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Low technology adoption through agricultural extension may be a consequence of

providing generic information without sufficient adaptation to local conditions. Data-rich

paradigms may be disruptive to extension services and can potentially change

farmer-advisor interactions. This study fills a gap in pre-existing, generic advisory

programs by suggesting an approach to “diagnose” farm-specific agricultural issues

quantitatively first in order to facilitate advisors in developing farm-centric advisories. A

user-friendly Farm Agricultural Diagnostics (FAD) tool is developed in Microsoft Excel VBA

that uses farmer surveys and soil testing to quantify current agricultural performance,

classify farms into different performance categories relative to a localized performance

target, and visualize farm performance within a user-friendly interface. The advisory

diagnostics approach is tested in Kanpur, representative of an intensively managed rural

landscape in the Ganga river basin in India. The developed open-source tool is made

available online to generate data-based agricultural advisories. During the field testing

in Kanpur, the tool identifies 24% farms as nutrient-limited, 34% farms as water-limited,

27% farms with nutrient and water co-limitations, and the remaining farms as satisfactory

compared to the localized performance target. It is recommended to design advisories in

terms of water and nutrient recommendations which can fulfill the farm needs identified

by the tool. The tool will add data-based value to pre-existing demand based advisory

services in agricultural extension programs. The primary users of the tools are academic,

governmental and non-governmental agencies working in the agricultural sector, whose

rigorous scientific research, soil testing capacity, and direct stakeholder engagement,

respectively, can be harnessed to generate more data-based and customized advisories,

potentially improving farmer uptake of agricultural advisories.

Keywords: agricultural extension, advisory diagnostics, data-based advisory, soil quality index, water use

efficiency
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1. INTRODUCTION

Agricultural production and yields in developing countries
have been lower than those of developed countries over
the past few decades. Amongst its many reasons is the
relative underutilization of improved agricultural technologies
(Aker, 2011). Agricultural technologies, along with agricultural
knowledge are disseminated using agricultural extension services
(or advisories) by governments and international organizations
to farmers and rural inhabitants worldwide (Anderson and
Feder, 2007; Nyarko and Kozári, 2021). Advisories can be crucial
to enhance productivity, increase food security, improve rural
livelihoods, and promote agriculture as a “pro-poor economic
growth engine” (IFPRI, 2020). Particularly for smallholders,
agricultural extension can facilitate a break from the vicious
cycle of low productivity, vulnerability, and poverty (Davis and
Franzel, 2018).

Despite considerable investment and experience over decades
(Anderson and Feder, 2007), there has been limited evidence
to support the impact of agricultural extension on agricultural
knowledge, technology adoption and improved productivity
(Aker, 2011). Over time, governments of developed countries
have reduced direct investments in agricultural extension
(Laurent et al., 2006; Rivera, 2011). Moreover, in the developing
world, agricultural extension has been described as “failing”
(Government of Malawi, 2000), “moribund” (Eicher, 2001), “in
disarray or barely functioning at all” (Rivera et al., 2001), or
ineffective in responding to farmer demands and technological
challenges (Ahikiriza et al., 2021). Factors like wealth, risk
preferences, education, access and affordability of information
and learning (Aker, 2011) can result in technology adoption
slowing down and becoming more discontinuous, further
threatening agricultural productivity (Oduniyi, 2021).

Agricultural extension’s transfer-of-technology approach,
where farmers are “passive recipients” of uniformly administered
advisories (Leeuwis and Van den Ban, 2004), has been
criticized due to its negligence of the “locally specific nature of
knowledge construction” (Klerkx and Jansen, 2010). New data-
rich paradigms in agriculture may also be disruptive to extension
services (Nettle et al., 2018) as they change traditional farmer-
advisor interactions with complex backend processes of data
collation and interpretation (Eastwood et al., 2019).

Abbreviations: AHP, Analytic Hierarchy Process; MCDM, Multi-Criteria

Decision Making; PWCM, Pairwise Comparison Matrix; SHM, Soil AHP,

Analytic Hierarchy Process; CSPro, Census and Survey Processing System; EC,

Electrical Conductivity; FAD, Farm Agricultural Diagnostics; GIS, Geographic

Information System; GW, Groundwater; ICAR, Indian Council of Agricultural

Research; ICT, Information and Communications Technology; IFFCO, Indian

Farmers Fertiliser Cooperative; IFPRI, International Food Policy Research

Institute; IMRL, Intensively Managed Rural Landscape; INM, Integrated Nutrient

Management; IoT, Internet of Things; MCDM, Multi-Criteria Decision Making;

MEVBA, Macro-in-Excel Visual Basic for Applications; MS, Microsoft; NGO,

Non-governmental Organization; NL, Nutrient Limited (farm performance);

NLWL, Nutrient and Water Co-limited (farm performance); NMSA, National

Mission for Sustainable Agriculture; PWCM, Pairwise Comparison Matrix; S,

Satisfactory (farm performance); SHM, Soil Health Management; SOC, Soil

Organic Carbon; SQI, Soil Quality Index; USAID, United States Agency for

International Development;WL,Water Limited (farm performance);WUE,Water

Use Efficiency.

Globally, this shift toward data-driven extension initiatives
is quite evident. In developed countries, such as Australia,
New Zealand and Canada, data-driven smart farming has been
incorporated into dairy farming (Vasseur et al., 2010; Gargiulo
et al., 2018; Rue et al., 2019). Data-based tools have been
developed for cropping and viticulture management (Bramley,
2009), evapotranspiration-based irrigation scheduling in the
western United States (Bartlett et al., 2015), and irrigation
scheduling using automated sensors operating within an IoT-
framework (Severino et al., 2018). In developing countries like
Afghanistan, the Information and Communication Technologies
(ICT) platform “eAfghan” enables extension workers, farmers
and other stakeholders to share reliable agricultural extension
information (Bell, 2013). The agricultural advisory platform
“Farmstack” integrates farm-level data, local weather, input
availability and market information in Ethiopia (Digital Green,
2019). In India, advisories about weather and disease forecasts,
markets and other information are sent by SMS or voice message
alerts by agencies such as the farm science centers (Krishi Vigyan
Kendras) (Saravanan, 2010; Das et al., 2016), IFFCO Kissan
Sanchar Limited (IKSL) and Reuters Market Light (USAID, 2000;
Fafchamps and Minten, 2012).

However, most of these initiatives deliver generic information
rather than data-driven advisories customized to the specific
farm plot or crop (Ganesan et al., 2013), which is one of the
major reasons for low technology adoption through extension
services (Aker, 2011). The primary sources that drive decision
making about agricultural practices among farmers in developing
countries are still their own observations and experimentations,
followed by conversations with other farmers (Fafchamps and
Minten, 2012). A review of agricultural extension approaches in
India reveals that the farmers generally struggle to receive reliable
information relevant to them at the right time (Glendenning
et al., 2010). Moreover, the lack of adequate interactions between
research, extension organizations and the farmers has led to
the generation of non-specific advisory services (Feder et al.,
2010). Nonetheless, data driven tools utilized for smart farming,
including the collection and use of more digital data (Wolfert
et al., 2017), sensors measuring animal, plant, soil and water
parameters (Rutten et al., 2013; Hostiou et al., 2017; Neethirajan,
2017; Eastwood et al., 2019), and online data platforms, can
potentially lead to more effective farmer-advisor interactions
through tactical use of data, and administer strategic farm
management advisories (Eastwood et al., 2015).

This study aims to address the limitations of generic data-
driven extension tools by suggesting an approach to inform
advisors to “diagnose” farm-specific agricultural issues more
quantitatively. The working assumption for the approach is that
yield gaps (the difference between observed yields and region-
specific attainable yields) occur either due to nutrient or water
related limitation (or co-limitations). This is reasonable for food
crops such as wheat, rice and maize in many developing nations
such as India (Mueller et al., 2012). Performance related to soil
nutrient status can be assessed with soil testing and computing a
Soil Quality Index (SQI) indicator which combines multiple soil
parameters into a single performance score (Karlen et al., 1997).
Performance related to water as a limiting factor to yield gaps
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can be evaluated using an indicator such as Water Use Efficiency
(WUE, in kg/m3) (Van Halsema and Vincent, 2012), which has
been applied by irrigation specialists to describe “how effectively
water is delivered to crops” and “to indicate the amount of water
wasted” (Molden et al., 2010).

The proposed approach estimates the respective farm-level
performances of soil nutrient and water indicators, and combines
the relative performances of multiple farms in a particular
region into an integrated visualization. A corresponding user-
friendly FarmAgricultural Diagnostics (FAD) tool was developed
using Macro-in-Excel feature of Microsoft Office’s Excel software
to carry out these calculations, generate a performance-based
visualization, and automate agricultural advisory diagnostics.
The approach is then applied in a pilot study case representative
of intensively managed rural landscapes (IMRLs) in the food
critical Ganga river basin of North India.

2. MATERIALS AND METHODS

2.1. Study Area
The diagnostics approach is tested in a smallholder dominated
Intensively Managed Rural Landscape (IMRL) representative of
the Ganga River Basin in Kanpur (Bilhaur tehsil, Kanpur Nagar
district, Uttar Pradesh), India. The study area (Figure 1) is part
of a Critical Zone Observatory created by the Indian Institute
of Technology Kanpur in 2016 in the IMRL (Gupta et al., 2017,
2019). It lies between the Lower Ganga Canal distribution system
and the Pandu river, a tributary of the Ganga river. Agricultural
practices are typically monocropping (with alternating monsoon
paddy and winter wheat crops), and flood irrigation is carried out
using either canal distributaries which flow into the study region,
or using groundwater (GW) abstracted by diesel pumps.

2.2. Validating the Working Assumption
Using Farmer Surveys
The working assumption that “yield gaps” can be explained by
nutrient-related or water-related limitations (or co-limitations)
(Mueller et al., 2012) is validated using inferences from an
interview-based survey in the study area. 144 farmer-respondents
were interviewed in 2018 through random sampling from the
five villages of Bani, Bansathi, Etra, Parapratappur, Raigopalpur,
Sherpur Baira and Tatarpur, which had a total population of 8,887
(Government of India, 2011).

Farmers were asked questions about their demands and
preferences related to agricultural advisories, to validate whether
the impact of nutrient and water limitations on yield gaps
(Mueller et al., 2012) is also felt by farmers. Questions
aimed to derive the perceived importance of different advisory
parameters (input application and irrigation scheduling, weather
forecast for rainfall, soil testing), and preferred means of
receiving advisory (text message, voice message, phone call).
The complete list of questions is included in Section 1
of the Supplementary Material. The developed survey was
incorporated into the public domain software package, Census
and Survey Processing System (CSPro) (United States Census
Bureau, 2000), and the mobile phone application “CSEntry” was
used on the field for efficient and convenient data collection.

2.3. Selecting Indicators to Quantify Farm
Performance
The performance indicators used to quantify the current
performance are based on the two major factors resulting in yield
gaps: soil nutrients and water.

2.3.1. Soil Related Performance Indicator: Soil Quality

Index (SQI)
Soil Quality Index (SQI) (Karlen et al., 1997) is the performance
indicator used to quantify the soil-nutrient status. It is computed
as a weighted sum of individual soil parameter scores (or values).
The weights are determined based on the literature and expert
opinion (Lee et al., 2006). The formula of SQI is given below (Wu
and Wang, 2007):

SQI =

n∑

i=1

Wi · Si (1)

whereWi = weight of the ith parameter
Si = score of the ith parameter (here, the normalized

parameter value)
n = number of total parameters
Multi-Criteria Decision Making (MCDM) methods are used

to assign weights in SQI computation (Mishra et al., 2015).
In this study, the scores and weights are assigned to the soil
properties using Analytical Hierarchy Process (AHP) (Saaty,
1977, 1987). It is a widely used MCDM process (Alharthi
et al., 2015; Kil et al., 2016) and has been applied to assess
and enhance soil quality through improved soil management
practices (Kalambukattu et al., 2018; Kumar et al., 2019). AHP
can generate indicator weights based on pairwise comparisons of
all relevant indicators made by experts, while also reducing biases
in the decision-making process by checking for consistency
in the decision maker’s evaluations. Though the decision
maker’s subjective involvement in assigning weights or assessing
attributes leads to more flexibility, it can lead to different
solutions based on different relative prioritizations (Kumar
et al., 2017), which reinforces the importance of selecting
domain knowledge experts for the approach. Section 2 in the
Supplementary Material describes the AHP methodology in
further detail.

2.3.2. Water Related Performance Indicator: Water

Use Efficiency (WUE)
Water Use Efficiency (WUE, in kg/m3) is defined as the ratio
of agricultural production (yield per unit area, kg/ha) to the
gross water application or availability at the field (mm), inclusive
of both precipitation and irrigation water (Van Halsema and
Vincent, 2012).

WUE = [agricultural production]/[water applied] (2)

WUE has been interpreted as a combination of efficiency and
productivity ratios (Van Halsema and Vincent, 2012). Its idea
is motivated by the need to meet increasing food requirements
with limited water resources by maximizing the production
per unit of available water (De Fraiture and Wichelns, 2010;
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FIGURE 1 | The study area (shown within the green “catchment boundary”) for advisory diagnostics approach, in Kanpur (Uttar Pradesh, India). Image modified from

Gupta et al. (2019).

De Fraiture et al., 2010; Van Halsema and Vincent, 2012).
WUE is used here as a measure of “localized efficiency”
(Van Halsema and Vincent, 2012), which is appropriate in the
context of this study, since it focuses on the farmer’s perspective
of the efficient allocation of input water (and consequently
economic inputs).

2.4. Data Collection to Compute
Performance Indicators
The specific villages chosen for the survey and soil testing were
Bani, Bansathi, Etra, Parapratappur, Raigopalpur, Sherpur Baira
and Tatarpur. The objective was to capture a range of SQIs
and WUEs with a systematic sampling methodology (Fowler,
2014). Further, a GIS database was developed to visualize the
survey and soil data. This helped in understanding the spatial
spread of the current “problem areas”, which can potentially
guide applied research, as well as more targeted delivery of the
generated advisory.

2.4.1. Soil Sampling and Testing to Compute SQI
Soil testing was conducted for 100 farmers in 2018 by the
Uttar Pradesh State Agricultural Department. Soil samples were
collected in the manner recommended by the Department
of Agriculture, Cooperation & Farmers Welfare. Government
guidelines recommend sample collection on a grid basis with
grid area of 2.5 ha for irrigated areas (Kaur et al., 2020). For
this study, the spatial resolution was increased substantially by
collecting five soil samples from each farm (instead of each
2.5 ha). Five soil samples were collected from the top 15
cm (four from farm corners and one from the center). The
samples were subsequently mixed to conduct physio-chemical
analyses. The parameters which were tested were physical

parameters (pH, EC), macronutrients (SOC, N, P and K), and
micronutrients (S and Zn).

2.4.2. Data for Water Use Efficiency (WUE)
Data regarding wheat yield and number of irrigations,
corresponding to the previous winter cropping season (rabi 2018,
from November to April), were collected from 67 farmers, to
generate a database of baseline water related data. Consequently,
WUE was computed assuming traditional practices of irrigation
depths of 7.5 cm (per irrigation application) for the wheat crop
(Prihar et al., 1978) in India. Rainfall over the cropping season
was assumed constant for all the farms (since the study area
has relatively flat topography with areal coverage of less than 12
km2), and measured monthly rainfall data from November 2017
to April 2018 (total rainfall of 2.2 cm) were used in addition to
data about irrigation application and yields reported by farmers
during the surveys. WUE was finally computed by dividing the
yield values with the gross amount of water applied (total rainfall
and cumulative irrigation during the cropping season).

2.5. Integrated Visualization: Quantification
and Classification of Overall Farm
Performance
A scatter plot is generated combining the two performance
indicators, resulting in a depiction of localized farm performance
(Figure 2). The axes limits are determined by the ranges of the
respective performance indicators obtained in the survey. The
plot is subsequently divided based on the median values of the
two indicators (derived from the entire farm dataset generated
in Section 2.4). There are hence four classes formed, based
on their respective performance zones, (i) Zone of satisfactory
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FIGURE 2 | Classification of farms based on the two performance indicators (Soil Quality Index and Water Use Efficiency) associated with major yield gap limitations

(nutrient, water, or both).

performance (S, top-right): with both high WUE and SQI, where
there is an expectation of high overall performance, (ii) Nutrient
limited zone (NL, top-left): with high WUE despite low SQI,
and there may be crucial lessons to learn from such farmers,
(iii) Water limited zone (WL, bottom-right): low WUE despite
high SQI, where there are substantial opportunities to improve
the water management practices, and (iv) Zone of co-limitations
(NLWL, bottom-left): with both low WUE and SQI, within
which there is low overall performance needing more focused
advisory dissemination.

The top right corner of the scatter chart (red circle) represents
a “Localized Performance Target” corresponding to the highest
SQI and WUE indicators from the local farms. The emphasis
here is that the result-oriented advisory development should
be initially prepared to achieve “best” performance based on
localized characteristics, and not the “best” performance based
on global standards, which is a reasonable approach reported
in the literature. For instance, soil quality can only be assessed
appropriately within the context of its inherent properties,
environmental influences (temperature and precipitation), and of
“what the soil is being asked to do” (Andrews et al., 2004).

Further, the sub-categories of “Best Practice Farms,” “Critical
Farms” and “Quick Improvement Farms” are proposed (which
can be decided subjectively based on the spread of the
scatter here shown in the corners for clear representation).
“Best Practice Farms,” which despite low SQIs are able to
achieve high WUEs through good traditional or modern water
management strategies, can be identified to give crucial insights
to other farmers, to enable community leadership and knowledge
exchange. “Critical Farms,” with both low WUE and SQI

would need immediate assistance, and may be prioritized as
part of triage-based critical advisory administration. “Quick
Improvement Farms,” which have low WUE despite having
soils with high SQI, would be expected to show quickest
improvements (in WUE) through simple water saving measures
due to their pre-existing relative advantage in nutrient status.
Additionally, a subjective selection of “High Performance Farms”
(the best farms within the S-zone), can help in defining an
Intermediate Performance Target which is localized and is based
on an average of their respective performance indicators.

A GISmap is created corresponding to this zonal classification
which helps in understanding the spatial distribution of
the farms.

2.6. Recommendations Based on “Farm
Performance Classification” to Customize
Advisories
This step is necessary to customize the advisory content to suit
a farm’s current performance situation (the farm’s position in
the SQI-WUE plot in Figure 3) toward the realistic goal of the
Localized Performance Target (top-right corner in Figure 3).
If this target seems heuristically unrealistic, an Intermediate
Target may be suggested, which is the average of “High
Performance” farms.

For the sake of simplicity, three basic typologies of advisories
based on the ratio of focus between water and nutrient related
guidance are proposed. The “Initial soil advisory zone” initially
focuses on improving soil nutrient properties, the “Initial water
advisory zone” initially contains a higher proportion of water
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FIGURE 3 | Performance class based advisory recommendations (with varying proportions of “blue” water vs. “brown” soil nutrient advisory “water droplet” content)

based on the current situation relative to the Localized Performance Target (top right corner). Zones of water limitation (WL), nutrient limitation (NL), co-limitation

(NLWL) and satisfactory performance (S) are shown within which critical farms, quick improvement farms and best practice farms are special sub-categories

(introduced in Section 2.5).

management related content, and the “Balanced advisory zone”
has a balance of nutrient and water related advisory contents.
Each of the zones tends to become a balanced advisory after
observing improvements toward better overall performance, as
indicated by the red arrows in Figure 3.

2.7. Development of the Farm Agricultural
Diagnostics (FAD) Tool
The motivation for developing the FAD tool (Adla, 2021) is
to aid agricultural extension service providers and professionals
in allied sectors (NGOs, local governments) with a user-
friendly tool for conducting agricultural advisory diagnostics.
The tool is developed using the Macro-in-Excel Visual Basic
for Applications (MEVBA) feature of Microsoft Office Suite’s
spreadsheet software MS Excel (Roman, 2002). MEVBA has the
ability to incorporate scripts which are easy to maintain and
also allow for expansion through its modular framework. Its
dynamic formatting can be used to make the user interface
more interactive, and yet it is a rather familiar software for
collaboration (Yang and Ogunkah, 2013). In the FAD tool (Adla,
2021), MEVBA performs AHP calculations in the back-end by
extracting data from dynamic input tables resulting in a well-
ordered and tidy user interface.

The FAD tool (Adla, 2021) is free, user-friendly, and accessible
in terms of its workflow. Its inputs include data for computing
the SQI (results of soil quality testing on relevant parameters),
heuristics to conduct relative comparisons between different
soil quality parameters, and input data for computing WUE

(crop yield, rainfall and applied irrigation during the cropping
season). Its GUI can be used to generate a classification of
the farm performance based on the diagnostics approach
introduced in the study, and provide visual aids to promote a
better understanding of the reported results. The resultant chart
is easily exportable. The Farm-Agricultural-Diagnostics-tool
version 1.0 has been archived as a Github repository (Adla,
2021), alongwith details pertaining to its features and operational
instructions described using screenshots of the tool (https://
github.com/soham-adla/Farm-Agricultural-Diagnostics-tool/
blob/main/FAD-v1.0_Instruction-Manual.pdf).

3. RESULTS

3.1. Validating the Working Assumption
Using Farmer Surveys
In a reconnaissance survey conducted during 2018, farmers
expressed concerns on irrigation amounts and timing. In the
detailed survey subsequently undertaken, 141 out of 144 farmers
expressed their need for an advisory on irrigation scheduling,
and all farmers expressed their need for information on rainfall
forecast, fertilizer application, and a need to test their soils
regularly. This reinforced the working assumption that the
major limiting factors to address yield gaps were soil and water
related, as they were identified as major advisory requirements
by farmers who are the ultimate beneficiaries of agricultural
extension services.
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TABLE 1 | Soil parameters and the respective weights assigned to compute SQI.

S. No. Soil parameter Weight (%)

1 SOC 35.29

2 pH 15.00

3 EC 15.00

4 N 12.34

5 P 7.38

6 K 7.38

7 S 3.80

8 Zn 3.80

SOC - Soil Organic Carbon, EC - Electrical Conductivity, N - Nitrogen, P - Phosphorus, K

- Potassium, S - Sulfur, Zn - Zinc.

3.2. Quantifying Farm Performance
3.2.1. Soil Related Performance Indicator: Soil Quality

Index (SQI)
The final weights assigned to each soil parameter, based on the
AHP methodology, are given in Table 1. Once the weights were
assigned, the respective parameter values were converted into
non-dimensional values lying between 0 and 100%, based on
the linear scoring method (Liebig et al., 2001; Kumar et al.,
2019) described in Section 2 of the Supplementary Material.
The weights were then used in combination with the parameter
values to compute the SQI of each soil sample collected (based
on Equation 2).

Figure 4 shows the spatial distribution of the farm scale SQI
of 100 farms as part of the GIS database that was developed.
Higher values of SQI indicate better soil performance or lower
nutrient limitations. Soil properties exhibit spatial variability
even at farmland scales (McBratney, 1997), and a comprehensive
explanation of this variability would require a historical and
current understanding of the physical, chemical and biological
processes occurring in the farms (Santra et al., 2008), along
with a broad knowledge of land use and management practices
(Mouazen et al., 2003). Such a comprehensive database may not
be readily available even with advisory institutions. Hence, it is
important to conduct soil testing and compute SQI using local
expertise as a prerequisite to the proposed advisory diagnostics
approach, rather than attempting to address diverse soil quality
issues using incomplete information.

3.2.2. Water Related Performance Indicator: Water

Use Efficiency (WUE)
TheWUE of wheat (calculated using Equation 2) was 1.60 kg/m3

(s = 0.49 kg/m3). Figure 5 illustrates the spatial variability of
farm scale WUE for 67 farms, as part of the GIS database
that was developed. Higher values of WUE indicate a higher
localized efficiency in the application of water at the farm level
(Van Halsema and Vincent, 2012). A simplistic observation
of the proximity to surface water sources (like canal or canal
distributaries, shown in bold and light blue colors, respectively)
would not be sufficient to explain the variability in WUE
across the farms, since it is impacted by many management
factors including variety, sowing date, planting density and row
spacing, soil water content at planting, irrigationmethod and pest

FIGURE 4 | Spatial variability of the soil related performance indicator, Soil

Quality Index (SQI), computed with the AHP methodology, using the soil

testing results of samples collected from 100 farms in the study area.

management (Howell, 2001). This again reinforces the need to
provide data-driven, farm-specific advisories.

3.3. Integrated Visualization: Quantifying
Overall Farm Performance and
Classification
The scatter plot of the farms’ performance, developed using
surveys and soil testing, is given in Figure 6. Out of the 144
surveyed farms, 100 soil samples were collected, and 67 farmers
reported previous year yields and irrigation application data.
Hence, 67 farm points are included in the visualization

The extreme values of the SQI were 28.12% and 76.22%,
and corresponding values of WUE were 0.61 kg/m3 and 3.48
kg/m3, which represent plot boundaries (X and Y axis extremes,
respectively). The median values of SQI and WUE were 43.09%
and 1.55 kg/m3, respectively. This led to the Y and X axes passing
through these points, respectively and to a relatively evenly
distributed percentage of farms across the classes: S (14.9%), NL
(23.9%), WL (34.3%), and NLWL (26.9%).

The identification of the special sub-categories of “Best
Practice Farms,” “Critical Farms” and “Quick Improvement
Farms” was performed as follows. A visual judgment was taken
to categorize only one farm into the category of “Best Practice
Farms,” whose SQI (39.45%) was 9.5% lower than the median
SQI, but WUE (0.28 kg/m3) was 82.5% higher than the median
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WUE. This may have been due to the fact that though the farm
location was relatively upstream to the other farms (and with
adequate access to canal irrigation), the farmer chose to irrigate

FIGURE 5 | Spatial variability of the water related performance indicator, Water

Use Efficiency (WUE), computed using data from 67 farms in the study area.

his wheat three times during the season. This was in contrast
to the modal and mean values of the number of irrigations
in all the farms being 4 and 3.7, respectively. The “Critical
Farms” (red diamonds) had both SQI and WUE values below
their respective median values within the NLWL region. Four
out of the 18 NLWL farms (22.2%) were identified as “Critical
Farms,” which could be given prioritized attention through
customized advisory services. The “Quick Improvement Farms”
(yellow diamonds) had farms whose WUE values were below,
and SQI values were above, their respective medians (among the
WL datapoints).

The subjectivity in the above categorizations is inherent
to model development, and becomes more explicit when
stakeholders are included in the modeling process (Srinivasan
et al., 2017). It is recommended that advisors take up this
process with the active involvement of stakeholder farmers or
farmer groups. The categorization of “Best Practice Farms,”
“Critical Farms” and “Quick Improvement Farms” has not been
incorporated in the corresponding FAD tool (Adla, 2021), and
the final outcome of the tool is a visualization with the broader
classes (NL, WL, NLWL, and S).

The Localized Performance Target (red circle at the top-right
corner of Figure 6) seemed distant from any of the farm’s
performance. The farm with the best SQI = 76.22% had a
WUE = 1.62 kg/m3, and the farm with the best WUE =

3.48 kg/m3 had an SQI = 51.8%. Hence, “High performance
farms” were identified through visual inspection (green
diamonds), and their average performance tuple (SQI = 61.24%,
WUE = 2.26 kg/m3) was designated to be an Intermediate
Performance Target.

A GIS map of the spatial variation of farms categorized into
the four SQI-WUE classes is presented in Figure 7. An initial

FIGURE 6 | Classification of surveyed farmers (n = 67) based on locally relevant Soil Quality Index (%) and Water Use Efficiency (kg/m3 ) to aid zonal advisory

development. S - “sufficient” farms in terms of limitations to yield gap, WL - “water limited farms,” NL - nutrient limited farms, and NLWL - farms with co-limitations of

both water and nutrients. Also shown are farms identified as critical, quick improvement, and best practice farms, and the performance targets.
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visual analysis did not reveal any clear environmental bases
explaining the variability of the farm performance classes within
the study area. For example, there both WL and NLWL farms in
proximity to the Lower Ganga canal, which is counterintuitive

FIGURE 7 | GIS map of farm classification using soil nutrients and water as

major limitations contributing to yield gap. S “satisfactory” farms in terms of

limitations to yield gap, NL nutrient limited farms, WL water limited farms, and

NLWL farms with co-limitations of both nutrients and water.

since farms adjoining surface water would generally be expected
to not be water limited. The explanation of such patterns
may require a deeper analysis of the human-water interactions
within social, economic and natural systems (Van Emmerik
et al., 2014; Srinivasan et al., 2017) which consequently require
more holistic and perhaps new data sources including citizen
science, new sensing technologies or satellite data products
(Buytaert et al., 2014). Particularly in this case, knowledge of
previous and current soil andwatermanagement practices, access
to farm technology, availability of capital may be useful to
make explanatory interpretations, which are generally available
with government or non-governmental agencies working in the
agricultural sector, and were not collected for this study.

3.4. “Farm Performance Classification”
Based Recommendations to Customize
Advisories
The SQI-WUE based classification of the different farms in the
study area is given in Figure 8.

It is desirable to design advisories which would not aim at
a performance indicator tuple of SQI = 76.22%, WUE = 3.48
kg/m3, but rather aim for a relatively well performing farm
in the region. Hence, the average performance of the “High
performance” farms was chosen as an achievable Intermediate
Target, e.g., as shown in Figures 6, 8. Once a farm achieves
this Intermediate Target, it can aim to achieve the Localized
Performance Target. Farms that are already better than this
Intermediate Target could get advisories which aim at the
Localized Performance Target.

The GIS map already generated (Figure 7) can be used to
implement the designed advisories (three types of advisories each
for the Intermediate and the Localized Performance Targets) in
the region.

FIGURE 8 | Classification based advisory development in the study area. The Intermediate Target is computed using the average of the “High performance” farms

(depicted using green diamonds).
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FIGURE 9 | Contextualization of the agricultural diagnostics approach, using a

medical analogy, given in parentheses. Image modified from the free-copyright

abstract vector created by macrovector (https://www.freepik.com/vectors/

abstract).

4. DISCUSSION

4.1. Contextualizing the Diagnostics
Approach Using a Medical Analogy
This study introduces an approach to assess farm performance
and diagnose the reasons for yield gaps with a user inspired,
data-based approach (Thompson et al., 2013; Sivapalan et al.,
2014). The approach limits itself to advisory diagnostics, and does
not make recommendations about advisory content or form. A
useful analogy to contextualize this approach is the diagnosis
and treatment of a patient by a medical doctor, with the help of
diagnostic tests, as illustrated in Figure 9.

Every patient is different in terms of their physiological or
pathological condition, just like every farm is different in terms
of its agricultural condition. A doctor refers their patient to
tests conducted by diagnostic laboratories to better ascertain
the current state of the patient’s physiological condition. An
accurate and timely diagnosis, i.e., identification of the patient’s
problem, leads to “clinical decision making” tailored to a correct
understanding of the patient’s health problems (Holmboe and
Durning, 2014). Likewise, this study’s approach is a diagnostic
method to better quantify the current condition of a farm,
so that an advisor can administer advisories which are more
customized to the farm in question. Moreover, public health
policy is often influenced by diagnostic data, by altering resource
allocation decisions and research priorities (Jutel, 2009). Similar
diagnostic data collection and analysis in agriculture also opens
up possibilities for applied research which may inform policy

makers and implementing agencies to better serve demand-
driven needs.

The tool will add data-based diagnostics value to pre-
existing demand based advisory services, if used within already
existing agricultural extension programs. The primary users
of the tools are advisors (analogous to medical doctors),
whom it facilitates, to generate more data-based and hence
customized advisories, for farmers. In India, the district-
level farm science centers (Krishi Vigyan Kendras) are such
extension institutions which operate under central or state
agricultural universities, the Indian Council of Agricultural
Research (ICAR), NGOs, state governments, or public
sector undertakings (ICAR, 2015)1. It is their mandate to
develop advisories, including the disbursement of “farm
advisories using ICT and other media means on varied
subjects of interest to farmers” and “assessment of location
specific technology modules in agriculture” (ICAR-IASRI,
2021)2.

4.2. Financial and Institutional Implications
The financial and institutional implications of this additional
diagnostics process are predominantly related to aspects of soil
sampling and testing, management of the data generated from
soil testing, farmer surveys, and the tool, and human resource
skill development for the relevant extension staff. In developing
countries such as India, soil testing is a routine function
of the Department of Agriculture, Cooperation & Farmers
Welfare (Kaur et al., 2020). State agricultural departments
are mandated to develop Soil Health Cards (SHCs), launched
for Soil Health Management (SHM) by the Department of
Agriculture, Cooperation & Farmers Welfare (Ministry of
Agriculture and Farmers Welfare) by the Govt. of India3.
The proposed diagnostics approach can build on the strengths
of pre-existing soil testing infrastructure and leverage data
collection mechanisms through call centers such as the Kisan
Call Centre (Ganesan et al., 2013). The financial investment of
the diagnostics approach and tool has two major aspects: the
infrastructure to support data storage and processing for the
agricultural “big data” thus generated (Hashem et al., 2015),
and human resource skill development. The sustainable scaling-
up and replication of such data-driven diagnostics will require
large-scale storage, pre-processing and analysis of data coming
from different sources (Hashem et al., 2015; Kamilaris et al.,
2017). Though big data management has only recently been
incorporated into agriculture (Lokers et al., 2016), the Indian
big data analytics sector is expected to record a growth rate
of 26% and increase by 14 billion USD from 2020 to 2025
(Reghunadhan, 2020). The Government of India has initiated
various big data projects in the agricultural sector - Farmers
Portal4 (portal which delivers relevant village/block/city/state
level information through text message/email), Agricultural
and Processed Food Products Export Development Authority5

1https://krishi.icar.gov.in/kvk.jsp
2https://kvk.icar.gov.in/aboutkvk.aspx
3https://soilhealth.dac.gov.in/Content/blue/soil/about.html
4https://farmer.gov.in/
5http://apeda.gov.in/apedawebsite/
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TABLE 2 | Template for collecting key characteristics of farm sub-categories to guide a bi-directional flow of information.

Category Commonalities/learnings Requirements

“Best Practice Farms” (High

WUE despite low SQI)

Examples: superior soil conservation techniques, efficient irrigation

methods, better educational qualifications, etc.

After improvement of nutrient based performance characteristics,

incorporating data-based precision farming techniques through

experiments.

“Quick Improvement Farms”

(Low WUE despite high SQI)

Examples: lack of reliable irrigation sources, poor irrigation

practices/water use behavior, particular low-yielding crop/seed

variety, etc.

Better water management practices (particularly using lessons

from “Best Practice Farms”).

“Critical Farms” (Low WUE

and SQI)

Examples: poor soil type, poor access to irrigation water, low

socio-economic situation, etc.

Low-cost, agricultural practices that lead to the quickest initial

increase in performance characteristics (toward the Localized

Performance Target).

The examples given are descriptive.

(portal which facilitates export of food products, registers
farms online, conducts surveys and feasibility studies, aids the
collection of test samples, etc.), the Agriculture Portal of www.
india.gov.in6 (database on agricultural products, machinery,
research, and knowledge resource for government policies and
schemes, market prices, etc.), and the Open Government Data
Platform India7 (open dataset available for research and analysis)
(Shankarnarayan and Ramakrishna, 2020). Additionally, large
corporations working in the agri- and allied sector (e.g.,
Monsanto, Mahindra and Mahindra) have invested substantially
in big data in the agribusiness segment (Lane, 2015). However,
challenges accompanying big data applications, including
privacy, security, data governance, sharing, expense, and data
ownership, will also apply to this context, and will need to
be addressed appropriately. (Shankarnarayan and Ramakrishna,
2020). The human resource skill development, particularly
in subject knowledge and data analytics, can be inculcated
through regular ICT trainings, which has been found to improve
computer skills and work efficiency (Galanouli et al., 2004),
and has been recommended for agricultural extension workers
(Nyarko and Kozári, 2021).

4.3. Recommendations for Advisors Using
the Tool
The advisory content can be supplemented by incorporating
knowledge generated through mutual learning through
interactions between farmers, among scientists and between
farmers and scientists, for more effective translation of scientific
information (Feldman and Ingram, 2009). Table 2 suggests some
key characteristics (or major commonalities) of farms closer
to the Localized Performance Target (shown in Figure 3). An
identification of the key characteristics (or common factors, if
they exist) of farms in each of the groups listed in Table 2 may
help in designing advisories which are more specific than generic
advisories. Lessons can be drawn from “Best Practice Farms”
about their superior water management practices (despite
relatively poor soils), and can be applied with confidence to
advise “Critical Farms” and particularly “Quick Improvement
Farms” because they are unable to achieve high WUEs despite
relatively high SQIs.

6https://www.india.gov.in/topics/agriculture
7https://data.gov.in

Progressive farmers with the “Best Practice Farms” and “High
Performance Farms” could potentially function as community
leaders. Several examples of such leadership exists across
domains, including the kisan mitras (farmer friends)—educated
progressive farmers appointed by the government as village level
extension functionaries (Landge and Tripathi, 2006), “barefoot
engineers”—local level para-hydrogeologists employed by the
gram panchayat (local village government) to take independent
decisions regarding water management programs (Sen et al.,
2019), and community health care workers—facilitators in
improving health care access and outcomes in poor and deprived
communities (Rosenthal et al., 2010). Also, once a farm is closer
to the Localized Performance Target, a customized plan can
be designed with modified global best practices, incorporating
the potential of precision farming, for enhanced sustainability
in the longer run. Ensuring transparency in disseminating
performance indicators (with the possibility of farmers to visit
vicinal better performing farms) can encourage farmers to visit
each other without any immediate need for contacting the
external “scientific” community, inspiring knowledge exchange
within the community. Moreover, employees of some agencies
in direct and regular communication with farmers (such as
grassroots NGOs) have informally appreciated the potential of
this tool for improved farm data monitoring and management
(particularly of variables causing yield losses), and ultimately
developing customized solutions for their farmer beneficiaries.

The form in which advisories are administered may be
designed considering pre-existing local practices. Farmers have
needed graphs and data to be interpreted by trained advisors
in some advisory services (Eastwood et al., 2019). Engagement
with users in the study area also corroborated this need;
farmers suggested that advisories be administered using the local
agronomic and agricultural management nomenclature. The
corresponding training of advisors could incorporate suggestions
from selected local farmers (managing the best practice farms in
the region).

5. CONCLUSIONS

Acknowledging the need for data-driven agricultural extension, a
“diagnostics” approach is developed to supplement pre-existing,
demand-based, generic advisory programs, particularly in the
Indian context. It included the following steps. The current
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performance of farms is evaluated using soil nutrient and
water related performance indicators (Soil Quality Index SQI
and Water Use Efficiency WUE respectively). Next, farms are
classified into different performance zones to develop more
customized advisories. Further special classes of farms are
identified; the “Best Practice Farms” which can serve as a
source of successful traditional or modern knowledge, “Critical
Farms” which perform relatively poorly and would need critical
focus urgently, and “Quick Improvement Farms” with low
WUE despite relatively better SQI. A corresponding Farm
Agricultural Diagnostics (FAD) tool is developed using MS
Excel Macros which incorporates the salient features of the
approach into a well-ordered, interactive and user-friendly
design. The approach and tool are piloted in Kanpur, a region
representing a smallholder dominated intensively managed rural
landscape in the Ganga river basin (India). Additionally, a GIS
database is developed to visualize the diagnostics for improved
advisory administration. The approach and tool can be utilized
extensively by academia, government and non-government
agencies working in the agricultural sector, synergistically
harnessing their strengths of rigorous scientific research, soil
testing capacity, and direct stakeholder engagement, respectively.
However, this effort would require political will, capacity building
and cooperation within and between the relevant sectors.
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