CKDu patients. For this study, we visited
randomly identified 224 CKDu patients’ homes for interviews
and sample collection.

The total of 71 dug-well water samples from CKDu patients’
houses were collected; some of these wells are shared by adjoining
houses. Since 2016, people are using treated water by reverse
osmosis for drinking purpose as a prevention method for CKDu.
This has led to the abandonment of many dug wells, and
thus, those abandoned wells were not used for sampling in this
study. However, some people properly maintained these wells
and continue to use dug-well water for drinking, cooking, and
washing. These wells were selected for sampling in this study.
The GPS coordinates of each sampling point were recorded using
Magellan eXplorist for mapping and future reference purposes.

Polyethylene bottles (500ml), pre-washed with acid-water
were used for collecting water samples and filtered through a
0.45µmfilter paper into 60ml sampling bottles to remove debris;
3–4 drops of concentrated HNO3 acid were added as preservative
into each of these 60ml sampling bottles. These acidified aliquots
were transported to our laboratories in Australia for trace
element analysis. During the same visit 53 samples of raw rice
grains were collected from homes of CKDu patients. The husk
was removed mechanically, and grains were ground to obtain a
homogenized powdered sample using a stainless-steel grinder.
Powdered grain samples were also transported to Australia for
trace metal analysis.

Sample Preparation
Original water samples were utilized to analyze pH, electrical
conductivity, and bicarbonate. Bicarbonate was examined
using a titrimetric method with 0.1M H2SO4, first adding
phenolphthalein, followed by adding a mixed indicator of methyl
red and bromocresol green. Total dissolved solids (TDS –mg/kg)
was estimated using by EC (µS/cm) values were multiplied by
0.64. The equation for this calculation was presented by Lloyd
and Heathcote in their previous research (Lloyd and Heathcote,
1985). Rice grain powder was digested using block digestion.
First 0.5 g of raw rice grain samples were treated with 5ml of
trace metal-grade HNO3 (70%) in a glass digestion tube and
kept overnight. Next digestion was performed as per a published
procedure (Rahman et al., 2009). A digested clear aliquot was
transferred to 50ml falcon tubes and diluted to 20ml with milli-
Q water. The solution was well mixed using a vortex mixture and
filtered through 0.45µm syringe filter into 10ml tubes, and trace
metal analysis was performed.

Trace metal concentrations in acidified water samples and
digested rice samples were measured using inductively-coupled
plasma mass spectrometry (ICPMS 7900, Agilent Technologies,
Japan), and inductively coupled plasma emission spectrometer
(PerkinElmer, Avio 200). The instrument detection limits for
trace metals were Cd−0.03, Co−0.01, Mn−0.02, Pb 0.05,
Cu−0.02, As−0.01, Se−0.2, and Zn−0.01 µg/L.

Human Exposure Assessment
Human exposure risk (HE) on daily basis from groundwater
was estimated by using the following equation based on US EPA
(2006) quoted by (Wu et al., 2009):

HEWater = CW× IRW/BWA

Where,
HEWater = human exposure risk through drinking water

pathway (µg/kg/day),
CW = heavy metal(loid)s concentration in water (µg/L),
IRW = daily average ingestion rate of water (L/day),
BWA = average body weight (kg).

Hazard quotient for drinking water was calculated using the
following equation based on USA EPA (Wu et al., 2009): the oral
toxicity reference dose (RfD) values used for As, Cd and Pb were
0.3, 0.5 and 1.4 (µg/kg/day) respectively (US EPA, 2006) quoted
by Wu et al. (2009).

HQWater = HEWater/ RfD

Where,
HQWater = hazard quotient for water (µg/kg/day),
RfD= oral toxicity reference dose (µg/kg/day).

Total daily intake (TDI—mg/kg) of heavy metal(loid)s through
consumption of rice was calculated using the following equations
based on (US EPA, 2006), and the reference oral dose (RfD) for
Pb, Cd, and As were 3.5, 1.0, and 3 (µg/kg/day) respectively (US
EPA, 2021) were used in this calculation.

TDIRise = CR ∗ IRR/BWA

Where,
CR = concentration of heavy metal(loid) in rice grain (µg/kg),
IRR = daily average rice consumption (0.3 kg/person/day) dry

weight basis,
BWA = body weight (60 kg).

Hazardous quotient (HQ) oral (µg/kg/day) for rice consumption
was calculated by multiplying TDIRise (µg/kg/day) by oral
toxicity reference dose for heavy metal(loid)s that an individual
can be exposed. Hazard index (HI) is calculated as the summation
of HQ oral of selected heavy metal(loid)s (Cd, As, and Pb) which
has a nephrotoxic effect.

Carcinogenic risk (CR) associated with the exposure to Cd,
As, and Pb was calculated as total daily intake [mg/(kg day)−1]
multiplying by cancer slope factor (SF). Respective SF for Cd and
Aswere 15, 1.5, and 0.0085mg/(kg day)−1 (US EPA, 2010) quoted
by Fan et al. (2017) and Ullah et al. (2017) were used in this study.
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Statistical Analysis
Visual data analysis statistical software (JMP, 2013) was used
for statistical data analysis. Firstly, descriptive statistical analysis
was carried out for heavy metal(loid) content found in rice and
groundwater to compare the results with safety guidelines. The
relationship to the distribution of CKDu patients at the village
level was evaluated using multiple regression analysis for heavy
metal(loid)s content found in raw rice and groundwater samples.

RESULTS AND DISCUSSION

Chemical Composition of Groundwater
The pH of water varied between 6.5 and 8.5 which is considered
to be the desirable range for drinking purposes (WHO, 2008).
Geometric mean pH in groundwater in this study was 8.4 (mean
8.4 ± 0.23). The pH value for drinking well water collected in
study area was closer to the upper limit of the desirable range.

In a comparative study of groundwater quality (Jayawardana
et al., 2010), average pH value for wet zone of Sri Lanka was
reported to be 7.1 (n = 45). Comparatively, the dry zone
(present study) showed a higher mean pH value for groundwater,
indicating a more alkaline nature of groundwater in CKDu
endemic areas. Gunatilake (2016) reported same value as the
present study for pH and mean value was 8.22 for the dry
zone area. Following analysis, elevated levels of ammonia were
detected in dry zone water, which is attributed to contamination
of water with fallen leaves or ammonia-based agrochemicals used
in this region resulting elevated pH values.

Geometric mean for EC in groundwater was 584 µS/cm with
a mean value of 624 ± 220 µS/cm. EC of groundwater <750
µS/cm is considered to be desirable, while 750–1,500 µS/cm is
considered to be permissible for drinking purposes (Elumalai
et al., 2017). According to this EC classification, 70% of wells in
this study belonged to the desirable range of EC, and 30% belongs
to the permissible range. Previous studies in CKDu endemic
areas have found EC values in well waters around 500 µS/cm
(Jayasumana et al., 2015b), and ranging from 330 to 1,000 µS/cm
in water reservoirs (Chandrajith et al., 2011a) which are similar
to this study. Well water, EC values for CKDu non-endemic areas
were found to be 239.35 µS/cm (Gunatilake, 2016), and the non-
endemic urbanized area reported to be 347.2 µS/cm (Rajapakshe
and Rathnayake, 2018), which is much lower than the CKDu
endemic area. Therefore, higher EC in groundwater is a common
occurrence in CKDu endemic regions compared to non-endemic
areas. EC reflect the dissolved mineral content in water. While
increased ionicity of groundwater was proposed as a causative
factor for CKDu (Dharma-Wardana et al., 2015), there is no
confirmatory evidence to support it.

Dissolved Ca andMg causes hardness in water. Themaximum
permissible water hardness level in drinking water is 500 mg/L
(WHO, 2008). Geometric mean value for TDS found in this study
was 374 mg/L with a mean value of 399 ±140 mg/L. About 21%
of wells in this study exceeded the maximum allowable water
hardness level of 500 mg/L, whereas groundwater hardness in
CKDu non-endemic areas is reported to be 77 mg/L (Gunatilake,
2016).Water hardness is also classified into four categories. Based
on calcium carbonate content of water<60, 60–120, 120–180 and

TABLE 1 | Groundwater and raw rice heavy metal(loid)s content comparison with

safety guidelines.

Elements Water (µg/L) WHO

guideline for

water (µg/L)

Rice (mg/kg) Max.

allowable

limit for rice

(mg/kg)

Mn 23.7 ±88.95 400 22.14 ±8.7 –

Co 0.06 ± 0.2 – 0.09 ± 0.05 –

Cu 0.99 ±0.61 2000 2.88 ± 0.63 –

Zn 4.67 ±7.3 3000 15.54 ±4.38 –

As 0.37 ± 0.42 10 0.03 ± 0.02 0.2*

Pb 0.09 ± 0.09 10 0.5 ± 0.33 0.2*

Cd 0.03 ± 0.02 3 0.02 ± 0.03 0.4*

Se 0.31 ± 0.41 – 0.08 ± 0.46 –

Water n = 71 and rice n = 53.
*JECFA (2018).

>180 mg/L, it is classified as soft water, moderately hard water,
hard water and very hard water respectively (WHO, 2011). As
per this classification, 91% of drinking well water samples of in
the study area belonged to very hard water category, and only six
locations had hard water (n = 3) and moderately hard water (n
= 3). Therefore, groundwater in this area range from “hard” to
“very hard” water.

Water hardness has both positive and negative impact on
human health. Water hardness has several human health effects
(Sengupta, 2013); digestive track issues, including constipation,
negative effects on reproductive health and kidney stones. There
is no evidence of direct effect of water hardness alone on CKDu.
It is speculated that hard water containing Mg+2, fluoride,
and traces of Cd enhancing nephrotoxicity (Dharma-Wardana,
2018). Even though Pb has valency and chemical properties
somewhat similar to Cd, and could cause nephrotoxicity (Satarug
et al., 2020), it is not a recognize cause for CKD. Nevertheless,
we hypothesized hard water containing Mg+2, fluoride, and
trace levels of Pb, increases the risk of nephrotoxicity and could
increases the risk of suffering from CKDu.

Heavy Metal(Loid)s Content of
Groundwater and Raw Rice
Means of heavy metal(loid)s content (Table 1) in well water
indicated that the heavymetal(loid)s, such as Cd, As, and Pb were
below the WHO drinking water safety guidelines (WHO, 2008),
indicating minimal health risks from these elements.

Recent findings concerning these metal(loid)s content in well
water of CKDu endemic areas were also below the permissible
levels (Herath et al., 2018). For instance, maximum levels for
Cd, Pb, and As in well water were 0.02, 0.003, and 1.94
µg/L respectively according to recent research conducted by
Nanayakkara et al. (2019), which is comparable to the results
of the present study. Thus, heavy metal(loid)s levels found in
groundwater per se unlikely to cause CKDu.

Manganese, Co, Cu, Zn, and Se are essential micronutrients
and found in trace levels in groundwater (Sandeep et al., 2012).
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FIGURE 1 | Comparative mean heavy metal(loid)s concentrations (mg/kg) in

edible part of rice reported in this study (Sri Lanka), with other studies

published in China (Luo et al., 2010; Huang et al., 2013; Fan et al., 2017), India

(Kumar et al., 2016), and Bangladesh (Khan et al., 2010; Rahman et al., 2014).

TABLE 2 | Heavy metal(loid)s levels reported in other studies for rice grains of

CKDu.

Elements concentration (mg/kg) References

Cd As Pb

0.02 0.14 0.02 Chandrajith et al., 2011b

0.34 0.19 1.28 Diyabalanage et al., 2016

0.87 0.2 0.08 Herath et al., 2018

0.031 0.053 0.026 Nanayakkara et al., 2019

In the Medirigiriya study area, those heavy metal(loid)s content
also were lower than WHO allowable limits (Table 1). These
elements, in decreasing order of quantities are as follow: Mn
> Zn > Cu > Se > Co. Previous studies also reported
comparable results for shallowwell water in CKDu endemic areas
(Chandrajith et al., 2011b; Jayasumana et al., 2015b; Nanayakkara
et al., 2019), and lower metal contents in CKDu non-prevalence
areas (Jayasumana et al., 2015b). Hence, trace metal contents in
CKDu endemic areas were higher than other parts of the country.

Mahaweli River is the primary water source for irrigation of
CKDu endemic areas and is rich in metals. Diyabalanage et al.
(2016) reported the amount of Mn, Co, Cu, Zn, and Se in river
water were 1.47, 0.52, 54, 21.3, and 2.77 µg/L, respectively.

Figure 1 illustrates the mean As, Cd, Co, Cu, Mn, Pb, and
Zn levels found in rice of neighboring countries and compared
the metal(loid) concentrations found in rice grains. Mean Mn
concentration in our study was higher than in other countries
(Figure 1), and the mean Zn concentration was higher in China,
followed by this study. Indian rice grain showed more Cu and
Pb than other countries and was followed by Sri Lanka. Other
heavy metals, Cd and Co concentrations, were similar in all the
countries (Figure 1), while Bangladesh rice grain showed a higher
mean concentration of As compared to other countries. This
comparison also indicated that Pb content in the edible part of
rice was higher than Cd and As content in all countries.

Since, Cd, As and Pb have been reported as exerting
nephrotoxic effects, the current study is focused on these
metal(loid)s. In this study maximum metal(loid)s content in rice

TABLE 3 | Relationship between CKDu prevalence in villages (n = 9) and heavy

metal(loid)s content in raw rice and Groundwater.

Media Elements Correlation Probability

Rice As −0.15 0.74

Cd 0.25 0.59

Pb −0.06 0.90

Water As −0.07 0.89

Cd 0.26 0.58

Pb −0.62 0.14

samples (n = 53) for As, Cd, and Pb were 0.098, 0.12, and 1.47
mg/kg, respectively.Mean concentration of As andCd levels were
lower than themaximum allowable limits set by Joint FAO/WHO
food standards program codex committee on contaminants in
foods (JECFA, 2018) (Table 1), indicating a minimal or no health
risk. However, mean Pb content in rice was higher than the
maximum allowable limit (Table 1), suggesting potential adverse
health effects from rice grown in the study area. Findings
of heavy metal(loid)s content in raw rice in CKDu studies
are shown in the Table 2. Similar levels of heavy metal(loid)s
content were reported in all other studies indicating only the
concentration of Pb was greater than WHO’s recommended
permissible level (Tables 1, 2). Other studies have concluded no
significant differences in heavy metal(loid) contents in rice grains
between CKDu disease-prone areas and less CKDu disease-
prone areas (Diyabalanage et al., 2016; Nanayakkara et al., 2019).
Therefore, considering overall data, the slightly increased Pb
levels and very low Cd concentrations in rice found in the current
study, make As and Cd unlikely to contribute to causing CKDu.
However, chronic exposure to Pb can cause negative neurological
effect, including lowering of IQ in children (Canfield et al.,
2003; Lanphear et al., 2005; Nakashima et al., 2011). Despite
the finding that chronic exposure to Pb in this region via daily
rice consumption, no excess or abnormal neurological effects are
reported in this region.

Relationship Between Heavy Metal(Loid)s
Exposure and CKDu
Regression analysis was used to evaluate the relationship between
toxic heavy metal(loid)s (Cd, As and Pb) and prevalence of
CKDu. The CKDu patients’ information (number of patients in
each village), heavy metal(loid)s content in rice and in water (at
village level) were used as variables for the correlation analysis.
The correlation coefficients in Table 3 showed that there was
no significant relationship between the prevalence of CKDu and
Cd, As and Pb concentrations either in rice or groundwater.
However, the statistical power was insufficient (nine villages) to
assess correlation. Therefore, one cannot categorically state the
safety of drinking water and rice in this region.

Chronic exposure to excess heavy metal(loid)s are hazardous
and cause CKD (Nanayakkara et al., 2019). For instance, Cd
exposure (Wanigasuriya et al., 2011; Jayatilake et al., 2013)
and As were suggested as causative factors (Jayasumana et al.,
2014), but there are no credible scientific data to support
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TABLE 4 | Permissible daily intake (PDI) of heavy metal(loids), TDI of rice, HQ of

rice and water.

Metals PDI (µg/kgbw) TDI (µg/kgbw) HQ rice HQ water

As 2.14 0.16 ± 0.11 0.05 ± 0.04 0.04 ± 0.04

Cd 1 0.1 ± 0.15 0.1 ± 0.15 0.00169 ± 0.0015

Pb 3.5 2.52 ± 1.66 0.71 ± 0.47 0.00232 ± 0.0056

PDI, permissible daily intake; TDI, total daily intake; HQ, hazard quotient.

FIGURE 2 | Amount consumed: rice and water with Pb concentration of rice

and well water in CKDu endemic areas.

these (Wimalawansa and Dissanayake, 2019). Besides, as per the
exposure levels found for Cd, As and Pb in the current risk
assessment, is un likely contributing to cause CKDu, derived
from groundwater and/or rice consumption. Besides, the toxicity
of Cd is further reduced by the presence of excess Zn and Se in
the diet (Brzóska and Moniuszko-Jakoniuk, 2001). Absorption of
heavy metal(loid)s reduced by chelation in the gastrointestinal
tract and theminute quantities absorbed (if any) are counteracted
by excess Zn and Se, making them no-toxic.

Estimation of Health Risk From Rice and
Groundwater
The health risk was assessed using TDI, the HQ, hazardous index
(HI), and CR to examined the potential health risk associated
with dietary intake of rice and water. Since rice is a staple food
in daily diet, we assessed the health risk from consuming rice.
Total daily intake was calculated and compared with tolerable
daily intake guidelines, for different trace metals established
by the FAO/WHO (2004). If TDI of nephrotoxic metal(loid)s
is above the recommendation, one could assume that chronic
adverse effects, from the consumption of rice could induce other
organ-specific diseases.

Total Daily Intake of Heavy Metal(Loid)s
Through Rice
Estimated TDI of rice for nephrotoxic heavy metal(loid)s
(Table 4) was lower than the permissible daily intake (WHO,
2008). However, 22% of rice samples showed TDI for Pb was
higher than the recommended safety level. A study of TDI in

marketed rice collected from a non-endemic area, specifically the
Kandy district in Sri Lanka, reveals 12% of samples (n = 53)
exceeded the permissible level of Pb (Magamage et al., 2017),
while other heavy metal(loid)s were within the safe range.

A large percentage of rice bran is removed in the milling
process of market rice. Rice bran was not totally removed in the
present study as in market rice since the researchers’ de-husked
rice mechanically. That could be a reason for the differences in
heavy metal content with other studies.

Hazard Quotient of Groundwater and Rice
Non-carcinogenic health effects of different metals were
determined by calculating the HQ. If the HQ of metal exceeds
1, it is suggested to have adverse health outcomes (Fan et al.,
2017) chronic exposure from the particular metal(loid). The
HQs estimated for CKDu patients’ drinking well water are
summarized in Table 4, and the rate of water consumption used
in the calculation was 2 L/day (Ileperuma et al., 2009). HQ for
individual metal(loid) all were much lower than one. Therefore,
we concluded that there is no exposure risk to toxic heavy
metal(loid)s per se through groundwater in this study area.

Hazard quotient for heavy metal(loid)s through ingestion
shows a decrease in the order of Pb > Cd > As (Table 4). The
HQ for groundwater and rice together for Cd and As were also
below one. In the doses and chronic exposure to Cd and As from
groundwater and rice consumption identified in this study was
minimal. Although the average value of HQ for Pb content in
rice was less than one, 23% of studied rice samples had HQ for
Pb higher than one, which indicates a possible non-carcinogenic
risk. Therefore, Pb exposure in CKDu endemic area needs to be
further investigated for health hazards, other than CKDu with
prevention of potential diseases, as because Pb can also be inhaled
via air with dust particles and other dietary components, which
were not accounted in this study.

Exposure to Metal(Loid) Mixtures and
Associated Risks
Exposure to chronic toxicity through a mixture of several
metal(loid)s were also evaluated by using hazard index (HI). It
is an estimation of total exposure to several metals over time. The
average HI of Cd, As, and Pb metals observed in this study was
0.824, and 26% of rice samples showed a value greater than one.
Clinical studies of CKDu patients’ biological samples revealed
Cd, Pb, and As are at very low concentrations, an unlikely to
cause renal damage from single elements (Jayatilake et al., 2013;
Jayasumana et al., 2015b; Levine et al., 2016).

However, only a few research studies globally provided
evidence for chronic health outcomes risks due to low-level of
exposure to combination of heavy metal(loid)s as a risk factor
leading to CKD (Navas-Acien et al., 2009; Tsai et al., 2017).
Wasana et al. (2016) and Dharma-Wardana (2018) suggested
that the Mg2+ in hard water in the CKDu endemic areas might
increase the toxicity of heavy metal(loid)s, where such hard water
was fed to mice. They speculated a possible synergistic, toxic
effects of trace metal(loid)s and water hardness increase the risk
for disease in treated mice (Wasana et al., 2016). However, Mg2+

in general protective from causing renal disease. What is more
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likely is the combined effect of low-level exposure of fluoride with
Ca2+ containing hard water and PO4, over an extended period
(over 10 years) precipitin CaPO4 apatite/crystals and nanotube
complexes, causing chronic renal damage (Wimalawansa and
Dissanayake, 2019). In this scenario, heavy metal(loid)s are
not involved and, the damage is induced by natural, Geo-
Bio interaction.

Carcinogenic Risk
Cadmium and As are considered possible carcinogenic metals
in humans. Carcinogenic risk (CR) indicates the probability of
developing cancer over a lifetime (Fan et al., 2017). A CR-value
between 10−6 and 10−4 is considered to be of low health risk,
while amounts greater than 10−4 likely to cause health risks
(Ullah et al., 2017). Therefore, CR were calculated for Cd, As, and
Pb. The results showed Cd 2.5 × 10−5, As 4 × 10−6 and Pb 3.5
× 10−7. These data indicate no CR from the consumption of rice
produced in the CKDu endemic areas.

Health risk for Pb exposure to an individual person is
determined by the Pb concentration in food items, frequency
of ingestion, and individual body mass index (Meharg et al.,
2013). The rate of consumption of rice and water vs. Pb
concentration (Figure 2) makes it possible to identify the
health risk for an individual person since consumption rates
are dependable. Figure 2 depicts the daily ingestion of Pb
in CKDu endemic areas, which indicate a potential health
risk through the increased consumption level, although the
Pb concentration of rice grains and well water is within
safe limits.

CONCLUSION

The present study demonstrated drinking water from wells
in CKDu endemic areas is safe, with reference to heavy
metal(loid)s exposure. The contribution from heavy metal(loid)s
to groundwater TDI is very low and unlikely to cause
health hazards including CKDu. However, higher ionicity of
groundwater may not be appropriate for consumption for
people with impaired renal functions. Calculated TDI for
toxic metal(loid)s from rice and well water is below the
respective recommendations by the WHO daily dietary limits;
hence safe for consumption. Therefore, rice and groundwater
in CKDu disease-prone areas in Sri Lanka are safe and
devoid of harmful level of heavy metal(loid)s, except for Pb
in rice.

We would recommend further studies to be conducted
on the combination effects of chronic exposure to hard
water and Pb in water on CKDu disease in the future.
Besides, steps to be taken to reduce the consumption of
hard water, together with a system to further reduce the
Pb levels in well water or potable water to safeguard
human health.
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