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Digital rock physics has seen significant advances owing to improvements in

micro-computed tomography (MCT) imaging techniques and computing power. These

advances allow for the visualization and accurate characterization of multiphase transport

in porous media. Despite such advancements, image processing and particularly the

task of denoising MCT images remains less explored. As such, selection of proper

denoising method is a challenging optimization exercise of balancing the tradeoffs

between minimizing noise and preserving original features. Despite its importance, there

are no comparative studies in the geoscience domain that assess the performance of

different denoising approaches, and their effect on image-based rock and fluid property

estimates. Further, the application of machine learning and deep learning-based (DL)

denoising models remains under-explored. In this research, we evaluate the performance

of six commonly used denoising filters and compare them to five DL-based denoising

protocols, namely, noise-to-clean (N2C), residual dense network (RDN), and cycle

consistent generative adversarial network (CCGAN)—which require a clean reference

(ground truth), as well as noise-to-noise (N2N) and noise-to-void (N2V)—which do not

require a clean reference. We also propose hybrid or semi-supervised DL denoising

models which only require a fraction of clean reference images. Using these models,

we investigate the optimal number of high-exposure reference images that balances

data acquisition cost and accurate petrophysical characterization. The performance of

each denoising approach is evaluated using two sets of metrics: (1) standard denoising

evaluation metrics, including peak signal-to-noise ratio (PSNR) and contrast-to-noise

ratio (CNR), and (2) the resulting image-based petrophysical properties such as

porosity, saturation, pore size distribution, phase connectivity, and specific surface area

(SSA). Petrophysical estimates show that most traditional filters perform well when

estimating bulk properties but show large errors for pore-scale properties like phase

connectivity. Meanwhile, DL-based models give mixed outcomes, where supervised
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methods like N2C show the best performance, and an unsupervised model like N2V

shows the worst performance. N2N75, which is a newly proposed semi-supervised

variation of the N2N model, where 75% of the clean reference data is used for training,

shows very promising outcomes for both traditional denoising performance metrics and

petrophysical properties including both bulk and pore-scale measures. Lastly, N2C is

found to be the most computationally efficient, while CCGAN is found to be the least,

among the DL-based models considered in this study. Overall, this investigation shows

that application of sophisticated supervised and semi-supervised DL-based denoising

models can significantly reduce petrophysical characterization errors introduced during

the denoising step. Furthermore, with the advancement of semi-supervised DL-based

models, requirement of clean reference or ground truth images for training can be

reduced and deployment of fast X-ray scanning can be made possible.

Keywords: image processing,micro-computed tomography, deep learning, denoising, image enhancement, digital

rock physics, carbon capture utilization and storage (CCUS), enhanced oil recovery

BACKGROUND AND INTRODUCTION

Micro-computed tomography (MCT) is a non-destructive
technique used to visualize the internal structure of objects
in a variety of disciplines including medicine, dentistry, tissue
engineering, aerospace engineering, geology, and material and
civil engineering (Orhan, 2020). The physical principle behind
this technique is that X-rays attenuate differently as they
penetrate through different materials depending on their density
and atomic mass (Knoll, 2000; Attix, 2004; Ritman, 2004;
Hsieh, 2015). This makes MCT an ideal tool for characterizing
multiphase materials such as rocks with fluid phases of
different densities.

The use of MCT imaging is becoming increasingly
indispensable in several disciplines, including geotechnical and
petrophysical characterization and understanding multiphase
flow in porous media. Wang et al. (1984) first adopted medical
CT imaging to monitor the injectant front to understand
the effect of pore structure heterogeneity on oil recovery and
interactions between oil and injected fluid in a Berea sandstone.
However, medical CT imaging soon proved inadequate in
describing the underlying pore-scale phenomena responsible
for multiphase flow behavior in porous media (Cromwell et al.,
1984). Therefore, high-resolution MCT imaging was used to
obtain quantitative pore-scale information about structure–
function relationships (Jasti et al., 1993). They characterized
the 3D pore structure in a glass bead pack and three Berea
sandstone samples to determine whether topological properties
such as pore connectivity and phase features of individual fluid
phases such as saturation can be resolved. Micro-computed
tomography has since been successfully used for quantifying a
wide range of petrophysical properties such as volume fraction
for porosity and saturation quantification, specific surface area
(SSA), pore- and blob-size distributions, in-situ contact angles,
interface curvatures for local capillary pressures, grain sphericity,
angularity, roughness as well as phase connectivity (Sharma and
Yortsos, 1987; Prodanović and Bryant, 2006; Karpyn et al., 2010;
Herring et al., 2013; Landry et al., 2014; Larpudomlert et al.,

2014; Berg et al., 2016; Klise et al., 2016; Scanziani et al., 2017;
Chen et al., 2018; Tawfik et al., 2019; McClure et al., 2020). The
accuracy with which we can estimate these pore-scale properties
affect our ability to explain and predict multiphase fluid flow in
porous media. For example, pore-network modeling, which is
used in a variety of digital rock studies to explain and predict
macroscopic transport properties such as absolute permeability,
relative permeability, and capillary pressure, uses simplified pore
structures composed of a network of pores and throats, which
can be directly extracted from the MCT images (Valvatne and
Blunt, 2004; Jia et al., 2007; Dong et al., 2009; Mostaghimi et al.,
2013; Berg et al., 2016; Zahaf et al., 2017; Raeini et al., 2019).
Similarly, Lattice Boltzmann simulation of multiphase flow is
used to estimate the same transport properties but on real pore
structures by directly using the binarized MCT images as input
(Grader et al., 2010; Andrä et al., 2013; Landry et al., 2014; Liu
et al., 2014; Armstrong et al., 2016; Kakouei et al., 2017; Li et al.,
2018). The accuracy of the model predictions thus depends on
the accuracy of processing the images that feed into these models.

Despite the fast-paced advances in MCT imaging, there are
several factors that introduce noise to MCT images limiting
the image quality and feature detectability. Those limitations
can hinder our ability to accurately identify structure-function
relationships and predict fluid flow behavior, which is essential in
several applications including CO2 storage, aquifer remediation,
and hydrocarbon recovery. Some of the inherent limitations
of MCT imaging include photon statistics, balance between
representative elementary volume and resolution or feature
detection, and partial volume consideration (Van Stappen, 2018).
Apart from image resolution, there are numerous artifacts that
arise during image acquisition. The prominent ones include
photon starvation, detector saturation also known as ghosting,
central rotation artifact, cone-beam effect, metal artifact,
cupping artifact, streaks and dark bands, under-sampling, poor
contrast, beam hardening, scatter, and ring artifacts (Boas and
Fleischmann, 2012). These imaging artifacts result in different
forms of noise in a CT image. Though noise in MCT has not
been fully profiled, many studies including Diwakar and Kumar
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(2018) and Lee et al. (2018) have attempted to profile the noise
distributions through known statistical distributions. The most
prevalent noise forms follow Poisson and Gaussian distributions.
There are several other forms of noise including fractal noises
like Perlin noise, periodic noise from helical sampling and finally
random noise that may occur due to the change in X-ray quanta
for multiple subject densities. Gaussian and Poisson noise are
the most common types of noise observed in MCT images.
Gaussian noise is additive and signal independent. Poisson noise
is a consequence of low photon count, and results in random
thin bright and dark streaks that appear preferentially along the
direction of greatest attenuation (Boas and Fleischmann, 2012).
The low photon count coupled with the error in quantization of
the received photons leads to a mixture noise-model, which is a
combination of Poisson and Gaussian distributions. Perlin noise
is a pseudo-random texture gradient noise which is generated
using octaves of noise flow vectors along with frequency and
amplitude parameters to simulate spatially interpolated textures
(Perlin, 1985). The granularity and texture of the noise profile
in low quality (LQ) CT images can be captured by Perlin
noise. Bae et al. (2018) showed that using Perlin noise profile
to augment a lung CT dataset resulted in higher classification
accuracy indicating that the features extracted from Perlin noise
augmented images matched those of certain low-dose CT scans
with lung conditions.

Mathematically, denoising is an inverse ill-posed problem
where noisy data is a sparse representation of the real data and
a unique solution for its restoration does not necessarily exist
(Fan et al., 2019). For an exact solution to the problem, a priori
knowledge of the types of noise, variance of noise within an image
and along the image stack would be required. This information is
usually not readily available. The basic principle behind most of
the traditional spatial domain denoising filters is noise removal
based on spatial correlation between an input pixel gray value and
its neighboring pixels. Those filters can be classified into linear
and non-linear filters. Linear filters are spatially invariant filters
that output pixel values as a linear combination of the input pixel
value and its neighborhood. Examples of linear filters include
Gaussian and mean filters, which are optimal for Gaussian
noise. However, linear filters tend to blur edges and blur small
features. Conversely, non-linear filters can be spatially invariant
like the median filter, or spatially variant like the anisotropic
diffusion (AD) filter (Huang et al., 1979; Perona andMalik, 1990).
Another approach to denoise MCT images involves machine-
learning-based models. As such, the objective is to find the
parameters that act on the sparse noisy data to obtain the closest
representation of the clean signal. Several works in literature
have approached this parameter estimation through the use
of classic machine learning and modern neural network-based
models (Tian et al., 2020). Improvements in the DL denoising
field result from a clearer understanding of the specific noise
forms and improvements in the architecture of neural networks.
The literature points to three specific architectures, namely U-
Nets, Residual Networks, and Generative Adversarial Networks
(GANs), that have been established for addressing common noise
forms including Poisson, Gaussian, and their mixtures which are
predominant in CT images (Kulathilake et al., 2021).

Deep learning (DL) powered computer vision has seen
phenomenal improvement since the introduction of AlexNet in
2012 (Krizhevsky et al., 2017). However, adaptation of imaging
techniques for porous media is still work in progress. Kamrava
et al. (2019) trained a 20-layer feedforward neural network using
synthetic data generated by the stochastic cross-correlation-
based simulation (CCSIM) algorithm and found that neural
networks perform better compared to bi-cubic interpolation
for image super-resolution while the synthetic data further
improved the model’s generalizability. Sidorenko et al. (2021)
implemented an encoder-decoder network for denoising MCT
images obtained from tight sandstone samples. The authors
compared the effect of different loss functions and found that the
least absolute deviation (L1) loss gave a better result in terms of
peak signal to noise ratio (PSNR) and structural similarity index
measure (SSIM) when compared to the least square errors (L2)
loss, SSIM loss, and Visual Geometry Group (VGG) perceptual
loss. Recently, Alsamadony et al. (2021) acquired low-exposure
and high-exposure CT scans on the same carbonate sample
and compared denoising performance using a pre-trained very
deep super resolution (VDSR) network against a shallow U-
Net. They demonstrated that DL-based image processing can
improve image quality; and that pre-trained VDSR network with
fine-tuning tends to out-perform VDSR trained from scratch.
Wang et al. (2021) reviewed various DL applications in pore-
scale imaging and modeling, including image segmentation,
image super-resolution, petrophysical property prediction, flow
simulation, as well as common convolutional neural network
(CNN) architectures and various types of GANs for image
generation. However, the discussion on image denoising was
brief. A summary of findings from select literature on image
denoising with applications in digital rock physics is provided
in Table 1.

The literature survey reveals a need for a comprehensive
comparison of denoising approaches for petrophysical
applications. Existing studies mostly utilize non-learnable
filters and rely on visual inspection to evaluate the effect
of image denoising. The lack of quantitative metrics, both
standard and physics-based, cause errors during this critical
image processing step to remain largely unquantified. Finally,
none of the reported studies consider the impact of denoising
techniques on downstream tasks such as image segmentation and
petrophysical property estimation, which is often the ultimate
goal of quantitative imaging.

In this paper, we address these research gaps and compare
the performance of traditional (user-based) denoising methods
against more sophisticated DL-based denoising methods. Four
types of models are considered in this study: (a) commonly used
filters such as the Gaussian, non-local means (NLM),Median etc.,
(b) fully supervised models including the noise-to-clean (N2C),
residual dense network (RDN), and cycle consistent generative
adversarial network (CCGAN), (c) semi-supervised models that
use a portion of clean reference images for learning, and
(d) completely unsupervised techniques like the noise-to-noise
(N2N) and noise-to-void (N2V). We evaluate the performance
of the different denoising models using both qualitative and
quantitative analyses against an independent ground truth.
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TABLE 1 | A summary of selected publications that report on MCT imaging in the digital rock physics domain, highlighting the commonly used denoising methods.

References Porous medium Resolution,

microns

Denoising protocol(s) Denoising

evaluation

Image-based petrophysical

analyses

Culligan et al., 2004 Glass beadpack 18 Median – Saturation, interfacial area

Porter and Wildenschild,

2010

Beadpack 11.8, 5.9 Anisotropic diffusion,

Median

Qualitative Interfacial area

Landry et al., 2011 Acrylic Beadpack 25.9 Median – Surface and interfacial area

Iglauer et al., 2012 Clashach Sandstone 9 Anisotropic

regularization

– Porosity, residual oil saturation,

residual oil cluster distribution

Brown et al., 2014 SiO2 Beadpack 10.6, 5.3 Median, total variation,

majority

Qualitative Saturation, interfacial area, mean

interface curvature

Andrew et al., 2014 Bentheimer SS

Doddington SS

Ketton LS

Mount Gambier LS

Estaillades LS

6.16

5.39

4.60

4.44

3.93

Non-local means – Pore size distribution, trapped

residual scCO2 saturation,

trapped scCO2 ganglia size

distribution

Alyafei et al., 2015 Berea SS

Doddington SS

Ketton LS

Estaillades LS

2.7, 5.4, 10.8,

21.6

Wavelet-Fourier filter,

anisotropic

regularization

– Porosity, pore size distribution,

permeability

Freire-Gormaly et al.,

2015

Indiana Limestone

Pink Dolomite

7.5, 8.3,

11.07

Median – Porosity, pore size distribution,

pore and throat radius,

coordination number,

pore-to-pore distance, capillary

pressure

Menke et al., 2016 Estaillades LS

Portland Base bed LS

4.76 Non-local means – Porosity, permeability, specific

surface area

Al-Menhali et al., 2016 Estaillades LS 4.9 Non-local means – CO2 and N2 saturation, ganglia

morphology, and distribution,

in-situ contact angles

Berg et al., 2016 Gildehauser SS 2.2 Non-local means – Porosity, saturation, permeability,

relative permeability

AlRatrout et al., 2017 Ketton Limestone 3.28 Non-local means – In-situ contact angles

Verri et al., 2017 Tight rock 1

Tight rock 2

Sandstone 1

Sandstone 2

2.175

2.73

2.13

2.05

Bilateral, non-local

means

Qualitative Porosity, specific surface area,

equivalent pore diameter,

permeability, tortuosity

Singh et al., 2017 Ketton LS 3.28 Non-local means SNR Local capillary pressure, oil

saturation

Gao et al., 2017 Bentheimer SS 6 Non-local means – Saturation, relative permeability

Lin et al., 2018 Bentheimer SS 3.58 Non-local means SNR,

Average

phase

boundary

sharpness

Interfacial curvature, local

capillary pressure

Rücker et al., 2019 Ketton LS 3.28 Non-local means – In-situ contact angles, fluid

distribution as a function of pore

size

Tawfik, 2020 Indiana LS 2.6 Anisotropic diffusion Qualitative In-situ contact angles

Purswani et al., 2020 Sintered glass frit 6, 18 Non-local means – Porosity, saturation, interfacial

area, connectivity

Sidorenko et al., 2021 Tight SS 1.2 Residual

encoder-decoder

network (RedNet)

SSIM, L1,

L2, VGG-

perceptual

–

Niu, 2021 Sintered glass frit 15 Non-local means Qualitative Porosity, saturation, in-situ

contact angles

Alsamadony et al., 2021 Carbonate rock 14 Pre-trained very deep

SR (VDSR), U-Net

SSIM, L2 –

LS, limestone; SS, sandstone.
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TABLE 2 | Properties of the porous core sample (Niu, 2021).

Diameter, in 0.5

Length, in 2.0

Porosity, % ∼14.7

Absolute permeability, mD 630.4

Pore size distribution, µm 250–500

Inner surface (BET), m2/g ∼0.015

We also compare computational resource requirements and
ease of implementation of the different methods and provide
recommendations. From quantitative comparison, we show the
utility of physics-informed evaluation based on petrophysical
property estimation. From this exercise, we address the following
research questions: can sophisticated denoising protocols yield
a reasonable characterization of a saturated porous medium
using fast X-ray scanning with low-exposure time? Can we use
a reduced number of, or no clean reference images and still
yield accurate petrophysical characterization estimates using low-
exposure MCT images?

METHODOLOGY

Image Acquisition
In this section, we briefly describe the experiment conducted
by Niu (2021) to generate the datasets used in this study. The
MCT images used in this study are of a fritted Robu-type glass
(borosilicate) filter procured from Adam & Chittenden Scientific
Glass Cooperation. This porous medium was selected as a proxy
for real rocks to minimize changes that typically take place in real
rock samples when fluids are injected, such as dissolution, which
can alter the results of the study. The core sample properties are
given in Table 2.

The experimental procedure consisted of wrapping the
core sample in a heat shrink jacket and placing it in an X-ray
transparent Core Lab biaxial FCH series core holder (CoreLab,
2021; https://www.corelab.com/cli/core-holders/x-ray-core-
holder-fch-series). This core holder is made of an aluminum
body wrapped in carbon fiber composite, which reduces
the holder’s X-ray absorption capacity during scanning. The
porous medium is saturated with high salinity brine that has
a composition representative of a saline aquifer (Tawfik et al.,
2019). Brine was pre-equilibrated with CO2 at 1,500 psi and
45◦C before being used to saturate the core. The core sample
was then flooded with supercritical CO2 (scCO2) at a pore
pressure of 1,180 psi and temperature of 41.7 ± 0.2◦C (107.06
± 0.36◦F), as well as confining pressure of 1,430 ± 50 psi. The
confining pressure was applied by injecting deionized water into
the annular space of the core holder. The high pore pressure and
temperature enabled the maintenance of scCO2 conditions.

The MCT images were acquired using a GE v|tome|x L300
multi-scale nano/microCT system, using the 300 kV X-ray tube.
Two datasets were acquired at the same voxel resolution of 15
µm: a high-quality (HQ) scan, where more exposure time was
allowed to reduce noise. The second dataset was a low-quality

TABLE 3 | MCT scanning parameters.

HQ LQ

Resolution, µm 15

Voltage, kV 200

Current, µA 70

Magnification 13.5X

Scanning time, min 90 12

(LQ) scan which was under the same experimental conditions,
using the same scanning parameters except for exposure time,
where less scanning time (∼7.5 times less) was needed to produce
a noisier version of the HQ dataset. The HQ dataset is used in
this study as a ground truth to evaluate the different denoising
methods and compare the petrophysical properties computed
using the different denoised datasets. The HQ dataset is also
used as a clean reference dataset to train the model for some of
the DL denoising algorithms, which are discussed later in this
section. The scanning details for both datasets are presented in
Table 3. The sinograms generated during image acquisition were
reconstructed using GE’s proprietary GPU-based reconstruction
software datos|x 2 reconstruction.

Selection and Implementation of Denoising
Methods
The datasets obtained from the scans contain 2,024 32-bit images.
Pre-processing of the datasets involved extracting a cylindrical
sub-volume to eliminate the core holder and heat shrink jacket.
Additionally, the top 103 and bottom 490 slices were removed to
eliminate the cone-beam effect, which is typically observed at the
top and bottom of the scan volume.

Non-learnable, Traditional Denoising Filters
Numerous filtering algorithms have been developed for reducing
image noise to make the gray-scale CT images ready for the
image segmentation step, after which feature extraction and
quantitative analysis is carried out. In this study, we focus
on the errors incurred particularly during the denoising step.
Denoising may take place before image reconstruction by taking
advantage of existing statistical models of noise, derived from an
understanding of its physical origin. However, due to missing
visual perception, operations performed on a sinogram might
have unpredictable effects on real features post reconstruction
(Matrecano et al., 2010). On the other hand, post-reconstruction
filters are pixel-to-pixel transformations of an image. This
transformation is based on the gray-scale intensity of each pixel
and its neighboring pixels (Machado et al., 2013). They can be
classified as low-pass or high-pass filters; a low-pass filter is used
for image smoothing, whereas a high-pass filter is typically used
for image sharpening. Some of the most commonly used filters
include Gaussian filter, median filter, NLM, and AD filter.

The Gaussian filter is a low-pass filter that uses a Gaussian
function. Applying this filter involves convolving an image with
a Gaussian function, which may result in a blurrier image. A

Frontiers in Water | www.frontiersin.org 5 January 2022 | Volume 3 | Article 800369

https://www.corelab.com/cli/core-holders/x-ray-core-holder-fch-series
https://www.corelab.com/cli/core-holders/x-ray-core-holder-fch-series
https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Tawfik et al. Comparative Study of Denoising Approaches

median filter is also a low-pass smoothening filter. It replaces
the gray-scale value of each pixel with the median of its
neighborhood. The neighborhood is pre-specified by the user as
6 faces, 18 edges, or 26 vertices. The process may be repeated
to further smooth the image. The median Filter usually works
well when images contain non-Gaussian noise and/or very small
artifacts. The NLM filter first proposed by Buades et al. (2005)
assumes the noise to be white noise. The value specified for the
target voxel is a weighted-average of neighboring voxels within
a user-specified search window. The weights are determined by
applying a Gaussian kernel based on the similarity between the
neighborhoods. The AD filter (Weickert, 1996) also known as the
Perona-Malik diffusion, aims to reduce image noise within each
phase while preserving edges and boundaries between phases.
Typically, a diffusion stop criterion that exceeds the variation
within a given phase is set to identify when diffusion should no
longer take place to terminate diffusion and preserve edges. If
this stop criterion is set to themaximum difference between voxel
intensity values, diffusion never stops and the AD filter converges
to a simple isotropic Gaussian filter. Some of the other used filters
applied include Bilateral, SNN, Total variance, Nagao, Kuwahara,
BM3D, Minimum, and Maximum filters.

The image processing software Avizo (v2020) was used to
implement the simple filters, including the Gaussian, median,
NLM, AD, bilateral, and SNN filters. For the Gaussian filter,
the standard deviation was set to two voxels, and the kernel
size was set to nine voxels in each direction. The median
filter neighborhood was set to 26 (vertex neighborhood), and
a total of three iterations are performed. The NLM filter
was implemented using the adaptive-manifolds-based approach
(Gastal and Oliveira, 2012). The search window was specified
to be 500 voxels, and the local neighborhood was set to four. A
large enough search window is selected to increase the chances
of finding similar structures and phases. The local neighborhood
value was determined such that it is similar in size to the fine
structures that can be found in the image. Spatial standard
deviation (which determines the relationship between how fast
the similarity value decreases as distance between the target
and neighboring voxel increases), was set to five. Similarly, the
intensity standard deviation (which determines the relationship
between how fast the similarity value decreases based on voxel
intensities) was set to 0.2. For the AD filter, a total of five
smoothing iterations per image is performed, with the diffusion
stop threshold set to 0.048. That is, if the difference between
the target voxel value and the value of its neighboring six voxels
exceeds this stop threshold value, diffusion will not occur, hence
preserving and enhancing phase interfaces. The bilateral filter
parameters were kernel size = 3 and similarity = 20. Finally,
for the SNN filter a kernel size of 3 was used. It is evident that
these simple filters rely heavily on the user and their experience
which lend themselves to likely bias. As such, there is a need for
non-user-based denoising protocols.

Deep Learning Denoising Methods
A few notable DL-based denoising algorithms have been selected
based on their architecture and input requirements. The most
common architectures for encoder-decoder based denoising are

U-Nets, GANs and RDNs. U-Nets are a sequence of contracting
and expanding convolution blocks (forming a “U” shape)
originally proposed by Ronneberger et al. (2015) for the purpose
of biomedical image segmentation. U-Nets have the ability to
accumulate hierarchical features at multiple resolutions and
maintain sharpness throughout the decoding process (Diwakar
and Kumar, 2018). Residual dense networks, on the other hand,
are inspired by the neural connections present in a human brain.
Here, output of a convolution block is combined with its input
to help train deeper neural networks and maintain a version
of the original input features. Residual dense networks have
lately shown that accumulating features through local and global
residual learning can significantly improve image restoration
(Zhang et al., 2021). Finally, GANs, are a recent addition to the
neural network family which are designed to generate data in
a semi-supervised setting. The primary reason for the success
of GANs, however, is its robust loss function which inherently
accommodates several noise removal objectives like L1 distance,
distribution matching etc. (Yang et al., 2018). This advantage
proves essential in denoising tasks where noisy inputs have to be
mapped to clean outputs.

In each of the above architectures, a state-of-the-art model has
been identified and used for comparison against the traditional
filter-based denoising techniques. Noise-to-clean is a U-Net
proposed by Lehtinen et al. (2018) which learns to minimize
a mean absolute error (MAE) distance between the denoised
image and its corresponding clean reference. Similarly, residual
dense network by Zhang et al. (2021) is a residual network
aimed at improving fine-grained features in the restoration of
noisy images. Cycle Consistent Generative Adversarial Denoising
Network (CCGAN) by Kang et al. (2019) is multi-stage GAN
network originally designed to denoise coronary CT images.
The three models mentioned above use a supervised approach
where they extract the 1:1 mapping between noisy and clean
pixel intensities. However, in practice, clean reference MCT
images are costly and hard to obtain, since this equates to
higher X-ray exposure, longer scan durations and other noise
prevention techniques which may not be cost- and/or time-
efficient. For this reason, an evaluation involving unsupervised
machine learning approaches is essential for practical purposes.
In this direction, noise-to-noise by Lehtinen et al. (2018) is a
reference-less approach based on a U-Net architecture and used
for removing common noise forms present in images. Similarly,
N2V is another unsupervised technique introduced by Krull et al.
(2019), which uses pixel manipulations to infer the presence
and removal of noise. Noise-to-noise ratio is a unique model
which tries to estimate the unvarying signal behind varying
noise realizations. This is intuitively similar to removing moving
tourists in an unchanging scenic photo. The training for N2N
requires the addition of a synthetic noise profile which matches
low dose signal. For our purpose, we use a mixture of Poisson-
Gaussian along with Perlin noise textures to simulate random
noise. For the Poisson-Gaussian mixture, we first simulate the
Poisson process using the pixel intensities as the mean (λ). We
then scale this value with a Gaussian factor using mean (µ) of
0 and standard deviation (σ) that is randomly picked between
0 and 0.005. For the Perlin noise, we use a simplex model with
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scale set to 5, octaves to 6, persistence to 0.5, and lacunarity to 2.0
which showed the best match for the texture. Such profiles have
been shown to emulate low-exposure noise in CT images (Lee
et al., 2018). The model then learns to estimate the mean of the
signal through several iterations. For test purposes, we do not add
any noise and since the model is already accustomed to removing
similar noise profiles, the denoising is successful.

Fully supervised and fully unsupervised DL models account
for the best and worst-case scenarios of data availability,
respectively. In this study, we propose new semi-supervised
denoising models, where we use limited number of HQ high-
exposure images to denoise a larger LQ low-exposure dataset.
This can be applicable in several scenarios, including: (1) when
the full length of a core sample needs to be scanned at a high
resolution, yet resources in terms of time, availability, andmoney,
are limited, and (2) when the processes or state of the core
sample we are interested in visualizing changes quickly, and a
fast, low exposure scan is deemed necessary (Gao et al., 2017),
and (3) to avoid or minimize drift errors resulting from increased
temperature of the experimental setup during longer scans,
which leads to deviation of a feature from its original location
due to mechanical and thermal stresses (Probst et al., 2016).
Therefore, we extend the use of the N2N model to accommodate
three HQ to LQ ratios where N2N25 is the scenario where 25% of
the LQ data has a corresponding HQ reference image while 75%
has no clean reference. Similarly, N2N50 and N2N75 indicate
scenarios with a higher percentage of clean reference images. In
the literature, fully supervised models use MAE between pixel
intensities (L1 loss) to learn the mapping, whereas models like
N2N and N2V, utilize a mean squared distance error (L2 loss).
We propose a combination of the losses to reflect our semi-
supervised task in training. For N2N25, we scale the L1 loss
with a 0.25 weight and the L2 loss with a 0.75 weight. Similarly,
for N2N50 and N2N75, we modify the weights to reflect the
percentage of clean references. Using either L1 or L2 only yielded
lower PSNR and SSIM values. Table 4 details the models and
their specifications.

For the DL models, we split the training and testing data
using a 80–20% non-overlapping split where 286 slices are
randomly sampled from each of the LQ and HQ datasets and
reserved for testing and validation, while the remaining 1,140
slices are used for training. The slices are reshaped to 512 ×

512-pixel resolution using bicubic interpolation (Keys, 1981)
in order to accommodate GPU memory limitations. After the
model has been trained and evaluated, the original 800 × 800
resolution is obtained through similar bicubic interpolation.
All the models are trained in accordance with their original
implementation. Some hyperparameters are optimized to obtain
the best possible performance from the model. Further details
about the architecture, input requirements and choice of hyper-
parameters like batch sizes, learning rate and number of epochs
are provided in Table 4. We perform training over 200 epochs
and use the ADAM optimization algorithm for all the models.
We pick the epoch with the lowest validation PSNR in order
to perform testing. Upon the completion of training, the
evaluation is performed on the held out 286 slices from the
test set. For all the models, ADAM optimization was used
(Kingma and Ba, 2015).

Standard Quantitative Denoising
Evaluation Metrics
Traditionally, image degradations that take place during
acquisition, reconstruction, processing, and storage have been
evaluated qualitatively by visual inspection and subjective
assessment based on the assumption that human visual
perception is highly adapted to extract structural information
(Wang et al., 2004). However, as more data is being generated
and more complex structures are being studied, it becomes
increasingly difficult to rely on just human inspection. Thus,
efforts to automate image quality assessment have been
undertaken since 1972, when Budrikis developed one of the
first quantitative measures to predict perceived image quality
(Budrikis, 1972). These metrics have since evolved to match
modern imaging and perceptual standards.

Peak Signal to Noise Ratio (PSNR)
Peak signal to noise ratio is a comparative metric widely used
to determine noise degradation in an image with respect to a
clean reference. Peak signal to noise ratio is an expression for the
ratio between the maximum possible value (power) of a signal
and the power of distorting noise that affects the quality of its
representation. It is measured in decibels (dB) and the higher
the PSNR, the better the image. Theoretically, PSNR for the HQ
image is not defined and so it is manually set to 100 dB. In our
setting, we calculate the PSNR on the test set which has not
been used for training the models. The PSNR value reported
for a model is averaged over the previously 286 held-out slices
from the test set. The PSNR of the LQ slices act as a baseline
for comparison.

Structural Similarity Index Measure (SSIM)
Unlike PSNR, SSIM is a perceptual metric which is not based
on pixel intensities but rather on structural similarity between
the denoised and the clean reference images (Wang et al.,
2004). This is especially important when trying to evaluate
fine-grained details and edges. It ranges from 0 to 1, where
higher SSIM indicates a cleaner image. Similar to PSNR each
of the SSIM values are calculated and averaged. The equation
for the SSIM calculation is detailed in the Appendix in
Supplementary Material.

Blurring Index
Many denoising algorithms focus on removing high-frequency
components which correspond to noise. However, this leads to
blurry images with fuzzy edges and high smoothness. Blurring
index penalizes such images with a lower blurring index score.
Occasionally, some DL models, smoothen regions based on
expected intensity values leading to the removal of sharp high
frequency noise elements. Though this is beneficial, the models
obtain lower blurring index (BI) scores. The implementation of
BI is detailed in the Appendix in Supplementary Material.

Contrast to Noise Ratio (CNR)
In grayscale images, a vital requirement of restoration models
is the ability to separate foreground region intensities from
the background noise. Contrast-to-noise ratio (CNR) is a
reference-less metric which yields a higher value for higher
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TABLE 4 | Parameters selected for the DL-based denoising algorithms used in this study.

Model Architecture Input Requirement Selected

Epoch*

Batch Size Initial Learning

Rate

Learning Rate

Algorithm

Loss Function

CCGAN GAN LQ, HQ 198 4 slices 0.001 Plateau LAdv + LCyc + LIden

RDN Dense residual

network

136 0.0001 Step L1 (MAE)

N2C U-Net 167 8 slices 0.001 Exponential

N2N-75% LQ, 75% HQ 177 (0.75*L1) + (0.25*L2)

N2N-50% LQ, 50% HQ 172 (0.50*L1) + (0.50*L2)

N2N-25% LQ, 25% HQ 138 (0.25*L1) + (0.75*L2)

N2N LQ 195 L2 (MSE)

N2V 171 32 (128 × 128)

patches

Linear

*Selected epoch is based on the lowest validation PSNR.

contrasts and lower values for indistinguishable foreground and
background regions. The higher the CNR, the cleaner the image,
which makes it easier to segment the different phases. Our
implementation follows Shahmoradi et al. (2016), where we
identify six key regions of interest (ROI) including a background
region from 10 random slices in the denoised test set. A detailed
explanation of the CNR formula is provided in the Appendix in
Supplementary Material.

Blind/Reference-Less Image Spatial Quality

Evaluator (BRISQUE)
Blind/reference-less image spatial quality evaluator (BRISQUE)
helps understand the presence of noise in an image without
the use of a reference (Mittal et al., 2011). It relies on spatial
statistics of the natural scene (NSS) model of locally normalized
luminance coefficients in the spatial domain, as well as the model
for pairwise products of these coefficients in order to extract
spatially dense variances which occur in noisy images. We use
the publicly available PyBRISQUE-1.0 software package (2020)
for the implementation of this metric (https://pypi.org/project/
pybrisque/).

Naturalness Image Quality Evaluator (NIQE)
Naturalness image quality evaluator (NIQE) unlike BRISQUE
computes distortion specific features such as ringing, blur, and
blocking to quantify possible losses of “naturalness” in the
image due to the presence of distortions, thereby leading to a
holistic measure of quality (Mittal et al., 2013). For this, we use
the skvideo.measure.niqe package from the Scikit-Video library
version 1.1.11 (Skvideo, 2013; http://www.scikit-video.org/
stable/modules/generated /skvideo.measure.niqe.html). Each of
the 286 slices are individually passed through the function and
the scores are averaged for each model.

Physics-Informed Quantitative Denoising
Evaluation Metrics: Petrophysical
Characterization
Physics-informed denoising evaluation is performed through the
estimation of petrophysical properties extracted from image data.
To estimate these petrophysical properties, the denoised images

TABLE 5 | Features selected for segmentation for the different datasets using

ilastik.

σ0 σ1 σ2 σ3 σ4

Feature 0.3 0.7 1 1.6 3.5

Color/Intensity

Gaussian smoothing ✓ ✓ ✓ ✓ ✓

Edge

Laplacian of Gaussian ✓ ✓ ✓ ✓ ✓

Gaussian gradient magnitude ✓ ✓ ✓ ✓ ✓

Difference of Gaussians ✓ ✓ ✓ ✓ ✓

Texture

Structure tensor eigenvalues ✓ ✓ ✓ ✓ ✓

Hessian of Gaussian eigenvalues ✓ ✓ ✓ ✓ ✓

need to be segmented to extract phase labels. In order to highlight
the effect of different denoising approaches, and their effect on
image-based rock and fluid property estimates, we used the same
segmentation method on all denoised data. The segmentation
method used was Ilastik1, a supervised machine-learning based
segmentation tool that is built using a fast random forest
algorithm (Sommer et al., 2011). The user manually provides a
limited number of voxel labels for training. We maintain the
same features among the different denoised datasets (Table 5).
An almost equal number of marker voxels were selected for each
of the three phases (solid/glass, brine, and scCO2). Also, the
number of markers was kept to a minimum (∼0.005% of sample
voxels) to avoid overfitting. The same number of marker voxels
per slice is maintained across all the datasets to minimize bias.

The use of quantitative denoising evaluation metrics is
a good practice over qualitative and subjective assessment
of image quality. However, a HQ image as determined by
standard denoising evaluation metrics may not necessarily
render the most accurate estimate of petrophysical properties,

1Ilastik (2021). Available online at: https://www.ilastik.org/ (accessed January 4,

2021).
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either due to insufficient noise removal, or excessive filtering
which results in information loss. Therefore, we evaluate
the implemented denoising algorithms based on how various
calculated petrophysical properties compare to those calculated
using the HQ benchmark dataset. To achieve this, a toolbox was
developed in Matlab R2019a to calculate different petrophysical
properties, including (1) porosity, (2) saturation, (3) phase
connectivity, which is represented by phase specific Euler number
(phase Euler number divided by the phase volume), (4) phase
SSA, which is calculated as the area of a given phase divided by
its volume, (5) fluid-fluid interfacial area, (6) mean pore size, and
(7) mean scCO2 blob volume. We also calculate phase fractions
per slice along the length of the core.

RESULTS AND DISCUSSION

In this section, we first describe the denoising results qualitatively
by visual comparison of denoised datasets to the HQ ground
truth images. Next, we present quantitative comparison results.
The first set of quantitative comparison include standard metrics.
Finally, we compare the quantitative petrophysical results of the
denoised images post segmentation against the ground truth HQ
segmented images.

Qualitative Evaluation of Denoising
Methods
Figure 1 shows top view cross-sections from the HQ and the
LQ data sets. The LQ image is evidently noisier than the HQ
image. We have also marked regions to highlight spatial feature
differences between the HQ and LQ images and associated
implications for petrophysical property estimation. The red
region shows that some small solid features can be inaccurately
characterized as fluid, resulting in porosity estimation errors,
while the green region demonstrates a blurry fluid-fluid interface
in the LQ image, which can lead to errors in estimating fluid
saturation and petrophysical properties pertaining to fluid–fluid
interfaces. Similarly, the blue region shows an example where
the solid phase can be falsely characterized as connected in
the LQ image, while the HQ image shows some disconnection
of the solid phase. This could result in errors in topological
characterization, such as Euler number calculations for the
solid phase.

A cross-sectional image for each of the HQ dataset, LQ dataset
and the denoised datasets are shown in Figure 2. Visually, the
NLM filter results in an overall smoother image with significantly
less variation within each phase (solid, brine, and scCO2), as
it replaces the value of each voxel with the mean of similar
voxels within the search window. The median and SNN filters
also visually exhibit smoother phases, compared to the AD
and bilateral filters. Conversely, the Gaussian filter expectedly
results in image blurring, which can highly affect the accuracy of
calculated interfacial petrophysical properties, such as interfacial
area and mean interface curvature. The reference-based DL
methods qualitatively show good performance compared to
traditional filters. Noise-to-clean and CCGAN show a superior
performance over RDN, with smoother phases and sharper

edges. However, comparing the two models (N2C and CCGAN)
with the HQ reference image, CCGAN resembles the reference
image more closely in some features (highlighted in the blue
circles), while N2C resembles the reference image more closely in
other features (highlighted in the green circles). This exemplifies
that qualitative or visual evaluation of denoising models is
not a sufficient means of evaluation when deciding on the
best denoising model to use. Reference-less DL methods (N2V
and N2N) show little improvement compared to the LQ
dataset. Finally, the semi-supervised DL methods show visually
promising results, where the N2N-75% and N2N-50% show
significant improvement compared to LQ.

The histogram representing the distribution of gray-scale
intensities within a dataset can be used to qualitatively assess
image quality. In our dataset, where we expect to see three
phases—solid glass, brine, and scCO2, an ideal histogram would
have three well-defined peaks with varying maximum voxel
count, depending on the abundance of the phase represented by
that peak in the imaged sample. The more distinguishable those
peaks are, the sharper the phase boundaries and interfaces, and
the easier the segmentation. Also, the smaller the spread of each
peak, the smoother the bulk phase is (i.e., the phase is represented
by less gray-scale values indicating a more homogeneous or
smooth bulk phase). In Figure 3, we show the histograms of
the HQ, LQ, and denoised datasets. The solid glass peak has
the highest voxel count in all datasets, as expected, being the
most abundant phase in our sample. We also observe a clear
difference between the HQ and LQ datasets, where we can see
three peaks in 3a, but only one visible peak in 3b, whichmakes the
differentiation between scCO2 and brine more difficult. From the
denoised dataset histograms, the supervised and semi-supervised
DL denoising models perform better than traditional and un-
supervised DL denoising methods. Also, we observe that the
issue of fluid-fluid differentiation (where we can’t see all three
peaks) persists when using the bilateral, N2V, N2N25, and N2N
denoising methods. We also observe that some denoising models
possibly outperformed the HQ dataset where the three peaks are
even more distinguishable, including N2C, RDN, CCGAN, and
N2N75. Additionally, upon comparing 3i and 3k with 3j, we can
see results consistent with our observations from Figure 2, where
N2C and CCGAN have more well-defined and narrower peaks
compared to RDN. Despite the additional insight obtained from
inspecting the gray-scale intensity histograms, histograms alone
cannot be used to infer image quality. The histogram indicates
the distribution of pixel intensities but not their location. This
calls for a more localized inspection of the images to assess how
voxel spatial distribution impacts the accuracy of petrophysical
property estimates.

Quantitative Evaluation of Denoising
Methods
Figure 4 demonstrates amore quantitativemethod for evaluating
the performance of the different denoising models using an
intensity profile along a line A–A′. Here, we use N2C as an
example. From this profile, we can obtain insights on the (1)
smoothing effect within each phase by comparing the plateau
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FIGURE 1 | (a) Sample cross-sectional slice from the HQ dataset, (b) Sample cross-sectional slice from the LQ dataset. Dashed boxes represent spatial features that

demonstrate differences between the two datasets. The red box represents an example region which can cause deviation in calculated porosity. The blue box

represents an example region which can cause deviation in calculated connectivity. The green box represents an example region which can cause deviation in

calculated saturation.

of the noisy LQ dataset to that of the HQ and denoised
dataset, and (2) contrast enhancement, which can be assessed
by comparing the difference in intensities between the different
phases. A larger difference implies an improvement in contrast,
and finally (3) we can also assess phase boundary sharpness by
calculating the steepness of the slope at each phase boundary.
A steeper slope indicates a sharper boundary, which makes
it more easily identifiable during image segmentation and
petrophysical characterization. In Figure 4, we observe that the
HQ profile exhibits oscillations within each phase, which shows
that noise still exists in the HQ data, but the amplitude of
those oscillations is smaller, which implies less noise and more
homogeneous phases. We also observe slightly higher average
intensity for the solid and brine phases in the HQ profile
compared to the LQ profile. Additionally, we observe that N2C
has improved the image quality on all three aspects: smoothing
bulk phases, improving contrast between phases, and improving
boundary sharpness. The scCO2-solid phase boundary has the
most improvement in boundary sharpness with ∼28% increase
in slope.

Example regions are highlighted in Figure 5a, following
the workflow proposed by Shahmoradi et al. (2016) to assess
local image quality using CNR. ROI-0 corresponds to the
background which is used to calculate the CNR of other regions.
ROI-1 corresponds to brine with no interfaces, while ROI-2

corresponds to the scCO2 phase, and ROI-3 corresponds to
the solid phase. In addition, two interface regions, ROI-4,
an interface between solid and brine and ROI-5, an interface
between solid and scCO2 are also considered. We pick a random
slice and indentify ROIs 1–5 in the next 22 consecutive slices.
Figures 5b,c show localized average CNR values within bulk
phases and at solid-fluid interfaces, respectively. We see that
all denoising models, except for N2V, result in an improved
CNR both in bulk phases and at interfaces. Supervised DL
denoising models result in the largest CNR improvement,
with N2C being a top performer. The N2N75 model also
yields similar results as fully supervised denoising models,
which is promising for cases where not all the HQ data is
available. We also observe that the N2N25 model results in
lower average CNR compared to N2N, which can be counter
intuitive. However, this could be due to the inherent training
objective of the model. The base N2N model estimates the
mean of the signal and uses multiple noisy versions of the
same signal to do so. However, when a small number of
clean samples are provided, the network’s estimate of the
mean diverges from the expected value, which negatively affects
learning. When provided with enough clean samples (50% or
greater), the model converges to the mean more accurately
compared to the base N2N or N2N25 versions. Comparing
the improvement within bulk phases and at phase boundaries,
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FIGURE 2 | Qualitative comparison of the performance of the different denoising methods through example cross-sectional slices. (A), HQ reference; (B), LQ;

(C),Gaussian; (D), Median; (E), Non-local means; (F), Anisotropic diffusion; (G), Bilateral; (H), Symmetric nearest neighbor; (I), Noise-to-clean; (J), Residual dense

network; (K), Cycle consistent generative adversarial network; (L), Noise-to-void; (M), Noise-to-noise (75%); (N), Noise-to-noise (50%); (O), Noise-to-noise (25%);

(P),Noise-to-noise.

we do not see a significant difference, indicating that all
denoisingmethods improve contrast homogeneously throughout
the image. Although quantitative, one limitation of the type

of analysis performed in Figures 4, 5 is that they evaluate the
performance of the denoising models locally, which requires
manual selection of specific sites. A comprehensive denoising
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FIGURE 3 | Qualitative comparison of the performance of the different denoising methods through gray-scale histograms.

FIGURE 4 | (Left) Example cross-sections through the high quality (HQ), low quality (LQ) and Noise-to-Clean (N2C) datasets. (Right) Normalized gray-scale values

along a line (A-A′) passing through the solid, brine, and scCO2 phases in the example cross sections. Slopes at the phase boundaries are indicative of phase

boundary sharpness for the HQ, LQ, and N2C profiles.
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FIGURE 5 | Comparison of contrast-to-noise (CNR) ratio for denoised datasets against noisy LQ dataset. (a) Example regions of interest (ROI 1–5) considered for

bulk and edge CNR calculations are shown in red boxes. ROI 0 represents the background ROI against which contrast is calculated. (b) Average CNR of bulk phases

(solid, brine, scCO2) in 22 slices, and (c) Average CNR of phase boundaries (solid-brine and solid-scCO2) in 22 slices.

TABLE 6 | Quantitative comparison of denoising algorithms using standard denoising evaluation metrics.

Models PSNR SSIM Blur index CNR BRISQUE NIQE

HQ Images (Reference) 100* 1* 0.724 19.233 118.183 26.645

LQ Images 18.224 0.507 0.634 21.472 106.619 25.517

Traditional filters















































Gaussian 23.378 0.769 0.783 34.584 116.833 26.875

Median 24.593 0.716 0.753 30.504 118.237 27.173

NLM 25.396 0.760 0.715 36.018 116.948 26.900

AD 25.019 0.700 0.735 29.326 118.336 27.287

Bilateral 24.271 0.652 0.706 26.384 117.239 27.164

SNN 22.354 0.677 0.789 30.139 118.065 26.713

Fully supervised DL models











N2C 24.702 0.798 0.752 46.517 116.387 26.874

RDN 25.397 0.785 0.730 40.313 116.443 26.902

CCGAN 24.716 0.795 0.728 39.702 116.536 26.875

Semi-supervised DL models















N2N-75% 25.332 0.800 0.726 40.413 116.774 26.884

N2N-50% 24.518 0.716 0.711 28.356 118.799 27.325

N2N-25% 23.084 0.636 0.687 24.019 117.427 26.860

Un-supervised DL models

{

N2N 23.339 0.650 0.718 25.099 117.707 26.981

N2V 20.607 0.546 0.662 21.569 112.048 26.356

Colors represent how well a model performs compared to the rest of the models for a given denoising evaluation metric.

*PSNR and SSIM are calculated with respect to HQ reference and thus are set to 100 and 1 for HQ inputs, respectively.

model performance evaluation is quantified using standard
evaluation metrics detailed in Table 6.

The CNR value reported here represents the average of
the five individual CNR regions detailed earlier (Figure 5).

Of the six metrics measured, the DL models performed the
best in five of them. With Blur Index however, the metric
measures the presence of sharpness which can be spiked by high
frequency noise. The traditional filters failing to remove such
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noise achieve a misleading high blur-index score. Though the
unsupervised models performed poorly, they were comparable to
the traditional filter-based methods. Noise-to-noise ratio had the
lowest values across all the metrics. It is also observed that PSNR
values are generally low across all denoising methods. However,
PSNR uses pixel distance and may incorrectly favor models that
have higher resemblance to the HQ images rather than actual
signal accuracy. The DL models tend to produce images that
appear cleaner than the HQ image but score lower PSNR due to
this reason. Residual dense network had the highest PSNR gain
with an average increase of 7.173 dB. Though it might be possible
for an image to obtain a high PSNR, SSIM penalizes structural
anamolies like blurring, noise contamination, wavelet ringing,
and blocking (caused by image compressions like JPEG) leading
to lower SSIM scores.

Each evaluation metric points to unique capabilities of the
models. For example, a high CNR obtained for N2C makes it
ideal for segmentation tasks while a high SSIM obtained through
N2N-75%modelmakes it favorable for CT image artifact removal
task. The differences observed, however, between supervised DL-
based models and N2N-75% in terms of SSIM are not statistically
significant, meaning that they all perform equally well for this
metric. N2N-50% produced the most natural looking images
(NIQE) and can be used to generate additional synthetic clean
samples when only 50% of clean data is available.

We also evaluated the denoising methods using physics-
based metrics, or more specifically—petrophysical properties. To
perform the petrophysical characterization, we first segmented
the datasets. Figure 6 shows example segmented cross sections
from the HQ and LQ datasets. It also shows a difference
image, where the segmented LQ image was subtracted from the
segmented HQ image. The percent mislabeling for each phase
pair: brine-solid, scCO2-brine, and scCO2-solid is 2.46, 0.37,
1.57%, respectively. Based on the percent mislabeling of the
denoised images, we seeminor improvement compared to the LQ
image. Similarly, image subtraction was performed between each
of the denoised images and the HQ image. Noise-to-clean and
N2N75 showed the most improvement especially in CO2-solid
and brine-solid phase mislabeling. The differences are presumed
to be mainly due to the difference in the amount of noise in
each image since the user interference was kept to a minimum
in the segmentation step. Further, the differences within this
single image might seem subtle, but it has a significant effect
on petrophysical characterization performed using the entire
image stack. The full petrophysical characterization and error
quantification against the ground truth is presented in Figure 7

and Table 7.
For petrophysical property estimations, we first consider bulk

measures of phase fractions and saturations along the length of
the core sample. Figure 7 shows the percent errors in porosity,
scCO2 saturation, and brine fraction (measured as brine volume
divided by the bulk volume for the sample space considered)
profiles along the length of the sample for the different denoising
methods post segmentation. The performance of denoising
methods, namely, traditional methods, supervised, unsupervised,
and semi-supervised DL-based methods are compared against

the HQ dataset. Generally, most of the traditional and semi-
supervised DL-based methods show closer results to the ground
truth (Figure 7A). Out of the traditional filters, the median
filter seems to have the closest porosity profile to the ground
truth HQ dataset, followed by the AD and bilateral filters.
Conversely, the Gaussian filter performed poorly, consistently
underestimating porosity. Similarly, NLM, which is one of the
most commonly used filters in the digital rock physics literature,
underestimates porosity throughout the length of the core and
has the second worst performance. Unlike their performance
in terms of standard evaluation metrics (Table 6), supervised
methods show poor performance, consistently underestimating
porosity along the entire length of the sample. Additionally,
the error is increasing toward the bottom of the sample in
most denoising methods, especially Gaussian, RDN, and N2V
methods. Upon inspecting the root cause of this, the original
LQ dataset was noisier toward the bottom of the sample as
evidenced by lower PSNR (Supplementary Figure 1A). This is
mainly due to the aluminum container, covering the bottom half
of the sample, used to fix the coreholder in place during the
scan and avoid wobbling which can result in image blurring
(Supplementary Figure 1B). The Gaussian filter, which is a
linear spatially invariant filter, cannot resolve the noise variation
along the sample. Residual dense network, a very deep network,
could be overfitting the data and therefore less able to adjust to
the varying noise along the sample, compared to other supervised
models (N2C and CCGAN).

When comparing the CO2 saturation error profiles
(Figure 7B), it is observed that traditional methods show
close results, while most of the DL-based methods show poor
performance when compared to the ground truth. Out of the
traditional filters, SNN followed by median filters showed the
most deviation from the ground truth. The Gaussian filter, on the
other hand, had the closest results out of all the denoisingmodels.
Residual dense network and N2N significantly overestimate CO2

saturation. The supervised DL-based methods, except for N2C,
show weak performance while the semi-supervised DL-based
methods show slightly better performance. Noise-to-noise
ratio, as an exception, shows the second-best performance of
all methods, while RDN significantly underestimates scCO2

saturation. Larger error is seen at the top of the sample for all
denoising methods except N2C and N2N75.

As the intermediate phase, brine fraction error profile is
presented as opposed to brine saturation to account for errors
that may result from misclassification of brine as solid or CO2

post-denoising (Figure 7C). Noise-to-clean, followed by NLM
show the least deviation compared to the ground truth, whereas
RDN, CCGAN, and N2N show a significant deviation. Noise-to-
noise ratio also shows a surprisingly close match to the ground
truth brine fraction profile. Overall, these results demonstrate
that even within bulk property estimates, since differences occur
at fluid-fluid and fluid-solid interfaces, consideration of both
porosity and saturation errors is critical. Again, here we see
that N2C and N2N75 are robust enough to maintain consistent
performance throughout the sample even though the dataset has
a spatially varying noise profile.

Frontiers in Water | www.frontiersin.org 14 January 2022 | Volume 3 | Article 800369

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Tawfik et al. Comparative Study of Denoising Approaches

FIGURE 6 | Example segmented HQ image using ilastik, and difference image |HQ–LQ| showing the mislabeling in LQ compared to the HQ image. Red, scCO2-solid

mislabeling; Blue, brine-solid mislabeling; yellow, scCO2-brine mislabeling.

Table 7 summarizes the % errors associated with the estimates
of bulk petrophysical properties, namely porosity and scCO2

saturation, as well as pore-scale properties including, specific
Euler number, SSAs, interfacial area, average pore size and
average scCO2 blob volume. These errors are quantified relative
to the ground truth HQ images. The actual property estimates
for the ground truth HQ images are presented in the first
row of Table 7. Traditional filters like the median, AD and
bilateral filters show an improved porosity estimate compared
to the original LQ images, but the Gaussian filter results in the
highest error for porosity (13.9%). This can be explained by
the blurring caused by the Gaussian filter at phase interfaces,
making it more difficult to locate boundaries, especially where
the gray-scale intensities are less distinguishable like at the solid-
brine interfaces. However, the Gaussian filter shows the best
performance in terms of scCO2 saturation, which may be due to
a larger surface area of the scCO2 phase being in contact with
the solid phase rather than the brine phase, hence, enabling us to
distinguish between the two phases more easily in terms of gray-
scale intensity and labeling. The median filter on the other hand
shows an opposite result where it exhibits better performance

when estimating porosity and poorer performance in estimating
scCO2 saturation. This can be explained by how a median filter
works, where it involves replacing the gray-scale values of voxels
within a user-specified window by their median value. This
means that the small scCO2 blobs observed in the dataset in
the bulk brine phase will be replaced with gray-scale values that
resemble brine, leading to a lower scCO2 saturation (compared
to HQ), but not affecting porosity as much. In general, most
traditional filters perform better for bulk estimates of porosity
and phase saturation, compared to DL-based methods.

For the pore-scale properties, we observe that supervised and
semi-supervised methods show a better performance overall,
except for scCO2 SSA and average pore size, where bilateral and
SNN filters, respectively, show better performance. This can be
attributed to the edge preserving nature of both the bilateral
and SNN filters. For the scCO2 SSA, this allows fine-scale details
like small scCO2 blobs observed in our dataset to be preserved,
leading to a more accurate representation of phase boundaries
and surfaces. Noise-to-clean and N2N75 perform well for most
of the properties with ∼10% error or less. Other methods like
RDN and N2N25 perform poorly with errors as large as 348.28%.
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FIGURE 7 | (A) Porosity, (B) scCO2 saturation, and (C) brine phase fraction percent error (relative to HQ) along the length of the core for the different denoising

methods.
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TABLE 7 | Physics-based comparison of denoising algorithms using bulk and pore-scale petrophysical properties.

Porosity,

%

scCO2

saturation,

%

SEN

(solid),

mm−3

SEN

(pore),

mm−3

SEN

(Brine),

mm−3

SEN

(scCO2),

mm−3

SSA

(Solid),

mm−1

SSA

(Brine),

mm−1

SSA

(scCO2),

mm−1

Interfacial

area,

mm−1

Avg. pore

size,

microns

Avg. scCO2

blob volume,

mm3

HQ 14.940 56.750 −8.709 −67.164 909.459 809.306 4.469 32.115 21.593 24.619 35.778 0.002

LQ 1.14% 7.75% 17.53% 169.22% 70.12% 71.34% 0.51% 12.81% 7.36% 11.63% 13.52% 118.32%

Traditional filters















































Gaussian 13.92% 0.44% 95.60% 180.03% 34.86% 90.46% 20.64% 2.45% 4.94% 1.89% 27.04% 438.94%

Median 0.07% 7.31% 56.79% 52.58% 22.59% 88.73% 3.17% 8.30% 1.55% 5.02% 6.73% 520.31%

NLM 5.42% 4.21% 48.45% 97.74% 11.18% 96.78% 9.85% 3.69% 3.31% 2.97% 21.17% 795.99%

AD 0.80% 6.63% 13.92% 143.82% 4.32% 86.44% 2.22% 10.31% 2.68% 8.10% 9.86% 314.17%

Bilateral 1.00% 5.92% 5.59% 118.58% 11.30% 81.05% 2.05% 8.97% 0.46% 6.24% 5.79% 297.10%

SNN 1.67% 10.20% 62.59% 123.40% 20.61% 105.95% 5.63% 1.09% 4.53% 0.77% 0.28% 1256.85%

Fully supervised 









N2C 5.89% 3.47% 6.39% 7.92% 11.93% 57.78% 7.39% 1.73% 2.77% 0.76% 24.55% 56.40%

DL models RDN 3.01% 20.28% 12.40% 194.80% 53.78% 54.32% 2.63% 0.87% 4.69% 1.73% 57.89% 163.94%

CCGAN 7.16% 12.25% 2.49% 41.32% 49.34% 64.49% 2.62% 11.35% 12.16% 12.50% 59.07% 55.36%

Semi-supervised 









N2N75 1.47% 9.96% 1.37% 65.06% 2.78% 47.54% 0.32% 4.25% 10.40% 1.76% 8.77% 7.15%

DL models N2N50 2.54% 10.96% 91.08% 108.44% 10.42% 90.26% 15.29% 8.10% 3.06% 8.01% 116.57% 569.64%

N2N25 5.29% 13.02% 108.40% 143.58% 86.10% 74.32% 15.87% 16.29% 7.60% 15.40% 68.18% 348.28%

Un-supervised






N2N 1.61% 15.75% 96.86% 128.31% 3.31% 93.10% 10.92% 14.85% 2.06% 11.58% 71.72% 549.56%

DL models N2V 3.61% 2.85% 93.15% 161.36% 117.84% 93.12% 16.64% 10.92% 2.87% 9.89% 35.40% 345.72%

Values represent the absolute % error in the estimate of each petrophysical property compared to the ground truth (HQ images), except for the first row, which represents the actual property values for the segmented HQ images. The

best denoising model for each property is highlighted with bold borders. SEN, specific Euler number; SSA, specific surface area.

F
ro
n
tie
rs

in
W
a
te
r
|w

w
w
.fro

n
tie
rsin

.o
rg

1
7

Ja
n
u
a
ry

2
0
2
2
|
V
o
lu
m
e
3
|A

rtic
le
8
0
0
3
6
9

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles


Tawfik et al. Comparative Study of Denoising Approaches

N2N75 also shows a more superior performance over N2C in
terms of pore-scale estimates, which might not be expected due
to the availability of more clean reference data to train the model
for N2C, and the better overall standard metrics performance
of N2C as shown in Table 6. However, it should be noted that
the higher performance of N2N75 observed in Table 7 can be
attributed to being a closer representation of the HQ data, which
in our study is used as a ground truth. The HQ data is not an
idealistic ground truth data, it has its own noise associated with
it. Therefore, the comparison between N2C and N2N75 is limited
by the amount of noise that is present in the HQ data which is the
reference of comparison. We also observe one exception where
RDN performs better than N2C and N2N75 in terms of brine
SSA. This can be attributed to the ability of the RDN model to
preserve high frequency details, which translates to a better ability
to preserve high contrast phase boundaries and surfaces where
SSA is calculated (Zhang et al., 2021).

Unsupervised DL-based methods (N2N and N2V) generally
exhibit poor performance for most properties compared to other
denoising methods including some of the traditional filters.
This is in line with previous observations made during the
analysis of the standard metrics in Table 6. Semi-supervised
models, as expected, are performing better than unsupervised
models. Counter-intuitively, adding additional information in
low quantities (e.g., N2N25) can sometimes affect the model’s
capability to converge, leading to larger errors, as seen when
we compare N2N and N2N25 errors for most properties. As
we continue to add further information, the model manages
to converge at the best possible parameters, which can also
be seen for most properties when we compare N2N25,
N2N50 and N2N75. We believe this is possible only after
an optimum threshold percentage of clean reference images
are provided.

To decide which denoising methods perform better in terms
of bulk properties (porosity and scCO2 saturation) and pore-
scale properties (SEN, SSA, interfacial area, average pore size
and average blob volume), we sum up the absolute errors
for each of the denoising methods for those two groups of
properties. We also sum up all errors in Table 7 to identify
the overall accuracy of each denoising method in terms
of combined petrophysical characterization. Additionally, an
aggregated standard evaluation metric is calculated by summing
up the values in Table 6 for each method. The four aggregate
metrics are presented in Supplementary Table 1. It is clear from
Supplementary Table 1 that the denoising method selection
should be highly dependent on the type of analysis of interest.
For example, a denoising method that can offer accurate bulk
properties might not be able to provide accurate pore-scale
properties and vice versa. Aggregating the error percentages
point out that N2N75 has the most consistent performance
with the lowest overall error across both bulk and pore-
scale properties while SNN has the highest error in estimating
pore-scale properties and combined petrophysical properties.
Noise-to-clean comes in a close second, however, it requires
the complete HQ reference dataset. Among the traditional
filters, the bilateral filter was the best performer across all
aggregated metrics.

Computational Requirements of DL-Based
Denoising Methods
Another important factor to consider when selecting a DL-based
denoising model is computational requirements. Figure 8 shows
the comparison of computational expenditure for the different
DL-based models. Specifically, we compare the time required to
process a single image slice of 800 × 800 pixels and the memory
requirement which is computed from the parameters required
for training. The system hardware available for implementing
all models was the same (two Nvidia Quadro RTX 6000
GPU systems). Here, the comparison is presented against the
traditional metric of PSNR to show how the models perform with
the use of the required computational resources. We find that the
supervised models, which show higher performance for PSNR,
have substantially different computational needs, where RDN
and CCGAN are approximately 5.6 and 8.6 times slower than
N2C. Similarly, CCGAN is also found to be the most memory
intensive primarily due to the training requirements of four
individual networks while all other models share similar memory
requirements (∼1/6th that of CCGAN). When comparing the
semi-supervised models, all three models (N2N25, N2N50, and
N2N75) require the exact same computational resources both in
terms of processing time and memory requirements. Finally, the
unsupervised models (N2V and N2N) require similar memory
requirements, but N2V is approximately four times slower
than N2N. This could be attributed to the original PIP2 based
implementation of the model. Overall, CCGAN is found to be the
least computationally efficient, whereas N2C, N2N%, and N2N
are the most efficient.

Denoising Method Recommendation
Denoising is a mainstay pre-processing step performed to
improve our ability to detect features and perform more accurate
quantitative analyses using CT images. Comparing denoising
methods through standard metrics and petrophysical property
estimates helps us understand the use-cases in which certain
models perform better. For example, despite performing well in
terms of standard evaluation metrics, supervised DL models like
N2C and RDN rely upon the availability of clean HQ data and
such models cannot be used when such reference data is scarce
or not available. Similarly, downstream tasks also determine the
choice of denoising model. N2N50 can be recommended for
generative tasks where additional synthetic data is required while
N2C can be used if image segmentation is the proceeding step.
Additionally, another important consideration is the availability
of computational resources. Deep learning-based models require
GPU-based systems to perform the training efficiently while
traditional filters only require basic computational resources.

Based on the results we find that there is no one denoising
method that ultimately performs better in all cases. Micro-
computed tomography users are encouraged to adopt a similar
evaluation workflow to derive an optimum denoising method
that works best for their dataset(s) and use case. However,
we present a high-level denoising model recommendation

2PIP (2021). Available online at: https://pip.pypa.io/en/stable/ (accessed January 4,

2021).
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FIGURE 8 | Comparison of computational requirement for the different DL-based denoising algorithms on 2 Nvidia Quadro RTX 6000 GPU systems, in terms of (A)

computation time per (800,800) image, and (B) memory requirements as represented by parameters required for training. Red, fully supervised DL denoising models;

yellow, semi-supervised DL denoising models; green, un-supervised DL denoising models.

in Supplementary Table 2, based upon the different factors
analyzed in this study. Though these factors influence the choice
of a model individually, we list combinations of those factors
to offer model recommendations for different scenarios. We
derive the recommendations from Supplementary Table 1 and
Figure 8 where we illustrate the superiority of some algorithms
over others.

CONCLUSIONS AND FUTURE WORK

Micro-computed tomography image artifacts and alterations
resulting from using a non-tailored denoising protocol can result
in inaccurate image-based characterization of porous media.
In this paper, we present a comprehensive comparison of the
performance of various image denoising methods which are
broadly categorized as traditional (user-based) non-learnable
denoising filters and DL-based methods. The DL-based methods
are further sub-categorized depending on their reliance on
reference data for the training process. Common architectures
are used for supervised and unsupervised methods. We also
proposed new semi-supervised denoising models (N2N75,
N2N50, and N2N25) to assess the value of information and
explore whether faster, lower exposure MCT images can partially
substitute high-exposure datasets, which can be costly and can
also hinder our ability to capture phenomena that occur at
smaller time scales. The datasets used are those of a porous
sintered glass core that has been saturated with brine and scCO2.
We use both qualitative and quantitative evaluations to compare
the performance of different denoising methods. For the latter,
we consider standard denoising evaluation metrics, as well as
physics-based petrophysical property estimates. The following
conclusions are derived based on the analysis of our results,

• Commonly used denoising filters in the digital rock
physics literature, namely NLM and AD, show reasonable

performance in terms of traditional denoising metrics like
PSNR and SSIM. These methods also show reasonable
estimates for the bulk petrophysical properties. However,
when estimating pore-scale properties like phase connectivity,
these methods could result in significant errors. NLM and
SNN filters were found to perform least favorably in terms of
pore-scale petrophysical estimates.

• Qualitative evaluation is usually used in the digital rock
physics literature. However, we show that visual image quality
is not sufficient to select an appropriate denoising algorithm.

• The selection of an optimum denoising model cannot solely
depend on the visual quality of the denoised image, or
even on the standard denoising evaluation metrics. Several
factors need to be considered, including the availability of
computational resources, and the post-processing analysis of
interest. Physics-based petrophysical evaluation metrics are
key in selecting a fit-for-purpose denoising method since a
superior performance based on standard evaluation metrics
may not necessarily indicate a superior performance in terms
of petrophysical characterization accuracy. Additionally,
there is no single best denoising algorithm across all
petrophysical properties.

• The performance of the newly proposed semi-supervised
methods, especially N2N75, is very promising considering
that less high-exposure data can be used to achieve accurate
petrophysical characterization, while significantly reducing
scanning time and cost. This can also be useful in cases where
the phenomenon being investigated has a short time-scale like
chemical processes and pore-scale flow events. It can also help
minimize rotational drift errors during scans.

• The unsupervised DL models, in general, showed the weakest
performance both on standard and petrophysical evaluation
metrics, with N2V giving the least favorable outcomes across
most properties of interest.

• N2C (fully supervised) and N2N75 (semi-supervised with
75% HQ data) overall showed the most favorable outcomes.
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However, other supervised models like RDN and CCGAN
and semi-supervised models like N2N50 and N2N25 showed
weaknesses either on traditional metrics, petrophysical
estimates, or computational requirements.

This study laid the groundwork for comparing and screening
denoising methods for different use-cases within the digital rock
physics domain. The following tasks are to be addressed in
future work.

• Compare the performance of the different denoising
methods using more complex petrophysical properties like
surface roughness, tortuosity, interfacial curvature, in-situ
contact angles, as well as fluid flow parameters such as
absolute permeability, relative permeability, and capillary
pressure. This comparison can enable optimum image
processing workflow selection for creating accurate digital
rocks that can be used for multiphase flow prediction
and explanation.

• Optimize different denoising methods to accommodate
different types of datasets. For that, we would need to first
investigate the effect of porous medium structure complexity
and image resolution on the performance of the different
denoising methods.

• Use idealized simulated or synthetic ground truth reference
images and test the effect of different types and levels of noise
on the performance of each of the denoising methods, as well
as combinations of the denoising methods.

• To identify the effect of noise in the HQ ground truth images
on the conclusions drawn in this study, the same study can be
conducted while using HQ datasets of varying exposure time.

• Optimize the newly proposed semi-supervised denoising
models to determine the optimum threshold percentage of HQ
high-exposure images that are needed while maintaining high
accuracy of petrophysical analysis.

• Test the hypothesis of whether the sequential use of N2N25
can improve image quality to a point where accurate results
are achievable.

• Explore the merits and drawbacks of sequential vs. co-learning
in DL-based image processing, including reconstruction,
denoising, and segmentation steps.

• Explore more novel unsupervised denoising methods to
remove dependency upon HQ, high-exposure images and
make use of less time and cost intensive scans for accurate
petrophysical characterization.

• Compare the performance of denoising methods pre-
reconstruction vs. post-reconstruction.
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NOMENCLATURE

AD Anisotropic diffusion

BET Brunauer, Emmett and Teller

BI Blurring index

BM3D Block-matching and 3D filtering

BRISQUE Blind/reference-less image spatial quality evaluator

CCGAN Cycle consistent generative adversarial network

CCSIM Cross-correlation-based simulation

CCUS Carbon capture, utilization, and storage

CNN Convolutional neural network

CNR Contrast-to-noise ratio

dB Decibels

DL Deep learning

GANs Generative adversarial networks

GPU Graphics processing unit

HQ High quality

L1 loss Least absolute deviations loss function

L2 loss Least square errors loss function

LQ low quality

LS Limestone

MAE Mean absolute error

MCT Micro-computed tomography

N2C Noise-to-clean

N2N Noise-to-noise with no reference ground truth images

N2N25 Noise-to-noise with 25% of the dataset having reference

ground truth images

N2N50 Noise-to-noise with 50% of the dataset having reference

ground truth images

N2N75 Noise-to-noise with 75% of the dataset having reference

ground truth images

N2V Noise-to-void

NIQE Naturalness image quality evaluator

NLM Non-local means

PSNR Peak signal-to-noise ratio

RDN Residual dense network

ROI Region of interest

scCO2 Supercritical carbon dioxide

SEN Specific Euler number

SNN Symmetric nearest neighbor

SS Sandstone

SSA Specific surface area

SSIM Structural similarity index

VDSR Very deep super resolution

VGG Visual Geometry Group

λ Poisson process mean

µ Gaussian distribution mean

σ Gaussian distribution standard deviation
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