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As vegetation regulates water, carbon, and energy cycles from the local to the global

scale, its accurate representation in land surface models is crucial. The assimilation

of satellite-based vegetation observations in a land surface model has the potential to

improve the estimation of global carbon and energy cycles, which in turn can enhance our

ability to monitor and forecast extreme hydroclimatic events, ecosystem dynamics, and

crop production. This work proposes the assimilation of a remotely sensed vegetation

product (Leaf Area Index, LAI) within the Noah Multi-Parameterization land surface model

using an Ensemble Kalman Filter technique. The impact of updating leaf mass along with

LAI is also investigated. Results show that assimilating LAI data improves the estimation

of transpiration and net ecosystem exchange, which is further enhanced by also updating

the leaf mass. Specifically, transpiration anomaly correlation coefficients improve in about

77 and 66% of the global land area thanks to the assimilation of leaf area index with

and without updating leaf mass, respectively. Random errors in transpiration are also

reduced, with an improvement of the unbiased root mean square error in 70% (74%) of

the total area without the update of leaf mass (with the update of leaf mass). Similarly,

net ecosystem exchange anomaly correlation coefficients improve from 52 to 75% and

random errors improve from 49 to 62% of the total pixels after the update of leaf mass.

Better performances for both transpiration and net ecosystem exchange are observed

across croplands, but the largest improvement is shown over forests and woodland.

The global scope of this work makes it particularly important in data poor regions (e.g.,

Africa, South Asia), where ground observations are sparse or not available altogether but

where an accurate estimation of carbon and energy variables can be critical to improve

ecosystem and crop management.

Keywords: land surface model, dynamic vegetation model, data assimilation, leaf area index, leaf mass, Ensemble
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INTRODUCTION

Vegetation regulates water, carbon, and energy cycles by

supporting critical functions in the biosphere. Vegetation

dynamics therefore play a crucial role in land surface modeling

(Littell et al., 2011) and are commonly represented using
dynamic vegetation models (DVMs; Dai et al., 2003; Clark

et al., 2011; Peterson et al., 2014; Wullschleger et al., 2014).
For instance, the Noah Multi-Parameterization LSM (hereinafter
Noah-MP; Niu et al., 2011) uses multiple options for key land
hydrologic processes, along with the Balls Berry scheme, a
dynamic vegetation module that allocates carbon to various parts
of vegetation and soil carbon pools. If input forcing data and
parameters are available at the global scale, LSMs and DVMs
can be run in combination to estimate water, carbon, and
energy variables globally. Nevertheless, such model simulations
are prone to errors because of inaccurate initialization, mis-
specified forcing data and parameters, or inadequate model
physics (Bonan et al., 2019).

Satellite observations can be a valid alternative to model
estimates and can be adopted for monitoring vegetation
globally. Satellite observations, based on spectral reflectance
measurements acquired in the red and near-infrared regions,
produce maps of vegetation indices such the Leaf Area Index
(LAI), defined as the one-sided leaf surface area measured over
unit ground, and the Normalized Difference Vegetation Index
(NDVI). LAI is recognized as a useful indicator of the exchange
of water vapor and CO2 between the vegetation canopy and
atmosphere (Xiao et al., 2016; Albergel et al., 2017), whereas
NDVI is an indicator of the density of green vegetation on
a patch of land (Yang et al., 2012). Some examples include
the Moderate Resolution Imaging Spectroradiometer (MODIS),
which has been acquiring data in 36 spectral bands since
2000 (Rees and Danks, 2007) and the Advanced Very High-
Resolution Radiometer (AVHRR; Tucker et al., 2005), which
produces global maps of LAI at a resolution of 4 km every
10 days.

Nevertheless, satellite-based observations have gaps in their
spatial and temporal coverage (often due to cloud coverage).
To fill in such gaps and to guarantee continuous time series,
observations are often merged with model simulations. A well-
known technique for optimally combining the information from
such observations and model estimates based on their respective
uncertainties is known as Data Assimilation (DA) (Rodell et al.,
2004; Dee, 2005). In the past decades, Land Data Assimilation
Systems (LDASs) have been successfully used to merge satellite
observations of soil moisture and surface temperature into
LSMs (e.g., Reichle, 2008; Reichle et al., 2008; Maggioni and
Houser, 2017) and, in the recent past, researchers have applied
the same concept to vegetation observations and vegetation
dynamics models.

For instance, Albergel et al. (2010) jointly assimilated
observations of LAI and Surface Soil Moisture (SSM) within
a LSM over western France and showed a positive impact on
the estimation of carbon, water, and heat fluxes. Barbu et al.
(2011) developed an LSM to jointly assimilate soil moisture
and LAI data and to simulate photosynthesis processes, surface

carbon fluxes, and vegetation biomass. Nearing et al. (2012)
assimilated remote sensing observations of LAI and SSM for
wheat yield estimates with an observing system simulation
experiment using ensemble Bayesian state-updating filters for
mitigating modeling uncertainty on end-of-season wheat yield
estimates. A study by Huang et al. (2015) jointly assimilated
MODIS LAI and evapotranspiration (ET) products into the
soil water atmosphere plant (SWAP) model for winter wheat
yield estimation. In another study by Albergel et al. (2017), a
global land data assimilation system (LDAS-Monde) was applied
over Europe and the Mediterranean basin to improve land
surface variable estimation when SSM and LAI satellite-derived
observations were assimilated using a Simplified Extended
Kalman Filter. Although being more effective in estimating
soil moisture in the top-soil layers LDAS-Monde had less
sensitivity to SSM with depth and had almost no impact
below 60 cm. Bonan et al. (2019) jointly assimilated SSM and
LAI within LDAS-Monde over the Euro-Mediterranean region
using an ensemble square root filter (EnSRF) DA technique.
All these previous studies assimilated vegetation indices over
local domain or small crop field to improve the estimation of
crop yields.

Some recent work has successfully assimilated Global LAnd
Surface Satellite (GLASS; Liang et al., 2013) LAI within a
land surface model across larger domains. For instance, Kumar
et al. (2019) merged GLASS LAI observations with Noah-
MP estimates over CONUS and observed beneficial impacts
on several water budget variables such as soil moisture, ET,
snow depth, and streamflow. Furthermore, the assimilation
of LAI improved the estimation of gross primary production
and net ecosystem exchange. Another work by Ling et al.
(2019) assimilated GLASS LAI into the Community Land Model
with carbon and nitrogen components (CLM4CN) using an
Ensemble Adjustment Kalman Filter. This experiment showed
improvements in ET and gross primary production. Albergel
et al. (2020) has jointly assimilated SSM and LAI using the
Simplified Extended Kalman Filter data assimilation technique
to predict the impact of extreme events like heatwaves and
droughts on land surface conditions over the globe. They
have used LDAS-Monde as the land surface model and
assimilated ASCAT soil water index (SWI) and LAIGEOV1
LAI observation data within that model. Zhang et al. (2020)
proposed a global synthetic experiment to assimilate LAI
within Noah-MP using an EnKF. They showed that LAI
assimilation can improve global water fluxes and reduce
the impact of high precipitation biases in the estimation
of water variables. Rahman et al. (2020) showed that even
the simplest LAI data assimilation technique (e.g., direct
insertion) can improve the estimation of water, energy, and
carbon variables.

Building on previous literature, this work proposes to
assimilate satellite GLASS LAI observations within the Noah-
MP land surface model at the global scale using an EnKF. This
work investigates the impact of updating an additional prognostic
variable (leaf mass) along with LAI at every time step when an
observation becomes available on a set of water, energy, and
carbon variables.
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FIGURE 1 | Land surface classification for the study region by UMD Land Cover Classification used in the Noah-MP model. The percentage area for each class is

shown in the legend (EN, Evergreen Needleleaf; EB, Evergreen Broadleaf; DN, Deciduous Needleleaf; DB, Deciduous Broadleaf).

METHODOLOGY

In this work the Noah-MP Land Surface Model is used to test the
hypothesis that by combining satellite LAI observations within
a land surface model using a data assimilation technique, the
estimation of water and carbon cycle variables can be improved.
The experiment is performed during 2011 over the global
domain (Figure 1).

The Noah-MP Land Surface Model
In the Noah-MP model the canopy layer is separated from
the land surface, which is called a semi-tile sub grid scheme
(Niu et al., 2011). The shortwave radiation transfer is computed
over the entire grid cell, while longwave radiation, latent heat,
sensible heat, and ground heat fluxes are computed separately
over two tiles: the fractional vegetated area and the fractional bare
ground area. Noah-MP avails multiple options for surface water
infiltration, runoff, groundwater transfer and storage, dynamic
vegetation, canopy resistance, and frozen soil physics (Niu and
Yang, 2007). Furthermore, the Ball-Berry scheme (Ball et al.,
1987) allocates carbon to vegetation leaves, stems, wood, and
roots and to soil carbon fast and slow pools.

In this work, Noah-MP is forced with the Modern-Era
Retrospective analysis for Research and Applications, version
2 (MERRA-2; Gelaro et al., 2017) dataset. MERRA-2 provides
data since 1980 over the globe. The advancement in the
assimilation system replaces the original MERRA dataset that
enables the merging of modern hyperspectral radiance and
microwave observations, along with GPS-Radio Occultation
dataset. The spatial resolution of MERRA-2 is 0.5◦/0.625◦ in the
latitudinal/longitudinal and the temporal resolution is hourly.

Atmospheric temperature, radiation, water vapor, precipitation,
wind speed, topography, altitude are the forcing variables from
the MERRA-2 dataset used to force Noah-MP in this study.

Slope type, vegetation effect on soil heat, soil evaporation, soil
heat capacity, surface runoff parameterization, depth of lower
boundary, and soil temperature are the general model parameters
in Noah-MP 3.6. This version of the model also uses some
soil parameters such as saturation soil moisture content, soil
conductivity, soil diffusivity, wilting point of soil moisture and
some vegetation parameters such as- green vegetation fraction,
rooting depth, stomatal resistance, minimum and maximum leaf
area index, minimum and maximum background emissivity,
minimum and maximum background albedo, minimum and
maximum background roughness, optimum transpiration in air
temperature, canopy water capacity etc.

The NASA Land Information System (LIS; Kumar et al.,
2006) is used in this work to run the Noah-MP model and
implement the data assimilation scheme. LIS provides a portable,
extensible, and flexible infrastructure for testing our hypothesis.
The common framework provided by LIS is capable of ensemble
land surface modeling on grid points across the global land. The
high-resolution capability of LIS and its large flexibility makes it
the perfect framework to perform the experiment proposed here.

The Global LAnd Surface Satellite LAI
The satellite-based LAI product merged within the land surface
model is derived from the GLASS product. GLASS LAI
observations are generated using a general regression neural
network approach that produces a long-term, spatially and
temporally consistent record of vegetation conditions (Xiao et al.,
2016). This dataset includes LAI data from two sources (MODIS
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and AVHRR) with a spatial resolution of 0.05◦ and 500m and
a temporal resolution of 4–8 days. The product derived from
MODIS is available for 2000–2018, whereas the AVHRR data are
available for 1981–2018.

Because of the improved spatiotemporal coverage of the
GLASS product, it is preferred to standard MODIS- or AVHRR-
based LAI, which are affected by cloud obscuration gaps.
Although limited over (Liang et al., 2013)complex terrain
(Jin et al., 2017), the performance of GLASS LAI was found
comparable to other satellite LAI products, e.g., MODIS, GEOV1,
GLOBMAP, and JRC-TIP (Fang et al., 2013) and consistent with
independent ground observations (Xiao et al., 2016). MODIS-
based GLASS LAI V50 product is used in this work. The spatial
and temporal resolution of this product is 0.05◦ and 8 days,
respectively. In this work, a temporal interpolation is used to
generate the data for everyday resolution.

Validation Dataset
A variety of ground observations is used for validating the
proposed system, as an independent dataset for comparison
with the land surface model outputs from different experiments.
These observations are obtained from two main sources: the
Global Land Evaporation Amsterdam Model (GLEAM) and the
FLUXCOM datasets.

GLEAM is a set of algorithms that separately estimate
the different components of land evaporation (or
evapotranspiration): transpiration, bare-soil evaporation,
interception loss, open-water evaporation, and sublimation
(Miralles et al., 2011; Martens et al., 2017). The GLEAM dataset,
which also includes other variables (like soil moisture), is
freely available and continuously revised and updated since
its development in 2011. GLEAM evapotranspiration data
are derived based on the Priestley and Taylor’s evaporation
definition and use remote sensing observations of near surface
temperature and surface net radiation (Miralles et al., 2011;
Frappart, 2020). Because of their global and spatially continuous
coverage, GLEAM data are preferred in this study to in-situ
datasets (e.g., FLUXNET, AU-ASM), traditionally considered
to be more reliable. Moreover, GLEAM products showed good
agreement with several ground-based observations (Martens
et al., 2017; Jung et al., 2019a). Specifically, GLEAM version
3.3b, adopted here for validating the proposed DA system, was
introduced in 2017 and is available globally from 2003 to 2018, at
a temporal/spatial resolution of 1 day/0.25◦.

The FLUXCOM dataset is derived from a combination
of FLUXNET site observations, satellite remote sensing, and
meteorological data. A machine learning technique is used for
estimating the Net Ecosystem Exchange (NEE), defined as the
amount of carbon exchange between plant and atmosphere.
FLUXCOM shows a large carbon sink in the tropics and
lacks the effect of CO2 fertilization (Jung et al., 2020). Despite
these limitations, current FLUXCOM estimates of seasonal
NEE provide useful constraints for the global carbon cycle
(Tramontana et al., 2016; Jung et al., 2019b). FLUXCOM was
chosen here for its global coverage, multiple data sources, and
tempo-spatial resolution of 1 day/0.5◦ during 1980–2013.

The Data Assimilation System
The Ensemble Kalman Filter (EnKF) is used as the DA technique
in this experiment. EnKF is an approximated version of the
traditional Kalman filter. It is based on Monte Carlo simulation.
In EnKF, the state distribution is represented by a sample (or
“ensemble”) of the distribution, which is propagated forward in
time and updated when a new observation becomes available
(Reichle et al., 2002, 2008; Katzfuss et al., 2016). The EnKF
technique has flexibility in treating errors in model equations and
parameters and is particularly suitable for non-linear problems,
such as soil dynamics. These are the major advantages of using
an EnKF in land surface modeling (Pan and Wood, 2006; Kumar
et al., 2008).

In this work, twenty ensemble members are generated by
perturbing the atmospheric forcing. Following previous work
(Kumar et al., 2019; Zhang et al., 2020), selected MERRA-
2 atmospheric variables, such as shortwave and longwave
radiation and precipitation, are perturbed hourly. Multiplicative
perturbations are applied to the shortwave radiation and
precipitation with a mean of 1 and standard deviations of 0.3
and 0.5, respectively. The longwave radiation is perturbed with
an additive perturbation method with a standard deviation of 50
W/m2. The perturbations of all the three meteorological variables
are cross correlated: the cross correlation between shortwave
radiation and precipitation is set to −0.8, the cross correlation
between longwave radiation and precipitation to 0.5, and the
cross correlation between shortwave and longwave radiations to
−0.5. The GLASS LAI observations are perturbed via an additive
model with a standard deviation of 0.1. In this experiment, the
EnKF is used to update not only LAI, but also an additionalmodel
prognostic variable (i.e., leaf mass).

Thus, three main experiments are run: (i) an open-loop (OL)
simulation, in which no assimilation is performed; (ii) the model
LAI state alone is updated whenever GLASS LAI is available; and
(iii) the model leaf mass state is also updated along with LAI,
whenever GLASS LAI is available. Figure 2 presents a schematic
framework of the experimental setup.

System Evaluation
Daily transpiration, NEE, and soil moisture from the OL and the
two DA simulations are compared to the corresponding in-situ
references, described in section Validation Dataset. Specifically,
the ground-based measurements from the FLUXCOM and
GLEAM datasets are used to validate modeled transpiration and
NEE, respectively. To ease the validation procedure, the ground-
based data are converted to the resolution of the model outputs
(0.5◦× 0.625◦) by simply averaging all points falling within the
model grid cell (Johnston, 2021).

Satellite observations, model simulations, and the validation
dataset are intrinsically different in nature and therefore
systematic biases are inevitable. However, to avoid any
manipulation of the data prior to the assimilation procedure,
the system is only evaluated based on statistical metrics that
are minimally affected by systematic errors: the daily Anomaly
Correlation Coefficient (ACC) and the unbiased Root Mean
Square Error (uRMSE). ACC and uRMSE are calculated for the
OL and DAmodel outputs with respect to the validation datasets.
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FIGURE 2 | Schematic diagram of the experimental setup.

FIGURE 3 | Percentage difference in the estimation of carbon variables between DA and OL without updating leaf mass: (A) LAI; (B) leaf mass; (C) transpiration; (D)

NEE; (E) SSM; and (F) RZSM.

ACC is computed based on anomalies, defined as differences
between the daily values and the yearly climatological average.
Each of the anomaly time series is computed relative to the mean
of its respective model run. ACC is defined as follows:

ACC=
∑

(
(

x̂−
∑

(x̂)
N

)

∗
(

Xobs−
∑

(Xobs)

N

)

)
√

∑

(

x̂−
∑

(x̂)
N

)2
∗ ∑

(

Xobs−
∑

(Xobs)

N

)2

where x̂ represents the output from the model (OL or DA), Xobs

is the corresponding reference variable, and N is the number
of days. The ACC metric captures the correspondence in phase
between model estimates and the reference data, regardless of
potential mean biases or differences in dynamic range (Entekhabi
et al., 2010).

The unbiased Root Mean Square Error (uRMSE) is adopted
here as a measure of the random error between the model
estimate and the reference. Model outputs are first multiplied by
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FIGURE 4 | Same as in Figure 3 but for the DA technique that updates leaf mass along with LAI.

FIGURE 5 | Difference in ACC between DA and OL with respect to GLEAM for transpiration during 2011. The upper panel shows results for GLASS LAI DA without

updating the leaf mass and the lower panel shows results for GLASS LAI DA with updated leaf mass. Blue (red) color indicates improvement (degradation) after DA.
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FIGURE 6 | Difference in uRMSE between DA and OL with respect to GLEAM for transpiration during 2011. The upper panel shows results for GLASS LAI DA without

updating the leaf mass and the lower panel shows results for GLASS LAI DA with updated leaf mass. Blue (red) color indicates improvement (degradation) after DA.

a factor to remove the bias between estimates and observations.
Bias factors (bf) are calculated for each pixel within the study area
as follows (Tesfagiorgis et al., 2011):

bf =
Xobs

x̂

where, x̂ is the time averaged output from the model (OL or
DA) at each pixel, and Xobs is the time averaged value of the
corresponding reference variable (Xobs). The model outputs (OL
or DA) are multiplied by the bias factor to generate an adjusted
model output ˆxadj:

ˆxadj = x̂ ×bf

The uRMSE is then computed based on the two unbiased time
series as follows:

uRMSE =

√

∑

( ˆxadj − Xobs)
2

N

where N is the number of days.

To investigate the improvement (or degradation) in ACC
due to DA, the difference between ACC in DA run and OL is
computed as follows:

diffACC = ACCDA − ACCOL

Similarly, to determine the improvement (or degradation) in
uRMSE due to DA, the difference between the uRMSE of OL run
and the one from the DA run is assessed:

diffuRMSE = uRMSEOL − uRMSEDA

If the differences in ACC are positive (negative), the DA output
has higher (lower) correlation; whereas, for uRMSE, positive
(negative) difference values show lower (higher) errors in DA
compared to OL.

Mean ACCs and uRMSEs are calculated over different
vegetation covers based on UMD land cover classification
(Figure 1). Four major vegetation covers are considered in
this analysis: Forest and Woodland, Shrubland, Grassland, and
Cropland. For both ACC and uRMSE, 95% Confidence Intervals
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FIGURE 7 | Frequency histograms of ACC (upper panel) and uRMSE (lower panel) differences between OL and DA for transpiration.

(CIs) are also calculated over different vegetation covers:

CI =
∑

ACC or uRMSE

n
+

ts ∗

√

∑

|ACC or uRMSE−
∑

ACC or uRMSE
n |

2

n−1√
n

where, n is the number of grids for a specific vegetation cover and
ts is the T-score, computed here for the 95% confidence level.

RESULTS

As a first step, the impact of globally assimilating GLASS
LAI with respect to a regular run of the Noah-MP model
(i.e., the OL simulation) is investigated and the two DA
methods (with and without updating the leaf mass together
with LAI) are compared. Next, ACC is calculated for both
OL and DA runs with respect to the reference datasets, i.e.,
the GLEAM transpiration and the FLUXCOM NEE products.
Then, the DA performance is investigated based on different
vegetation covers.
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FIGURE 8 | Same as Figure 5 but for NEE with respect to the FLUXCOM data.

The Impact of LAI DA
Percentage changes in carbon (LAI, Leaf mass, and NEE) and
water variables (Transpiration, SSM, and RZSM) between the
DA run (without updating leaf mass) and the OL simulation
are shown in Figure 3. The red (blue) color shows where the
estimate from the OL is higher (lower) than the one from the
DA simulation of the variables. Darker color tones highlight
locations where the impact of DA is larger and lighter tones
show where the difference between the two simulations is
smaller. The assimilation of GLASS LAI has larger impact
on the vegetation related variables when compared to soil
moisture variables.

Similarly, to what presented above, Figure 4 shows percentage
changes in carbon and water variables between the DA and OL
runs, but in this case the DA also updates the leaf mass along
with LAI. The global maps clearly show that this modification in
the DA technique changes the estimation of all carbon variables
noticeably. As the change in the two soil moisture variables
is minimal, these two variables are no further analyzed in
this work.

In both DA simulations, merging GLASS LAI brings the
vegetation variables (transpiration and NEE) over forest and
woodland areas to higher values compared to the OL model
output. Such estimations get even higher when the leaf mass is
updated along with LAI.

Validation
In this section, ACC and uRMSE are determined following the
definitions presented in section System Evaluation for the OL
and the two DA runs with respect to the GLEAM transpiration
dataset and the FLUXCOM NEE product. Figure 5 presents
the difference between the ACC obtained from the DA (with
and without updated leaf mass) run and the one from the OL
run with respect to the GLEAM transpiration product, whereas
Figure 6 shows the same analysis for uRMSE. For ACC, the
blue (red) color indicates higher (lower) correlation in DA with
respect to the reference data, which means that DA improves
(degrades) the estimation of transpiration. For uRMSE, the blue
(red) color indicates lower (higher) error in DA compared to OL,
with respect to the reference data, which shows an improvement
(degradation) due to DA. In general, both DA approaches bring
the land surface model estimation of transpiration closer to the
reference data from GLEAM (most pixels on the maps are blue).
Moreover, the estimation of transpiration improves even further
(darker blue) when leaf mass is also updated compared to the
DA technique that only updates LAI. In terms of ACC with
respect to GLEAM transpiration, 66% of the total area shows an
improvement due to DA. When the DA technique also updates
the leaf mass (besides LAI), such area reaches 77%, which clearly
demonstrates the superiority of the more complex DA approach
in estimating transpiration. In terms of uRMSE, 70% of total area
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FIGURE 9 | Same as Figure 6 but for NEE with respect to the FLUXCOM data.

shows an improvement due to DA without the update of leaf
mass, which increases to 74% when leaf mass is also updated
in the system. Figure 7 shows frequency plots of ACC and
uRMSE differences (between the DA and the OL simulations) for
transpiration. When the leaf mass is not updated, the histograms
are mostly centered around zero, but when the leaf mass is
updated, these distributions are skewed toward positive values
(which corresponds to higher correlations and smaller random
errors), demonstrating a larger improvement in both ACC and
uRMSE when the leaf mass is updated along with LAI.

The global vegetation map presented in Figure 1 shows how
the areas in which transpiration degrades after applying DA (i.e.,
red pixels in Figures 5, 6) are covered by shrubland. This may be
due to the fact that the transpiration process in short-rooted plant
in dry regions is highly dependent on precipitation (Cavanaugh
et al., 2011). This confirms what discuss by Ling et al. (2019),
who also showed that LAI assimilation is not sensitive to extreme
dry regions.

Similarly, to Figures 5, 6, 8, 9 show the differences in ACC and
uRMSE for NEE with respect to the FLUXCOM data. In terms
of ACC, the GLASS LAI DA improves the estimation of NEE
over 52% of the global land area, value that increases to 75% after
updating the leaf mass. For uRMSE this improvement increases
from 49% of the total area to 62% of the total area.

This shows that the update of leaf mass along with LAI has
a larger impact on NEE when compared to transpiration, as it
improves the estimation of NEE over a larger area. Although
limited, LAI DA without the leaf mass update improves the
estimation of NEE compared to OL, especially over forest and
woodland. However, the improvement becomes remarkable (and
extends to more regions) when leaf mass is also updated (darker
blue in the bottom panel of Figures 8, 9). Frequency plots of
differences in NEE ACC and uRMSE (between the DA and the
OL simulations) confirm what observed in the maps, presenting
histograms skewed toward positive values when the leaf mass is
updated together with LAI (Figure 10).

System Performance as a Function of
Vegetation Cover
Figures 11, 13 show ACC of OL, DA without updated leaf
mass, and DA with updated leaf mass for transpiration and
NEE with respect to GLEAM and FLUXCOM reference datasets,
respectively, as a function of vegetation type. On the other
hand, Figures 12, 14 show similar analyses but for uRMSE. The
black error bars in the bar plots show the 95% CIs to evaluate
the statistical significance of performance differences among the
three model runs.
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FIGURE 10 | Same as Figure 7 but for NEE.

The highest ACCs in transpiration are obtained for cropland
areas, with average values above 0.65, whereas the other three
main vegetation types show similar ACC values (Figure 11). The
largest ACC improvement due to the assimilation of GLASS
LAI with updated leaf mass is observed in forest and woodland
regions (and cropland next). The smallest DA impact is observed
in shrubland regions, as anticipated above in the discussion
of Figure 5. These are commonly drier regions, that would
possible benefit more from the assimilation of soil moisture
observations rather than vegetation information. Although the

improvement in transpiration due to LAI DA is not significant
at the 95% confidence level, the improvement due to the
update of leaf mass with respect to the benchmark OL run is
significant across forests, woodlands, and croplands. Similarly,
the smallest changes in transpiration uRMSE between the
OL and DA runs are observed in shrublands and grasslands
(Figure 12). For cropland and forested areas, uRMSE is reduced
after the application of DA and is significantly reduced at
the 95% CI with the update of leaf mass when compared
to the OL. This again shows that the DA has the potential
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FIGURE 11 | ACCs of transpiration for the OL and DA runs with respect to

GLEAM transpiration over four main vegetation types. 95% CIs are included in

the bar plots.

FIGURE 12 | uRMSEs of transpiration for the OL and DA runs with respect to

GLEAM transpiration over four main vegetation types. 95% CIs are included in

the bar plots.

FIGURE 13 | Same as in Figure 11 but for net ecosystem exchange. ACCs

are calculated with respect to FLUXCOM NEE.

to improve the estimation of transpiration over these two
vegetation covers.

Figure 13 shows overall increases in the correlation
coefficients of NEE (with respect to the FLUXCOM reference
data) after DA is applied over all vegetation types and significant

FIGURE 14 | Same as in Figure 12 but for net ecosystem exchange.

uRMSEs are calculated with respect to FLUXCOM NEE.

improvements (at the 95% confidence level) are observed when
leaf mass is updated. As for transpiration, the highest ACCs in
NEE are obtained for cropland regions, where the agreement
between simulated NEE and the FLUXCOM data is at its
maximum. It is important to note how the ACC differences
between DA with updated leaf mass and OL are significant at the
95% confidence level across all vegetation covers, whereas the
LAI update alone does not show any significant improvement
with respect to the benchmark run. The smallest ACCs for
NEE are observed in shrubland regions. Non-woody semiarid
ecosystems strongly respond to the availability of soil water
(Walther et al., 2019), but the NEE in the land surface model not
only depends on soil water but also on the growth respiration of
root, leaf, and wood. As LAI only provides an indicator of the
greenness of the pixel, its assimilation in the model may not be
enough to improve the estimation of NEE for small vegetation
in semi-arid regions. FLUXCOM uses greenness observation
measures along with the measure of light that is emitted
by pigments in the plants that are photosynthetically active
(chlorophyll fluorescence), and then uses machine learning to
merge the two datasets to estimate net ecosystem exchange (Jung
et al., 2019a; Walther et al., 2019). This is possibly a reason
for the low correlations between NEE observations and model
estimates over shrublands.

The NEE random error decreases thanks to DA with the
update of leaf mass for all vegetation covers (Figure 14). Forested
and cropland regions show a larger reduction in mean uRMSE
when the DA updates the leaf mass compared to the OL.
However, none of the uRMSE differences betweenDA andOL are
significant at the 95% confidence level, due to the large variability
around the mean (quantified by the black bars in the plot). Once
again, this could be due to the different nature of the FLUXCOM
observations with respect to the NEE model estimates.

CONCLUSIONS

This work showed that assimilating GLASS LAI within a land
surface model using an EnKF technique had an impact on the
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estimation of several variables related to vegetation (e.g., LAI, leaf
mass, transpiration, NEE) at the global scale. However, minimal
changes were observed in water variables such as surface and
rootzone soil moisture. Furthermore, updating the leaf mass
along with LAI was shown to modify the estimation of carbon
variables when compared to only updates LAI. As soil moisture
variables has not shown noticeable changes with the application
of only LAI DA even with the update of leaf mass, the future
work should include the assimilation of soil moisture along
with LAI.

The DA simulations have been evaluated in terms of
transpiration and NEE, using two independent datasets: the
GLEAM transpiration dataset and the FLUXCOM NEE product.
Overall, the assimilation of GLASS LAI in Noah-MP showed
potential for improving the estimation of vegetation globally.
Such improvement was particularly evident in forest, woodland,
and cropland regions and especially when the more complex DA
technique that updated both LAI and leaf mass was adopted.
Specifically, this DA approach was able to improve the estimation
of transpiration and NEE with respect to the open loop run
over 77 and 75% as per ACC of the global land, respectively, by
bringing them closer to the reference datasets (from the GLEAM
and FLUXCOM products). Nevertheless, the impact of DA on
these two variables was smaller in semi-arid regions characterized
by small-rooted plants (e.g., shrubs), which confirms what shown
by previous regional studies that demonstrated low sensitivity of
LAI assimilation to extremely dry regions. A reduction in the
random error was observed in 74 and 62% of the total global
area when estimating transpiration and NEE, respectively. Such
improvement was particularly prominent over areas covered by
forests and croplands.

Results in this work are limited by several factors. First
off, the EnKF estimates the forecast error matrix as the
sampling results of ensemble forecasts, which may lead to
false correlations of the error matrix. Future work should
evaluate the efficiency of a localization or inflation technique
for initializing the forecast error matrix. Furthermore, future

studies should implement bias correction techniques prior to the
assimilation procedure to eliminate any bias in the observations
and evaluate the impact of LAI DA (with and without the
update of leaf mass) when the EnKF works under optimal
condition (i.e., when there exists no bias between observations
and model estimates).

Although all the data (atmospheric forcing, observations, and
validation datasets) are available for multiple years, this work
focused only on 1 year of data due to the large computational
costs of the global DA simulations. Future studies should verify
these findings using longer time series and different satellite
vegetation products and validating them with a larger set of
output variables. Future studies could also investigate if a
changing climate has an impact on the estimation of different
variables and how such estimation can be improved in future
extreme climatic conditions.
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