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Industries occasionally discharge slugs of concentrated pollutants tomunicipal

sewers. These industrial discharges can cause challenges at wastewater

treatment plants (WWTPs) and reuse systems. For example, elevated total

organic carbon that is refractory through biological wastewater treatment

increases the required ozone dose, or even exceeds the capacity of the

ozone unit, resulting in a treatment pause or diversion. So, alert systems are

necessary for potable reuse. Machine learning has many advantages for alert

systems compared to the status quo, fixed thresholds on single variables. In this

study, industrial discharges were detected using supervised machine learning

and hourly data from sensors within a WWTP and downstream advanced

treatment facility for aquifer recharge. Thirty-five di�erent types of machine

learning models were screened based on how well they detected an industrial

discharge using default tuning parameters. Six models were selected for in-

depth evaluation based in their training set accuracy, testing set accuracy, or

event sensitivity: Boosted Tree, Cost-Sensitive C5.0, Oblique Random Forest

with Support Vector Machines, penalized logistic regression, Random Forest

Rule-Based Model, and Support Vector Machines with Radial Basis Function

Kernel. After optimizing the tuning parameters and variable selection, Boosted

Tree had the highest testing set accuracy, 99.2%. Over the 5-day testing set,

it had zero false positives and would have detected the industrial discharge in

1h. However, setting fixed thresholds based on themaximumnormal datapoint

within the training set resulted in nearly as good testing set accuracy, 98.3%.

Overall, this study was a successful desktop proof-of-concept for a machine

learning-based alert system for potable reuse.
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Introduction

Upsets in wastewater treatment plants (WWTPs) caused

by transient industrial discharges can lead to exceedances

of discharge permits. These upsets may have human health

relevance at WWTPs that are water sources for advanced

water treatment facilities (AWTFs) for potable reuse. Hence,

proposed regulations for direct potable reuse in California

would require: “on-line monitoring instrumentation at critical

locations that measure surrogate(s) that may indicate a chemical

peak” (SWRCB, 2021). However, the best strategy for analyzing

the on-line data for accurate, proactive, real-time event detection

has not yet been determined.

Event detection systems in wastewater and reuse are often

separated into two levels of urgency: alert and alarm. An alarm

would indicate a high degree of confidence that an event is

occurring that could pose a risk to the public health, requiring

the shutdown or diversion of water from the AWTF. Due to the

high consequences of a false positive, alarms are generally set

based on health-based, high levels on reliable sensors at critical

control points. In contrast, an alert would indicate a reasonable

probability (e.g., >50%) that an event may be occurring that

requires attention or corrective action (e.g., increased ozone

dose), but not a treatment shutdown. An alert would be more

sensitive (i.e., triggered by smaller changes) compared to an

alarm. Thus, an alert could trigger prior to an alarm during

the early onset of an event, allowing time for corrective action

and potentially preventing alarm-level changes to the treated

water quality. To improve upon the status quo (i.e., data

visualization monitored 24/7 by human operators), an alert

systemwould need to detect an event before or equally as soon as

it would become visually apparent to a human operator. An alert

system with this capability would: (1) allow corrective action

to be conducted more promptly or with greater confidence

and justification, and (2) serve as a redundant measure to

human monitoring.

Machine learning could be applied for alert systems in

drinking water, wastewater, or reuse. Machine learning is the

study of algorithms that “learn” from and make predictions

based on data. Specifically, supervised machine learning (SML)

creates mathematical models to predict outputs based on a set

of labeled input data. In the context of wastewater and drinking

water treatment facilities, input variables could include water

quality variables, such as pH, and operational information, such

as ozone dose. SML requires a training dataset to construct

models and a testing dataset to evaluate and compare their

accuracy. The training and testing sets must both have known

outputs or labels for the models to be constructed and so

their predictive accuracy can be compared in a meaningful

way. Labels in the water context could be categories, such as

“Normal” or an “Industrial Discharge Event,” or numerical, such

as percentage of influent coming from industrial wastewater.

Once the SML models have had their accuracy confirmed on the

testing set with known labels, they can then be applied in the field

on new data with unknown outputs. This training and testing

procedure avoids overfitting, which is when an increasingly

complicated model more closely matches the data upon which it

was trained, but makes less accurate predictions with new data.

SML models could be more accurate for detecting and

categorizing upsets than simpler alternatives, such as fixed

thresholds on single variables (e.g., pH above eight indicating

an industrial discharge event). SML models can recognize high

outliers on a single variable—while other variables remain

near average—as likely instrumentmalfunctions ormaintenance

rather than true water quality events. Contrastingly, if all

variables differ from the average only slightly but in directions

associated with a particular type of upset, SML models could

detect low levels or early onsets not yet apparent to human

operators or fixed threshold-based alarms. Additionally, unlike

a fixed threshold on a single variable or calculated metric, many

SML models can categorize data into three or more categories.

This could be beneficial, for example, for distinguishing among

industrial discharges from different sources. Furthermore, SML

models are non-linear andmore flexible than thresholds. That is,

thresholds essentially categorizing anything within a rectangular

space (or higher dimensional hyperrectangle, depending on the

number of variables with thresholds) as Normal, and anything

outside that rectangular space as an Event. In contrast, SML

models, such as k-nearest neighbors or support vector machines

with radial basis kernels, can draw boundaries as any variety

of complex, curving shape as dictated by the data. SML has

been studied for event detection within the water sector, for

example, detecting increases in wastewater effluent at a drinking

water intake or harmful algal blooms in a lake (Lin et al., 2018;

Thompson and Dickenson, 2021). However, SML has not been

studied for event detection within reuse treatment systems to the

best of our knowledge.

There are many types of SML models–238 are available

within the caret package in R, and thirty-five were screened

in this study (Kuhn, 2019). Two families of machine learning

models often applied for classification tasks include support

vector machines and random forests. Support vector machines

divide data into categories by maximizing the gap between

the training examples (Suykens and Hornegger, 1999). When

the training data are not fully separatable, support vector

machines will instead minimize an error function. Furthermore,

support vector machines only use the datapoints closest to the

boundary, and these datapoints are called the support vectors.

Support vector machines have outperformed neural networks

for predicting Lake Erie water levels and total phosphorus in a

river (Khan and Coulibaly, 2006; Tan et al., 2012).

Random forests take many random samples of the

observations or input variables in the training dataset and

decision trees are trained on each of these random samples

(Breiman, 2001). The output of the random forest is the output

selected by the plurality of these decision trees. Random forests
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have been applied for modeling surface water salinity as a

function of other water quality variables and lake nutrients as a

function of watershed characteristics (Wang et al., 2021; Khan

et al., 2022). Boosted trees are related to random forests, but

each new tree is trained based on the errors of the previous

tree (Hatwell et al., 2021). Boosted trees have been applied to

predict the flood susceptibility of tracts of land or groundwater

well-productivity based on geographic data (Lee et al., 2017,

2019).

In this study, SML was applied to historical online sensor

dataset from a utility as a proof-of-concept for SML-based

alert systems. The online sensor data was provided by the

Hampton Roads Sanitation District (HRSD). The analysis

focused upon data collected within a secondary WWTP and in

a downstream AWTF. HRSD has begun the Sustainable Water

Initiative for Tomorrow (SWIFT), which will purify effluent

frommany of HRSD’sWWTPs to recharge the Potomac Aquifer.

The SWIFT Research Center (SWIFT RC) is a 3.8 million

L/day demonstration-scale AWTF, which treats secondary

effluent from a WWTP with a 5-stage Bardenpho process for

biological nutrient removal. The SWIFT RC treatment train

includes coagulation, flocculation, sedimentation, ozonation,

biofiltration, GAC adsorption, and UV disinfection. SWIFT has

a final treated TOC goal of 4 mg/L (Gonzalez et al., 2021).

HRSD has a robust industrial pretreatment program.

For example, HRSD has identified sources of bromide,

PFAS, acrylamide, and 1,4-dioxane discharged to its WWTPs

(Nading et al., 2022). Permits, flow limitations, or innovative

industrial pretreatment have been implemented to reduce

the concentrations of these chemicals. Nonetheless, during

the year 2020, approximately monthly spikes in online

monitoring surrogates including secondary effluent TOC were

observed at the SWIFT RC and caused pauses in production.

These transient increases in TOC persisted through the

flocculation/sedimentation process and appeared to be driven

by dissolved organic carbon, not solely turbidity or particulate

organic matter.

Elevated TOC has a cascading effect on both downstream

treatment and water quality (e.g., higher ozone demand, higher

TOC in the finished water, disinfection byproduct challenges, or

faster GAC utilization). The chemical(s) and industrial source

causing these events had not yet been identified at the time

of this analysis. Since no TOC instruments were located at

the WWTP influent, it was unknown whether these industrial

discharge events were pass-through [i.e., organic substance(s)

not fully removed by the WWTP] or inhibition [i.e., organic

or inorganic substance(s) that affected the WWTP’s removal

of overall TOC]. Rapid detection of future events would be

beneficial for (1) for corrective action, such as increased ozone

dose or coagulant dose and (2) collecting water samples to assist

with identifying the chemical signature of these events. Chemical

analysis collected in the midst of such events could then provide

clues about the responsible industry.

In this study, industrial discharges were detected using SML

and hourly data from online instruments within HRSD’s SWIFT

RC and the upstream WWTP. A dataset (n = 758) containing

thirty variables was provided to the models. Variables included

raw wastewater conductivity, secondary effluent turbidity, and

ozonation effluent UV transmittance. The dataset also included

two examples of industrial discharges. Supervised machine

learning was conducted using the caret package in R. Thirty-

five different types of machine learning models were selected

for screening based on their accuracy performing a similar

classification task using online water quality data from a

drinking water intake (Thompson and Dickenson, 2021). These

35 models were screened based on how accurately they detected

an industrial discharge in the testing set using raw data and

default tuning parameters. Six models were then selected for in-

depth evaluation based on their training set accuracy, test set

accuracy, or event sensitivity.

The six selected models were first checked for whether

their test set accuracy depended on random chance. Next,

preprocessing methods were evaluated for whether they

improved the accuracy of the models by correcting for diurnal

patterns or instrument drift. These preprocessing methods

included calculating a rolling median and conducting principal

component analysis. Next, relatively unimportant variables were

omitted from the input data to see if the machine learning

models would calculate faster without losing accuracy. Finally,

the selected models were trained over a wider range of potential

tuning parameter settings. Overall, this study was the first

desktop proof-of-concept for a machine learning-based alert

system for a potable reuse facility.

Methods

Thirty-five SML models were compared to detect suspected

industrial discharge events at the SWIFT RC. These thirty-five

models (Supplementary Table 1) were selected for screening

based on their accuracy performing a similar classification

task—detecting de facto reuse in surface water—using

related online water quality instrumentation (Thompson and

Dickenson, 2021). Models were trained and tested on real,

full-scale, hourly data from 30 variables with a total sample

size of 878 (about 37 days). Since the industrial source was

unknown, datapoints were labeled “Normal” or “Event” based

on retrospective expert human judgement. SML was conducted

in R using the caret package. Caret is a package in the R

programming language that enables around two hundred

different previously published SML model types to be applied

using similar code structure (Kuhn, 2008). Preprocessing

methods were also compared to enhance model accuracy. SML

performance was benchmarked against fixed thresholds on the

input variables. This included both the actual alert thresholds at

the AWTF, and alert thresholds trained based on the training set
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TABLE 1 Variables and instrument locations. AWTF influent could also be considered secondary wastewater e	uent.

Location Variable Manufacturer Instrument Units

Raw wastewater influent Conductivity Hach 3725E2T mS/cm

AWTF influent Flow Rosemount 8750W gpm

AWTF influent Total nitrogen Shimadzu TOC-4200 FA E ROHS mg/L

AWTF influent Total inorganic nitrogen (NOx+NH+

4 ) WTW TresCon mg/L

AWTF influent Total organic carbon Shimadzu TOC-4200 FA E ROHS mg/L

AWTF influent Nitrite WTW TresCon mg/L

AWTF influent NOx (Nitrate+ Nitrite) WTW TresCon mg/L

AWTF influent Nitrate WTW TresCon mg/L

AWTF influent Ammonia WTW TresCon mg/L

AWTF influent Conductivity Hach D3727E2T mS/cm

AWTF influent UV transmittance Hach UVAS %

AWTF influent Turbidity Hach TU5300 NTU

AWTF influent pH Foxboro 871A

AWTF influent Temperature Foxboro 871A ◦C

Settled water (Post-Floc/Sed) UV transmittance Hach UVAS %

Settled water (Post-Floc/Sed) Monochloramine Hach 5,500 mg/L

Settled water (Post-Floc/Sed) Ammonium Hach 5,500 mg/L

Settled water (Post-Floc/Sed) Total chlorine Hach CL-17 mg/L

Settled water (Post-Floc/Sed) Redox potential Foxboro 871A

Settled water (Post-Floc/Sed) Total organic carbon Shimadzu TOC-4200 FA E ROHS mg/L

Settled water (Post-Floc/Sed) Total nitrogen Shimadzu TOC-4200 FA E ROHS mg/L

Settled water (Post-Floc/Sed) Free ammonia Hach 5,500 mg/L

Ozonation system Ozone dose Wedeco LC400Plus lbs/day

Ozonation system Ozone sidestream flow NA NA gpm

Ozonation system Ozone residual setpoint NA NA mg/L

Ozonation system Ozone residual Hach Orbisphere 410 mg/L

Biofiltration influent UV transmittance Hach UVAS %

Biofiltration influent Total chlorine Hach CL-17 mg/L

Biofiltration influent Redox potential Foxboro 871A mV

Biofiltration influent pH Foxboro 871A

data used in this study. All raw data and R code for this study

are included as Supplementary material.

Online instrumentation

Models were trained on 30 variables that included readings

from online instruments or gauges. The location, measured

variable, manufacturer, and model of each sensor are shown in

Table 1.

Data collection

Data was exported hourly on dates May 20th, 2019

through June 4th, 2019; June 15th, 2019 through June 21st,

2019; May 25th, 2020 through June 2nd, 2020; and October

17th, 2020 through October 21st, 2020 (Table 2). Suspected

abnormal industrial discharges occurred during these periods

on June 16th, 2019; June 1st, 2020; and October 18th, 2020.

It was assumed these industrial discharges were from the

same source or related enough to classify within the same

SML output category. Missing data was assumed zero for

ozone residual, ozone dose, and ozone output, since missing

data for these variables was associated with shutdown of

the ozonation system. For other variables (i.e., independent

variables), missing data was assumed equal to the most recent

previously measured value.

Supervised machine learning

The accuracy of certain types of SML models depends in

part on random chance. For example, random forest models

randomly select a subset of the observations or variables and

then construct a decision tree based on this random subset.
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TABLE 2 Data time periods.

Time period Start date End date Industrial

discharge

Dataset

#1 5/20/2019 6/4/2019 None Training

#2 6/15/2019 6/21/2019 6/16/2019 Training

#3 5/25/2020 6/2/2020 6/1/2020 Training

#4 10/17/2020 10/21/2020 10/18/2020 Testing

This process is repeated, typically hundreds of times, and an

average or consensus is taken of the outputs of the decision

trees. If the same random forest model is trained on the same

data, but different subsets of data are selected for each tree,

different testing set accuracies could result. In programming

environments, randomness is simulated using random number

generator algorithms such as Mersenne-Twister (Matsumoto

and Nishimura, 1998). In the programming language R,

numerical seeds can be provided to the random number

generator. The same seed can be provided to enable reproducible

results, or different seeds can be provided to simulate random

replication. In this study, the seed was set to 1 unless otherwise

noted to ensure reproducibility. For models selected for in-

depth evaluation, seeds were set to integers from 1 to 30 or

1 to 100 to check whether the model accuracy was subject to

random chance.

Most SML models have parameters that can be adjusted

within the model that impact the learning process rather than

being determined via the training. These parameters are called

tuning parameters or hyperparameters. For example, k-nearest

neighbors models assign new data to a class based on the

most common label of the most similar datapoints. The tuning

parameter k is the number of similar datapoints considered

in the analysis. Tuning parameters are selected in a step in

the machine learning process called cross-validation. In cross-

validation, the training set is repeatedly split into smaller

training and testing sets (sometimes called validation sets in

this context). Models with different tuning parameter settings

are trained on each internal training set and tested on each

validation set. The tuning parameters that result in the best

average performance on the validation sets are then selected

and applied when making predictions on the final, fully separate

testing test.

SML was conducted in R version 3.6.3 using the caret

package (Kuhn, 2008). The caret package contains a set

of programming functions that streamline the process of

generating SML models. It allows a library of over 200 types

of SML models to be trained and tested using similar coding

grammar. Observations occurring during suspected abnormal

industrial discharges were labeled Event. Other observations

were labeled Normal. Data from May 20th, 2019 through June

2nd, 2020 (i.e., the first three of the four time periods, see

Table 2) were used as a training set and contained two abnormal

industrial discharge events: June 1st, 2019 and June 16th, 2019

(total sample size ntotal = 758, event sample size nevent =

66). Data from October 17th, 2020 through October 21st, 2020

was used as a testing set and contained one industrial discharge

event: October 18th, 2020 (ntotal = 120, nevent = 28). Thus, the

data was split∼86% training set, 14% testing set.

Models were screened on raw data (i.e., no preprocessing)

using default tuning parameters in the caret package. The

training set accuracy, testing set accuracy, event sensitivity, and

total false alerts (i.e., false positives or Normal observations

incorrectly predicted as Event), and p-value relative to the no

information rate (NIR) were recorded for each model. Accuracy

in the context of classification models means the overall percent

of the dataset for which the model predicted the correct label.

Sensitivity is how often the models were correct when the

true answer was Event. The NIR is the accuracy that could be

achieved by always assuming the most common label, which

in this case was Normal. The NIR was 76.7%. The p-value that

the testing set accuracy was above the NIR was calculated using

the binomial confidence interval method (Clopper and Pearson,

1934; Kuhn, 2008).

The training set accuracy was internally cross-validated with

25 bootstraps (Kuhn, 2008). That is, 25 random samples were

selected from the training set with the same total sample size

as the original training set. These random samples were “with

replacement,” i.e., it was possible for datapoints to be randomly

selected more than once, or not at all, within each of the 25

samples. Random samples like these are called “bootstraps.” The

bootstraps were then split 75:25 into training and validation

sets, and the models were trained and validated 25 times using

the 25 bootstraps. The average accuracy on the validation sets

was then calculated and is referred to simply as “training set

accuracy” below. This bootstrapped training set accuracy was

used for selecting tuning parameters before final evaluation with

the fully separate testing set.

Testing set accuracy was used as the primary metric of

success in this study. Nonetheless, models from the screening

phase were selected for further evaluation and tuning based on

ranking in the top two for any of the following criteria: training

set accuracy, testing set accuracy, or testing set event sensitivity.

This was done because it was hypothesized that (1) models that

were overfit (relatively high training set accuracy compared to

testing set accuracy) might perform better on the testing set after

tuning parameter optimization; or (2) models with high testing

set sensitivity but many false positives might perform better after

preprocessing to reduce noise.

The models selected for the in-depth evaluation phase were

first trained and tested with one hundred distinct seeds to check

whether their high performance was inherent to the model or

due in part to random chance. Next, preprocessing techniques

were tested to enhance model accuracy. Then, least important

variables were iteratively omitted to investigate whether training
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time could be improved without loss in accuracy. Finally,

models were cross-validated across a greater range of tuning

parameter values.

Least important variables were identified using the variable

importance (varImp) function from the caret package (Kuhn,

2008). The varImp function calculates importance differently

depending on the type of the model. Regardless, variables are

ranked and normalized on a scale of 0–100 based on their

importance relative to the most important variable. Where the

varImp function was not applicable, variables were omitted one

at a time. If there was one variable whose omission resulted in

equal or greater testing set accuracy, this variable was omitted. If

there were multiple variables whose singular omission resulted

in equal testing set accuracy, training set accuracy was used

as a tiebreaker. If there were multiple variables whose singular

omission resulted in equal testing and training set accuracies,

one of these variable was selected at random for omission in the

next iteration. This process was repeated until no variables could

be omitted without a loss in accuracy.

Preprocessing

It was hypothesized that certain preprocessing methods

could enhance model accuracy by reducing noise in the data

or counteracting the effects of instrument drift. The four

preprocessing methods assessed in this case study were: rolling

median, difference from rolling median, principal component

analysis (PCA), and lagging upstream sensors. The rolling

median of the past three observations of each variable was

calculated to reduce noise in the data and omit non-consecutive

outliers. The difference between each observation and the

median of the past day (i.e., 24 h observations) was calculated

to account for the non-stationary nature of real wastewater

data and optimize the data for detecting sudden changes

(Supplementary Figure 1). Differences from the rolling median

were provided to the models as variables both instead of

and in addition to the raw data. PCA was conducted to

promote diversity among the variables, considering that each

principal component is perpendicular (non-correlated) with the

others. PCA has previously been applied as a preprocessing

technique for SML (Rodriguez et al., 2006). The PCAmodel was

constructed based on the training set and then the scores for each

principal component were calculated on the testing set.

Water traveling from the raw wastewater influent and the

secondary wastewater effluent sensor locations had hydraulic

residence times until reaching the post-flocculation settled water

of 18 and 2 h, respectively. Thus, any changes or spikes from

industrial discharges would be expected to begin at these sensor

locations sooner, out of sync with the downstream sensors.

Lagging the upstream sensors to align with the sensors in

the settled water would provide many synchronized variables,

while still providing a degree of advanced warning compared

to the final purified water. So, lagging the raw wastewater

influent and secondary wastewater effluent based on hydraulic

residence time to match the settled water was explored as

another preprocessing method.

Results

Water quality data

Descriptive statistics for Normal and Event data are shown

in Supplementary Tables 2, 3, respectively. These tables include

both train and testing set data. Timeseries for all variables are

shown in Figures 1–3. Within these figures, panels #1, #2, and #3

are the training set and panel #4 is the testing set.

Machine learning results

Based on the screening results, six models were selected

for further evaluation: Cost-Sensitive C5.0 (C5.0Cost), Oblique

Random Forest with discriminative nodes based on linear

support vector machines (ORFsvm), Penalized Logistic

Regression (plr), Support Vector Machines with Radial Basis

Function Kernel (svmRadial), Random Forest Rule-Based

Model (rfRules), and Boosted Tree (bstTree) (Table 3). Lagging

the raw wastewater influent and secondary effluent variables

resulted in less testing set accuracy for all six models. This could

be because lagging reduced the training set sample size by n =

54 or about 7%. Eighteen sample points had missing data at the

start of each of the three non-consecutive periods. The lower

testing set accuracy after lagging may also have been partly due

to the increased percent accuracy loss per error with the smaller

testing set (n= 102 instead of n= 120).

Cost-Sensitive C5.0

C5.0Cost is a decision tree algorithm with adaptive boosting

and efficient pruning algorithms for relatively fast calculation

(Nolan, 2002; Peng et al., 2020). C5.0Cost had the highest

testing set accuracy in the screening, 96.7% (Table 3). The

testing set accuracy of this model did not depend on the seed.

Preprocessing by PCA, the rolling median, or the difference

relative to the rolling median did not increase testing set

accuracy. Biofilter influent pH was identified as the least

important variable, but omitting it reduced testing set accuracy.

C5.0Cost has four tuning parameters: (1) whether the model is

based on associative rules or decision trees, (2) the number of

boosting iterations (i.e., trials), (3) the cost of errors, (4) and

whether an internal variable section process called winnowing

is used. A rules-based model without winnowing with 20 trials

(boosting iterations) and cost = 1 (weight of one assigned

to errors) was selected based on the training set accuracy.

Trials over 20 or cost >1 would have led to overfitting, with
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FIGURE 1

Timeseries of (A) biofilter influent ORP, influent flow, raw conductivity, influent conductivity, ozone sidestream flow, and settled water ORP, and

(B) biofilter influent UVT, influent UVT, ozone dose, and settled water UVT. Horizontally, panels are separated into the four time-segments

analyzed. #1 and #2 are in 2019. #3 and #4 are in 2020. #1, #2, and #3 were used for the training set and #4 was the testing set. Gray shaded

areas represent abnormal industrial slug events. Source: Salveson et al. (Forthcoming). Reprinted with permission. © The Water

Research Foundation.

similar training set accuracy but lower testing set accuracy

(Supplementary Figure 2). C5.0 had zero false positives and four

false negatives, which were consecutive at the beginning of the

industrial discharge event (Figure 4). Thus, there would have

been a 4 h delay between the first hourly datapoint considered

to be part of the event and the automated alert (i.e., first true

positive) (Table 4).

Oblique random forest with support vector
machines

Oblique random forest is a decision tree ensemble in which

multivariate trees learn optimal split directions at internal nodes

using linear discriminative models (Menze et al., 2011). ORFsvm

is a type of oblique random forest in which node splitting

rules are based on support vector machines (Poona et al.,

2016). ORFsvm had the second highest testing set accuracy

in the screening, 95.8% (Table 3). Retraining the model with

100 distinct seeds revealed that the testing set accuracy of

this model was stochastic, i.e., depending on random chance

(Figure 5A). Nevertheless, the mean testing set accuracy was

95.5 with 0.1% standard error, so this model would indeed rank

second in testing set accuracy on average. Training the model on

both the raw data and the differences from the rolling median

increased the ORFsvm median testing set accuracy to 96.7%,

tying C5.0Cost (Figure 5B). The four errors in ORFsvm with

this preprocessing were all false negatives, three of which were

at the start of the event, and one at the end of the event. Thus, in

practice, this model would have detected the event in about 3 h,

sooner than C5.0Cost. ORFsvm had one tuning parameter, mtry,

which is the number of randomly selected variables for each

decision tree within the ensemble. However, varying mtry from

1 to 60 had no impact on training or testing set accuracy when

using both raw data and differences from the rolling median.

ORFsvm had a relatively slow training calculation time,

about 6min per tuning parameter setting and seed iteration with

60 variables (all raw data and differences from rolling median).

The varImp() function was not applicable for ORFsvm, and

so could not be used to omit variables. Considering ORFsvm

accuracy was stochastic, a sample size of at least 30 seed

iterations would be required to determine if small changes in

accuracy were the result of variable omission or random chance.

Thus, a one-at-a-time variable omission procedure would have

taken at least 1 week of computation time, and potentially
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FIGURE 2

Timeseries of (A) biofilter influent pH, influent pH, influent temperature, influent TOC, and settled water TOC and (B) biofilter influent total

chlorine, settled water monochloramine, and settled water total chlorine. Horizontally, panels are separated into the four time-segments

analyzed. #1 and #2 are in 2019. #3 and #4 are in 2020. #1, #2, and #3 were used for the training set and #4 was the testing set. Gray shaded

areas represent abnormal industrial slug events. Source: Salveson et al. (Forthcoming). Reprinted with permission. © The Water

Research Foundation.

months or over a year depending on the number of variables

omitted. So, ORFsvm was not evaluated for variable omission.

While not necessarily precluding the usage of this model, this

slow training time could be a practical limitation, especially if the

utility chooses to expand the training set sample size over time.

Penalized logistic regression

plr is logistic regression with L2-regularization (Park and

Hastie, 2008). plr had the highest training set accuracy in the

screening, 99.8% (Table 3). However, its test accuracy was a

less impressive 88.3%, indicating that under the conditions of

the screening, this model was relatively overfit. The testing

set accuracy of this model did not depend on seed. PCA was

the most beneficial preprocessing technique for this model,

improving testing set accuracy from 88.3 to 90%. PCA also

decreased the training time per tuning parameter setting

from 196 to 1.7 s. Omitting the 23rd through 30th principal

components further decreased the training time to 1.5 s with no

loss in testing set accuracy. Training and testing set accuracy

were unaffected if the “complexity parameter” (CP) tuning

parameter were set to Bayesian information criterion (BIC)

or Akaike information criterion (AIC). Testing set accuracy

was not affected over L2 penalties ranging from 10−5 to 1.

Despite the improvements with preprocessing, the 90% testing

set accuracy for plr would not be satisfactory compared to other

models evaluated.

Support vector machines with radial basis
function kernel

Support vector machines construct optimal separations in

multi-dimensional space using the points that are closest to the

boundaries (Schölkopf et al., 1997). svmRadial constructs non-

linear hyperplanes based on distances from centers (Schölkopf

et al., 1997). svmRadial had the second highest training set

accuracy in the screening, 99.5% (Table 3). However, its test

accuracy was only 82.5%, indicating that this model was

relatively overfit under the conditions of the screening. The

accuracy of this model did not depend on the seed. The

most beneficial processing technique was using both the raw

data and the differences from the rolling median, improving

the testing set accuracy to 86.7%. Omitting 40 variables

improved the testing set accuracy to 98.3%. The remaining
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FIGURE 3

Timeseries of (A) influent nitrate, influent total inorganic nitrogen, influent turbidity, influent nitrogen oxides, influent total nitrogen, and settled

water total nitrogen and (B) influent ammonia, ozone residual, settled water ammonia, influent nitrite, ozone residual setpoint, and settled water

ammonium. Horizontally, panels are separated into the four time-segments analyzed. #1 and #2 are in 2019. #3 and #4 are in 2020. #1, #2, and

#3 were used for the training set and #4 was the testing set. Gray shaded areas represent abnormal industrial slug events. Source: Salveson et al.

(Forthcoming). Reprinted with permission. © The Water Research Foundation.

variables after these omissions were differences from the rolling

median for influent TIN, influent nitrate, influent UVT, influent

pH, influent temperature, settled UVT, settled ORP, ozone

dose, biofilter influent UVT, biofilter influent pH; as well

as raw conductivity, influent NOx, influent NH3, influent

conductivity, influent UVT, influent turbidity, influent pH,

influent temperature, ozone residual setpoint, and biofilter

influent ORP. Omitting four more variables (influent TIN

difference, influent temperature, influent NOx, and influent

nitrate difference) resulted in no loss of accuracy and improved

the training computation time from 1.8 to 0.97 s. With this

preprocessing and set of variables, svmRadial had zero false

positives and only two false negatives, which were consecutive

at the beginning of the event (Supplementary Figure 3). Thus,

this model outperformed C5.0Cost or ORFsvm.

Tuning parameters for svmRadial were C and sigma. C

is the cost of errors and sigma is the decay rate as points

become more distant from the centers. For all raw data and

differences from the rolling median, the optimal settings among

the default options were C = 1 and sigma = 0.015. So, these

settings were kept when iteratively omitting variables. Broader

ranges of tuning parameters were then tested using the sixteen

selected variables. Holding C to 1, highest testing set accuracy

was reached with sigma around 0.15, while highest training set

accuracy occurred at a slightly higher sigma of 0.23 (Figure 6A).

Holding sigma to 0.15, the highest training set accuracy occurred

with C around 1.5, but highest testing set accuracy occurred

with C around 1 (Figure 6B). Thus, the default tuning parameter

settings were effectively optimal for predictive accuracy in

this dataset.

Random forest rule-based model

rfRules is an ensemble classifier based on associative rules

(Deng et al., 2014). In the screening, rfRules had the highest

event sensitivity at 100% (Table 3). However, it had a testing

set accuracy of 54.2% with 55 false positives, which is clearly

unacceptable over the 5-day timeframe of the testing set.

Replicating with 30 distinct seeds, the testing set accuracy of

this model was stochastic, ranging from 54.2 to 98.3% with a

median of 82.5%, This indicated the median testing set accuracy

was likely better than it appeared in the screening, but more

variable compared to ORFsvm. Also, the distribution of testing

set accuracies with different seeds was not normally distributed.
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TABLE 3 Model screening results.

Model Abb. Training

set

Testing set

Acc. % Acc. % p-value (Acc.

> NIR)

Event

sensitivity %

False

positives

Boosted classification trees ada 99 93 1.13× 10–6 71 0

AdaBoost classification trees adaboost 99 95 4.95× 10–8 82 1

Bayesian generalized linear model bayesglm 99 93 4.46× 10–6 68 0

Boosted linear model BstLm 93 77 0.55 0 0

Boosted smoothing spline bstSm 98 94 2.54× 10–7 75 0

Boosted treea bstTree 99 95 4.95× 10–8 89 3

Cost–Sensitive C5.0a C5.0Cost 99 97 1.12× 10–9 86 0

Single C5.0 ruleset C5.0Rules 98 93 1.13× 10–6 79 2

DeepBoost deepboost 99 93 1.13× 10–6 71 0

Linear distance weighted discriminant dwdLinear 99 93 1.13× 10–6 71 0

Distance weighted discrimination with radial

basis function kernel

dwdRadial 92 77 0.55 0 0

Generalized additive model using LOESS gamLoess 99 83 0.049 29 0

Generalized additive model using splines gamSpline 99 82 0.12 21 0

Generalized linear model with stepwise

feature selection

glmStepAIC 99 83 0.049 29 0

Weighted k-nearest neighbors kknn 99 93 4.46× 10–6 68 0

Localized linear discriminant analysis loclda 99 77 0.55 0 0

Least squares support vector machine with

radial basis function kernel

lssvmRadial 99 88 0.00094 50 0

Mixture discriminant analysis mda 99 92 1.57× 10–5 64 0

Tree–Based ensembles nodeHarvest 99 93 1.13× 10–6 71 0

Oblique random forest with logistic

regression

ORFlog 99 89 0.00038 54 0

Oblique random forest with partial least

squares regression

ORFpls 99 95 4.95× 10–8 79 0

Oblique random forest with ridge regression ORFridge 99 93 1.13× 10–6 71 0

Oblique random forest with support vector

machinesa

ORFsvm 99 96 8.20× 10–9 82 0

Neural network with feature extraction pcaNNet 99 92 1.57× 10–5 64 0

Penalized logistic regressiona plr 100 88 0.00094 50 0

Quadratic discriminant analysis qda 98 77 0.55 0 0

Random forest rule-based modela rfRules 98 54 1 100 55

Rotation forest rotationForest 99 95 4.95× 10–8 79 0

Sparse distance weighted discrimination sdwd 95 77 0.55 0 0

Stabilized nearest neighbor classifier snn 97 77 0.55 0 0

Sparse linear discriminant analysis sparseLDA 92 77 0.55 0 0

Support vector machines with linear kernel svmLinear 99 92 1.57× 10–5 64 0

Linear support vector machines with class

weights

svmLinearWeights 99 90 0.00015 57 0

L2 regularized linear support vector

machines with class weights

svmLinearWeights2 98 83 0.077 25 0

Support vector machines with radial basis

function kernela

svmRadial 99 83 0.077 25 0

All models were trained with raw data for all 30 variables using their default tuning parameter options in the caret package. aSelected for in-depth evaluation and optimization.
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FIGURE 4

Testing set results of C5.0Cost. Using all raw data with default

tuning parameters (Cost = 1, trials = 20, model = rules, winnow

= false). The shaded gray area represents the Event. Red X’s

indicate false negatives. The four most important variables

(biofilter influent UVT, influent turbidity, influent UVT, and ozone

sidestream flow) are shown and scaled by training set standard

deviation and mean. Source: Salveson et al. (Forthcoming).

Reprinted with permission. © The Water Research Foundation.

Based on a paired Wilcoxon test and the same thirty distinct

seeds, PCA, rolling median, and differences from the rolling

median did not result in a significant increase in testing set

accuracy (p > 0.05). However, including both raw data and the

differences from the rolling median did increase median testing

set accuracy (p = 0.0085), to 93.75%. With that preprocessing,

all variables had a varImp importance score of 0 except influent

nitrite, settled TOC, influent nitrate difference, raw conductivity,

ozone sidestream flow, and influent ammonia difference. With

just these six variables, the training time did not meaningfully

decrease but the testing set accuracy was significantly higher (p

= 0.0046), 94.2% in all 30 seed iterations. rfRules had two tuning

parameters: mtry, the number of variables randomly selected

for each tree; and maxdepth, the maximum depth of each tree.

With the six variables listed above, mtry was varied from one

to six and maxdepth was varied from one to five. Training set

accuracy generally increased with higher maxdepth and mtry.

The maximum testing set accuracy was 94.2%, and this occurred

with a maxdepth of at least three and mtry of at least five. This

maximum testing set accuracy corresponded to 6 h until the

first detection, which would not be competitive with the models

described above.

Boosted tree

bstTree is a type of decision tree ensemble in which each

subsequent tree is adjusted to optimize performance using a

truncated loss function for robustness against outliers (Wang,

2018). In the screening, bstTree had second highest event

sensitivity at 89.3% (Table 3) and a testing set accuracy of

95%. However, it had three false positives, which could be

considered unacceptable over the 5-day timeframe of the testing

set. bstTree testing set accuracy did not depend on seed.

None of the investigated preprocessing techniques improved

bstTree testing set accuracy. Omitting influent TOC and ozone

residual setpoint increased the testing set accuracy to 99.2%.

Further omitting variables until only thirteen remained (raw

conductivity, influent nitrate, influent conductivity, influent

UVT, settled NH4+, settled ORP, settled TOC, biofilter influent

total Cl2, biofilter influent pH) resulted in no loss in accuracy

and decreased the training time from 32 to 21 s. bstTree had

three tuning parameters: maxdepth, the maximum depth of

the decision trees; mstop, the number of boosting iterations;

and nu, the step size. Maxdepth = 3, mstop = 150, and nu

= 0.1 were selected from among the default options based on

training set accuracy for the model trainings described above.

Ranging maxdepth 1–4, nu from 0.1 to 1, and mstop from 50

to 500 revealed that highest testing set accuracy was achieved

with maxdepth = 3 and either nu = 0.1 with mstop = 150

or nu = 1 with any value for mstop. Thus, the default tuning

parameters were among the most accurate for bstTree. The

testing set accuracy of 99.2% with bstTree was the highest in

this study and corresponded to one false negative and zero false

positives. The sole false negative occurred on the first datapoint

of the event (Figure 7), so this model would have detected the

event after about 1 h.

Actual thresholds

This section shows the time until detection using alert

thresholds values that were in place at the SWIFT RC. These

alerts were set conservatively lower than corresponding alarms,

which were based on ensuring the public health and regulatory

compliance. Alerts were in place on six of the variables used

in this study (Table 5). Only three were triggered during the

testing set event: secondary effluent turbidity, settled water total

chlorine, and ozone dose. Secondary effluent turbidity triggered

soonest during the event, after just 2 h. However, there were also

two alerts for effluent turbidity within the five-day testing set not

associated with the industrial event. So, none of these existing

alerts would have performed as well as bstTree.

Data-driven thresholds

Current fixed-threshold-based alerts at the SWIFT RC are

based on safety factors, critical control points, and ensuring

the public health or regulatory compliance. However, another

approachwould be to set alert thresholds based on themaximum

(or a high percentile) of the data considered normal. This

approach could be considered a simple form of SML, in that it

would be data-driven, and thresholds could be trained, tested,

and refined over time. However, compared to the SML methods

described above, this approach would be much simpler since it
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TABLE 4 Summary and performance metrics of six optimized models with their most beneficial preprocessing techniques, optimal tuning parameters, and final variable selection. Testing set false

negatives and false positives are out of a sample size of n = 120 or 5 days of hourly data.

Model Preprocessing Variables Tuning

parameters

Training

set

Testing set

Accuracy % Accuracy % Balanced

accuracy %

Cohen’s

Kappa

Event

sensitivity

%

False

positives

Time until

1st

detection

(hr)

C5.0Cost None All Winnow= FALSE,

model= rules, cost= 1,

trials= 20

99.2 96.7 92.9 0.902 86 0 4

ORFsvm Raw and differences

from the rolling

median

All Mtry= 31 99.3 96.7 92.9 0.902 86 0 3

plr PCA Principal Components 1 through 22 CP= BIC, lambda=

0.001

99.3 90 78.6 0.672 57 0 5

svmRadial Raw and differences

from the rolling

median

Influent UVT difference, influent pH

difference, influent temperature

difference, settled UVT difference, settled

ORP difference, ozone dose difference,

biofilter influent UVT difference, biofilter

influent pH difference, raw conductivity,

influent NH3, influent conductivity,

influent UVT, influent turbidity, influent

pH, ozone residual setpoint, and biofilter

influent ORP

C= 1, sigma= 0.015 99.5 98.3 96.4 0.952 93 0 2

rfRules Raw and differences

from the rolling

median

Influent nitrite, settled TOC, influent

nitrate difference, raw conductivity, ozone

sidestream flow, and influent ammonia

difference

Mtry= 6, maxdepth=

4

99.3 94.2 88.7 0.826 79 1 6

bstTree None Raw conductivity, influent nitrate, influent

conductivity, influent UVT, settled

NH4+, settled ORP, settled TOC, biofilter

influent total Cl2, biofilter influent pH

Maxdepth= 3, nu=

0.1, mstop= 150

99.3 99.2 98.2 0.976 96 0 1
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FIGURE 5

Distribution of testing set accuracy of ORFsvm. All variables and

with default tuning parameters over 100 distinct seeds, with (A)

raw data and (B) both raw data and di�erences from the rolling

median. The solid vertical black lines represent the median and

the dashed vertical black lines represent the mean. Source:

Salveson et al. (Forthcoming). Reprinted with permission. © The

Water Research Foundation.

would be monovariate. In this section, alerts were set based on

the maximum or minimum normal datapoint for each variable

in the training set. Alerts set this way are herein called “data-

driven thresholds.” For pH, UVT, and disinfectant residuals,

the data-driven threshold was set to the minimum normal

datapoint in the training set (Figure 8). Otherwise, the data-

driven threshold was set to the maximum normal datapoint in

the training set.

For most variables, a data-driven threshold would not have

predicted any datapoints in the testing set where events, so

their accuracy was equivalent to the NIR (see Table 6). However,

a threshold based influent UVT would have achieved 98.3%

testing set accuracy with zero false positives. This testing set

accuracy would be equal or better than all of the SML models

evaluated except bstTree.

However, greater sample size would be expected to improve

the relative performance of the SML models. In contrast, greater

sample size might not improve the data-driven threshold results.

The use of minima or maxima to set thresholds like was done

here would become increasingly conservative (i.e., fewer false

positives, more false negatives) with greater sample size because

it would allow more time for non-industrial outliers in the

Normal training data. This could be counteracted somewhat by

setting the threshold based on a specified percentile that strikes

the desired balanced between false positives and false negatives.

Discussion

Testing set accuracy has limitations as a performance metric

for SMLmodels. For unbalanced data [e.g., data withmanymore

of one class than the other(s)], such as used here, models could

achieve over 70% accuracy by always assuming datapoints were

Normal, or by randomly guessing Random vs. Event based solely

on their proportion in the training set. Furthermore, using only

testing set accuracy, the success of models cannot be directly

compared across studies, since the accuracy would depend in

part on the proportion of classes in the respective datasets.

One alternative metric is balanced accuracy, or what the

accuracy would be if there were equal percentages of each class

in the dataset. Balanced accuracy is more intercomparable across

studies and cannot be increased by increasing the proportion of

a specific class. However, in the context of alert systems for the

water or wastewater industry, false positives could be a more

important error type than false negatives. False positives (i.e.,

Normal datapoints incorrectly predicted as Event) would waste

resources and eventually lead to a boy-who-cried-wolf scenario

in which the alert system is disregarded or discontinued. For

hourly data frequency, even a 1% false positive rate would

lead to false alerts roughly twice per week, which would likely

be unacceptable to utility operators. In contrast, many of the

datapoints labeled and predicted as an Event in this study could

be considered to occur at low levels that would not yet pose

an immediate threat to the operation or treatment goals of the

facility. Thus, a higher false negative rate could be considered

tolerable compared to the acceptable false positive rate. For

example, for a dataset with 75% Normal data, a model with 0%

false positive rate, 80% false negative rate, and 80% accuracy and

60% balanced accuracy could be considered far preferable to a

model with 40% false positive rate, 0% false negative rate, and

70% accuracy and 80% balanced accuracy. Balanced accuracies

for the optimized versions of the models selected for in-depth

evaluation are shown in Table 4. Except for plr, the optimized

versions of all models selected for in-depth evaluation had

balanced accuracy over 88%. bstTree had the highest testing set

balanced accuracy at 98.2%.

Another alternative performance metric to accuracy is

Cohen’s Kappa. Cohen’s Kappa compares the agreement

between the true classifications and the model classifications

to the agreement that could occur due to random allocation

(Cohen, 1960). The formula for Cohen’s Kappa with two
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FIGURE 6

SvmRadial accuracy with (A) sigma ranging from 0.001 to 0.81 with C = 1 and (B) C ranging from 0.01 to 2 with sigma = 0.015. Source: Salveson

et al. (Forthcoming). Reprinted with permission. © The Water Research Foundation.

FIGURE 7

Testing set results of bstTree (n = 0.1, mstop = 150, maxdepth =

3). Trained on the raw data of thirteen variables (raw

conductivity, influent nitrate, influent conductivity, influent UVT,

settled NH4+, settled ORP, settled TOC, biofilter influent total

Cl2, biofilter influent pH). The shaded gray area represents the

Event. Red X’s indicate false negatives. The three variables

whose omission would have resulted in greatest loss in testing

set accuracy (influent pH, raw conductivity, and settled TOC),

are shown. Source: Salveson et al. (Forthcoming). Reprinted with

permission. © The Water Research Foundation.

classes is:

κ =
2 · (TP · TN − FP · FN)

(TP + FP) · (FP + TN) + (TP + FN) · (FN + TN)
(1)

Where TP is true positives, FP is false positives, FN is false

negatives, and TN is true negatives. One of the limitations

with Cohen’s Kappa is that there is not a universally agreed

magnitude considered adequate (i.e., less consensus compared to

the typically acceptable p-value threshold of <0.05). One highly

cited guideline is that Cohen’s Kappa above 0.81 is almost perfect

agreement (Landis and Koch, 1977). Except plr, the optimized

versions of all models selected for in-depth evaluation exceeded

this threshold. bstTree had the highest Cohen’s Kappa at 0.976.

Conclusions and future directions

• The model bstTree had the highest testing set accuracy for

this dataset, 99.2%. bstTree would have detected the event

in about an hour with zero false positives over the 5-day

testing set. bstTree also the highest balanced accuracy at

98.2% and Cohen’s Kappa at 0.976. Thus, bstTree would

have been selected among the SML models investigated in

this study for future monitoring and alerts at this site using

the studied variables.

• Adata-driven fixed threshold based on influent UVTwould

have resulted in a testing set accuracy of 98.3%, below that

of bstTree but only by about 1%.
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TABLE 5 Actual threshold-based alerts in place at the AWTF and their performance detecting the event in the testing set.

Location Variable Unit Actual alert

threshold

Accuracy % False positives Time until 1st

detection (hr)

Secondary effluent/AWTF influent Total inorganic nitrogen mg/L 4 76.7 0 N/A

Conductivity mS/cm 1,500 76.7 0 N/A

Turbidity NTU 3.5 95.8 2 2

Settled water (Post Floc/Sed) Monochloramine mg/L 2 76.7 0 N/A

Total chlorine mg/L 2 77.5 0 5

Ozonation system Ozone dose mg/L 7 89.2 0 5

Accuracy, false positives, and time until first detection are all for the testing set. N/A under time until first detection indicates that the threshold-based alert did not detect the event.

FIGURE 8

Data-Driven threshold example using influent UVT. The dashed black line represents the threshold. The blue arrow indicates the Normal,

training set datapoint on which it was based. Shaded gray areas indicate events. Source: Salveson et al. (Forthcoming). Reprinted with

permission. © The Water Research Foundation.

• The most beneficial preprocessing method differed among

the SML model types. Two models performed best without

preprocessing, one with PCA, and three with raw data and

differences from the rolling median.

• In many cases, some variables could be omitted

to decrease training time without loss in accuracy.

However, the optimal selection of variables depended on

the model.

• Certain SML model types from within the random forest

family (e.g., ORFsvm, rfRules) had testing set accuracies

that depended on the seed to the random number

generator. Thus, the accuracy of these models would

be more uncertain in full-scale applications, even with

appropriate validation and testing procedures.

Looking to the future, we would make

following recommendations:

• As next steps to engineer an accurate, practical, SML-based

alert system, we would recommend repeating the above

analyses but with greater sample size, including multiple

instances of the events in the testing set. This would provide

greater confidence about the relative performance of the

models, particularly whether the highest-performingmodel

would be best for detecting all events of this type, not

just the individual event in this testing set. After that, a

small number of high-performing SML models could be

piloted in real-time, until an additional event occurs. The

time until first detection of the SML models could then be
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TABLE 6 Performance of a fixed threshold approach based on each of the 30 variables.

Location Variable Training set

event

sensitivity %

Testing set

accuracy%

Testing set

p-value

Testing set

false positives

Testing set

event

sensitivity %

Raw wastewater influent Conductivity 0 76.7 0.55 0 0

AWTF influent Flow 0 76.7 0.55 0 0

AWTF influent Total nitrogen 0 76.7 0.55 0 0

AWTF influent Total inorganic nitrogen 0 76.7 0.55 0 0

AWTF influent Total organic carbon 63.6 82.5 0.077 1 29

AWTF influent Nitrite 0 76.7 0.55 0 0

AWTF influent Nitrogen oxides 0 76.7 0.55 0 0

AWTF influent Nitrate 0 76.7 0.55 0 0

AWTF influent Ammonia 0 71.7 0.92 8 7

AWTF influent Conductivity 0 76.7 0.55 0 0

AWTF influent UV transmittance 60.6 98.3 9.9× 10−12 0 93

AWTF influent Turbidity 48.5 95.8 8.2× 10−9 3 93

AWTF influent pH 27.3 82.5 0.077 0 25

AWTF influent Temperature 0 76.7 0.55 0 0

Settled water (Post-Floc/Sed) UV transmittance 40.9 79.2 0.30 0 11

Settled water (Post-Floc/Sed) Monochloramine 18.2 76.7 0.55 0 0

Settled water (Post-Floc/Sed) Ammonium 0 76.7 0.55 0 0

Settled water (Post-Floc/Sed) Total chlorine 0 76.7 0.55 0 0

Settled water (Post-Floc/Sed) Redox potential 0 76.7 0.55 0 0

Settled water (Post-Floc/Sed) Total organic carbon 75.8 93.3 1.1× 10−6 0 71

Settled water (Post-Floc/Sed) Total nitrogen 0 76.7 0.55 0 0

Settled water (Post-Floc/Sed) Free ammonia 0 76.7 0.55 0 0

Ozonation system Ozone dose 31.8 80 0.23 0 14

Ozonation system Ozone sidestream flow 0 76.7 0.55 0 0

Ozonation system Ozone residual setpoint 0 70 0.96 8 0

Ozonation system Ozone residual 0 76.7 0.55 0 0

Biofiltration influent UV transmittance 63.6 93.3 1.1× 10−6 0 71

Biofiltration influent Total chlorine 0 76.7 0.55 0 0

Biofiltration influent Redox potential 0 23.3 1 92 100

Biofiltration influent pH 21.2 85.8 0.0090 0 39

Since the thresholds were set to the maximum normal value of each variable in the training set, all thresholds would have resulted in zero training set false positives.

compared in the field against human monitoring and other

alert approaches.

• Since Event and Normal datapoints in this dataset were

distinguished based on human judgement, the best the

models could possibly do would be to match—not

exceed—human judgement. On the other hand, a human

monitoring the data in real-time might not have concluded

that an event was occurring as early as a human evaluating

the whole dataset retrospectively. In future research on

machine learning for wastewater or reuse alert systems,

this could be achieved by simulating industrial discharges

in a pilot or flume. Alternatively, real full-scale industrial

events could be labeled objectively if the industrial source is

known and keeps records of discharge flow (e.g., the landfill

that discharges limited quantities of leachate to the WWTP

that feeds SWIFT RC) (Gonzalez et al., 2021; Nading et al.,

2022).

• A limitation of SML-based alert systems is that they

are designed to detect events of a known, previously

documented type. If a new type of industrial discharge

were to occur associated with different responses from the

online instrumentation, this may or may not trigger an

SML-based alert. Changes in the water quality pattern at

the AWTF during industrial discharge events could also

occur due to changes in the treatment operation response

at the WWTP. So, a strategic solution would be to employ

both SML-based and threshold-based alerts. This would

combine the sensitivity of SML with the generalizability of
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thresholds. These additional thresholds could be set based

on training set data, health-based goals, or operational

considerations. Advanced multivariate statistical methods

for fault or outlier detection other than SML also merit

further research in the context of wastewater and reuse

(Klanderman et al., 2020).

• While bstTree performed best on the dataset in this study,

further research is merited on SML for event detection

in other reuse AWTFs and especially for other water

quality monitoring contexts. For example, data would

generally be noisier in wastewater collection systems, both

due to more real variation and more difficulty keeping

sensors calibrated. The noisiness of the data can affect

which machine learning algorithms perform best (Atla

et al., 2011). The length vs. wideness of the dataset can

affect, for example, which SML algorithms can be trained

quickly (Lindgren et al., 1993; Rännar et al., 1994). So,

even in the same AWTF, more sample size—whether in

form of more and new variables or more observations

collected over time—could change which SML type

performs best.
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