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The study examined the potential future changes of drought characteristics

in the Greater Lake Malawi Basin in Southeast Africa. This region strongly

depends on water resources to generate electricity and food. Future

projections (considering both moderate and high emission scenarios) of

temperature and precipitation from an ensemble of 16 bias-corrected climate

model combinations were blended with a scenario-neutral response surface

approach to analyses changes in: (i) the meteorological conditions, (ii) the

meteorological water balance, and (iii) selected drought characteristics such

as drought intensity, drought months, and drought events, which were derived

from the Standardized Precipitation and Evapotranspiration Index. Changes

were analyzed for a near-term (2021–2050) and far-term period (2071–2100)

with reference to 1976–2005. The e�ect of bias-correction (i.e., empirical

quantile mapping) on the ability of the climate model ensemble to reproduce

observed drought characteristics as compared to raw climate projections

was also investigated. Results suggest that the bias-correction improves the

climatemodels in terms of reproducing temperature and precipitation statistics

but not drought characteristics. Still, despite the di�erences in the internal

structures and uncertainties that exist among the climate models, they all

agree on an increase of meteorological droughts in the future in terms of

higher drought intensity and longer events. Drought intensity is projected

to increase between +25 and +50% during 2021–2050 and between +131

and +388% during 2071–2100. This translates into +3 to +5, and +7 to +8

more drought months per year during both periods, respectively. With longer

lasting drought events, the number of drought events decreases. Projected

droughts based on the high emission scenario are 1.7 times more severe

than droughts based on the moderate scenario. That means that droughts in

this region will likely become more severe in the coming decades. Despite

the inherent high uncertainties of climate projections, the results provide a

basis in planning and (water-)managing activities for climate change adaptation

measures in Malawi. This is of particular relevance for water management

issues referring hydro power generation and food production, both for rain-fed

and irrigated agriculture.
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Introduction

Droughts are a major hydrological hazard in many regions

of the planet affecting several sectors of societies, such as

food production, municipal water supply and hydropower

generation. Due to increasing demand for food, water resources

and energy, droughts have received ever increasing attention in

the last decades and innovative methods of drought assessment

and analysis (e.g., Stahl and Demuth, 1999; Vogel et al.,

2021) and prediction and modeling (e.g., Krol et al., 2006; de

Araujo and Bronstert, 2016; Pilz et al., 2019; Adnan et al.,

2021) have been presented. Though less documented in science

literature, droughts are also common in southern Africa and

their frequencies and severities are increasing (Masih et al.,

2014). This situation has not spared Malawi, which relies heavily

on natural water resources of the Lake Malawi and Shire

River Basins. Lake Malawi has many water inlets but only one

outlet, the Shire River in the South where about 98% of the

country’s hydropower production takes place (Taulo et al., 2015).

Runoff into the Shire River largely relies on outflow from Lake

Malawi, which is mainly a function of lake level. However,

the lake level has decreased by ∼1.0m over the period 1970–

2013 (Mtilatila et al., 2020a). This has created low flows on

Shire River and affected the production of electricity (ESCOM,

n.d.). The occurrence of drought events also affects agricultural

production. Coulibaly et al. (2015) estimated that 53.3% of crop

failure in Malawi is due to climatic factors including droughts,

floods and high temperatures, and yet agriculture contributes

almost 28–30% of Malawi’s Gross Domestic Product (GDP)

(GOM, 2019). Therefore, the combined direct effects of floods

and droughts affect Malawi’s economy by reducing the annual

GDP by 1.7% (Pauw et al., 2011).

According to records from the Department of Disaster

Management Affairs in Malawi, there have been ten drought

events since 1975 on record eight of which were major. Themost

severe droughts occurred in 1992 and 2015 and affected almost

7 million and 6.7 million people, respectively. These events

may be referred to as agricultural droughts since the effects are

linked to agricultural production, and their extent/magnitude

is based on the size of the food insecure population. However,

according to Spinoni et al. (2020), agricultural drought is

defined as soil moisture deficit that leads to crop failure.

Mtilatila et al. (2020a) studied meteorological droughts in Lake

Malawi and Upper Shire River basins based on the standardized

precipitation and evapotranspiration index (SPEI) and the

standardized precipitation index (SPI). They came up with

eight meteorological drought events between 1970 and 2013.

The majority of these events lasted for more than a year and

the most severe event occurred from 1992 to 1996 (Mtilatila

et al., 2020a). Regionally, these events were linked to droughts

that were experienced in most of the South African countries,

which have generally shown an increase in the frequency of

drought events from the 1980s onwards (Rouault and Richard,

2005). The meteorological droughts often trigger hydrological

droughts in the Lake Malawi Basin with a delay of more than 24

months due to the attenuation effect of the lake (Mtilatila et al.,

2020b). A hydrological drought in this regard is considered for

lake levels below 474.1 masl developed in reference to the 1970–

2013 period. Therefore, during 1970–2013 only one hydrological

drought was identified. This, however, lasted for 101 months

from June 1994 to October 2002. During this drought event, the

lake level dropped by 0.9m on average (Mtilatila et al., 2020a).

There is a link between observed climate change and drought

occurrences in Malawi: statistically significant increasing trends

in temperature (0.8◦C over 40 years) and mostly insignificant

decreasing trends in precipitation conditions (Mtilatila et al.,

2020a) agree with increasing trends in drought conditions

(Ngongondo et al., 2011, 2015; Mtilatila et al., 2020b). The

temperature increase is enhancing potential evapotranspiration

(PET) (Ngongondo et al., 2015). Therefore, droughts identified

based on the SPEI tend to be even more severe, last longer and

cover a larger geographical extent than droughts identified by

SPI (Mtilatila et al., 2020a). Compared to 1976–2013, climate

projections indicate future temperature increases of 0.98–2.1

and 1.8–5◦C between 2021–2050 and 2071–2100, respectively,

based on the Representative Concentration Pathway (RCP) 4.5

and 8.5 scenarios (Mtilatila et al., 2020b). This provides an

indicator of increasing severity of future droughts, which may

even be enhanced if the temperature increases are combined

with decreases in rainfall. In this regard, however, future

precipitation is subject to a greater uncertainty, in terms of

both the extent and direction of changes (Kusangaya et al.,

2014). But still, the potential impacts of future climate changes

(temperature and rainfall changes) on drought conditions in

Malawi have not been quantified.

Usually, the impacts of climate change on environmental

systems are investigated against the background of scenario-

based climate projections. General Circulation Models (GCMs)

are used to estimate future changes in climate component

systems and ocean circulation by means of emission scenarios

for greenhouse gases and aerosol concentrations (Déqué, 2007).

However, these models are at low spatial resolutions which

often do not fit well with the impact scale, and the uncertainty

that originates from the GCMs is high (e.g., Warnatzsch and

Raey, 2018; Wu et al., 2021). To address this problem, Regional

Climate Models (RCMs) are applied to dynamically downscale

the GCMs to higher spatial resolutions. Nevertheless, when

using GCMs as boundary conditions, errors from the GCMs

are often transferred to the domain of the RCMs such that they

may require further correction (Déqué, 2007; Themeßl et al.,

2012). For example, Warnatzsch and Raey (2018) found that

GCM–RCMs underestimated precipitation in all the seasons

and the correlation between the observations and models did

not exceed ±0.57 for monthly rainfall in Malawi. Though the

models captured the rainfall trend, they were underestimating

the slope and the inter-annual fluctuations compared to the
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observed dataset. Many models failed at matching observed

drought episodes identified based on the SPI. Thus, statistical

approaches are often applied to relate the results of GCM–RCMs

to the statistical characteristics of meteorological observation

data at the local or regional scale (e.g., Wilby and Wigley, 1997;

Hundecha et al., 2016). Based on an ensemble of bias-corrected

GCM–RCM combinations, potential impacts of climate change

on drought characteristics (here based on the SPEI) can be

estimated (e.g., Johnson and Sharma, 2015; Aryal and Zhu,

2017).

However, sensitivity of droughts toward rainfall and

temperature changes requires a different approach. So

alternatively to the “top-down” approach described above,

scenario-neutral “bottom-up” approaches can be applied to

assess the impacts of climate change on specific target variables

(e.g., Prudhomme et al., 2010; Fronzek et al., 2011; Hirschi et al.,

2011). Such approaches assess the sensitivity of a target variable

(here the SPEI) to systematic changes in climate variables (here,

temperature and precipitation). That is, observed climate data

are systematically perturbed and the response (i.e., impact on

the SPEI) of a certain combination of systematically perturbed

temperature and precipitation time series is plotted as one pixel

on a two-dimensional domain: the so-called “response surface”.

However, at least in this simple version, such bottom-up

approach neglects likely changes in the temporal sequencing

of climate data (e.g., annual, seasonal, day-to-day variability).

which may, however highly influence the occurrence and

severity of hydrological extremes like droughts.

Therefore, the aim of this study is to examine the

development of future drought characteristics in the Greater

Lake Malawi Basin (GLMB) under climate change. The

study, combines bias-corrected GCM–RCM simulations and

projections with a scenario-neutral response surface approach

as described in Vormoor et al. (2017) to analyse future

meteorological droughts. With reference to 1976–2005, we seek

to establish how well the 16 GCM–RCM combinations are able

to simulate drought incidents and their characteristics including

the number of detected events, their duration, and their

intensity as compared to observation data. We also analyse the

benefits of applying the bias-correction (i.e., empirical quantile

mapping) for the representation of drought characteristics by

the GCM–RCM ensemble over this period. In addition, the

sensitivity of drought characteristics toward the changes in

temperature and precipitation is conducted based on scenario-

neutral response surfaces which also incorporates changes in

the temporal structure of temperature and precipitation time

series as they are projected by the GCM–RCM ensemble.

The following specific research questions are addressed by

this study:

(1) How reliable are (bias-corrected) climate models in

simulating meteorological drought characteristics in the

Greater Lake Malawi Basin?

(2) As climate is expected to change in the future, what are

the expected changes in future drought characteristics like

their intensity, duration and number of occurrences as

compared to the recent past in this region?

Study area and data

Study area

The study is looking at the combined Lake Malawi and Shire

Basins which is referred to as the Greater Lake Malawi Basin

(GLMB). Malawi is a land-locked country located in south-

eastern Africa (Figure 1). It shares borders with Mozambique to

the South, Southwest and Southeast, Zambia to the northwest

and Tanzania to the North and Northeast. The climate ofMalawi

is predominantly warm and wet from October to April, with

mean temperatures varying roughly between 26 and 28◦C and

monthly rainfall of above 200mm. It is generally cooler and drier

in winter (May–September), with monthly rainfall below 20mm

and mean temperatures between 21 and 25◦C.

In terms of size, Malawi covers 118,484 km², and in

2018, 20.4% of the area was covered by water bodies, 48%

by agricultural land, 18.9% by forest and the remaining

12.6% by built-up area, barren land and other wooden

areas (Source: https://knoema.com/atlas/Malawi/topics/Land-

Use/Area/Surface-area). The population (currently almost 18

million people) is increasing at the rate of 2.9% per year

(National Statistical Office, 2018) which adds pressure on the

natural resources by increasing land under development and

agriculture, hence increasing deforestation (Palamuleni et al.,

2011). For example, in the Upper Shire River Basin, agricultural

land increased by 18% from 1989 to 2002 (Palamuleni et al.,

2011), while forest cover in the Lake Malawi Basin decreased

from 64% in 1967 to 51% in 1990s (Calder et al., 1995). In 2018,

the population was almost four times that of 1966 (National

Statistical Office, 2018) and 86% of Malawi’s population was

employed in the agricultural sector in 2013 (Nyekanyeka, 2013).

Data

We used the observed gridded daily rainfall dataset that

was used by Mtilatila et al. (2020b). The gridded data were

generated from station data obtained from the Department

of Climate Change and Meteorological Services (DCCMS) in

Malawi, which was complemented by a 0.5◦ gridded rainfall

product provided by the Global Precipitation Climatology

Center (GPCC) (Schneider et al., 2018) to cover Tanzanian

and Mozambiquan areas for rainfall. Daily temperature data

were obtained from the Climatic Research Unit (CRU) at the

University of East Anglia (Osborn and Jones, 2014). The Inverse

Distance Weighting (IDW) method by Shepard (1968) was
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FIGURE 1

The study area, the Greater Lake Malawi Basin (Lake Malawi and Shire River Basins) in south-east Africa.

used to grid data into 0.5◦ to match the resolution of the

GCMs. In this study, the gridded observations-based products

are used as a reference and for bias-correcting 16 GCM–

RCMs combinations provided by the Coordinated Regional

Climate Downscaling Experiment (CORDEX) Africa (accessed

at https://cordex.org/data-access/esgf/). The GCM–RCMs have

a spatial resolution of 0.44◦ and provide daily simulations and

projections, respectively, for the periods 1976–2005, 2021–2050,

and 2071–2100. In this study, the RCP 4.5 and 8.5 scenarios are

considered for the future climate projections to account for the

high uncertainty of models in capturing rainfall in the study area

(Warnatzsch and Raey, 2018). Table 1 shows the GCM–RCM

combinations considered in this study.

Methods

Drought analysis

Droughts in the GLMB are estimated based on the SPEI,

which is a commonly used index to describe meteorological

droughts (Vicente-Serrano et al., 2010). The estimation of

the SPEI is based on the meteorological water balance

(MWB), i.e., the difference between precipitation and PET.

Evapotranspiration can be estimated as reference, potential

or actual. The reference evapotranspiration assumes the

well-watered grass surface, while the PET is based on

the open water surface. In this study PET is adopted

as is indicated by Vicente-Serrano et al. (2010). PET is

estimated using the Thonthwaite equation (Thornthwaite,

1948), which requires only temperature as measured input,

and as such is an advantage in areas where data are scarce.

The distribution function of the water balance determined

from the precipitation and temperature is transformed into

a standard normal distribution. The SPEI then quantifies the

water excess and deficits over a certain time period, as the

SPEI represents the number of standard deviations by which

a certain water balance estimate deviates from the long-

term mean:

SPEI =
xi−x

σ
(1)

where xi is the MWB estimate over a given time scale, here

12 months as recommended by Mtilatila et al. (2020a), and

x and σ are the mean and standard deviation of the MWB,

respectively (Vicente-Serrano et al., 2010). For the definition

of drought characteristics, we adopted the McKee et al. (1993)

classification based on SPEI instead of SPI. Droughts are

defined in four categories: mild droughts (0 ≥ SPEI > −1.0),

moderate droughts (−1.0 ≥ SPEI > −1.5), severe droughts

(−1.5 ≥ SPEI > −2.0), and extreme droughts (SPEI ≤ −2.0).

However, since the WMO (2012) characterizes mild droughts

as near-normal, we neglected this category during the onset

of the drought. Consequently, a drought event starts when

the SPEI ≤ −1 and ends when the SPEI turns positive, and

this period is referred to as drought duration in months. The

total drought months (DM) and drought events (DE) are the
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TABLE 1 GCM–RCM combinations from CORDEX Africa used in the

study.

No. Global climate

model (GCM)

Regional climate

model (RCM)

Center

1 CNRM-CM5 CCLM-4-8-17 CLM

2 EC-EARTH CCLM-4-8-17 CLM

3 MPI-ESM-LR CCLM-4-8-17 CLM

4 EC-EARTH HIRHAM5 DMI

5 EC-EARTH RACMO22T KNMI

6 EC-EARTH REMO2009 MPI

7 MPI-ESM-LR REMO2009 MPI

8 CNRM-CM5 RCA4 SMHI

9 CanESM2 RCA4 SMHI

10 CSIRO-Mk3.6.0 RCA4 SMHI

11 EC-EARTH RCA4 SMHI

12 IPSL-CM5A RCA4 SMHI

13 MPI-ESM-LR RCA4 SMHI

14 MIROC5 RCA4 SMHI

15 Nor-ESM1-M RCA4 SMHI

16 GFDL-ESM2M RCA4 SMHI

The ensemble consists of nine GCMs and five RCMs from five centers: Swedish

Meteorological and Hydrological Institute (SMHI), Sweden, Max Planck Institute (MPI),

Germany, The Royal Netherlands Meteorological Institute (KNMI), Netherlands, The

Danish Meteorological Institute (DMI), Denmark, and Climate Limited-Area Modeling

Community (CLM).

total number of months during which the drought occurred

and the total number of times droughts occurred during a 30-

year period, respectively. Finally, drought intensity (DI) is the

minimum SPEI value during drought duration (Dayal et al.,

2017).

Empirical quantile mapping (EQM)

Future drought characteristics can be analyzed based

on temperature and precipitation projections from dynamic

climate models like GCMs (e.g., Haile et al., 2020) or RCMs

(Tomaszkiewicz, 2021). Due to limited descriptions of the

atmospheric process and rather coarse spatial resolutions the

output of such models need some further statistical downscaling

and/or bias correction (e.g., Bronstert et al., 2007). In this

study, we applied empirical quantile mapping (EQM) to adjust

biased RCM outputs to observations. This method has become

popular (e.g., Piani et al., 2010; Themeßl et al., 2012; Johnson

and Sharma, 2015; Osuch et al., 2017; Shrestha et al., 2020;

Enayati et al., 2021), as it seeks for a transfer function to

adjust the quantiles of the GCM–RCMs (xm) to those of the

observed data (xo; here, gridded observations for temperature

and precipitation). The method can be expressed as:

xo = F−1
o (Fm (xm) ) (2)

where Fm is the empirical cumulative distribution function

(eCDF) of xm and F−1
o is the inverse eCDF corresponding

to xo (Piani et al., 2010), The transfer function identified for

the current climate conditions is then applied to also adjust

the future projections by the GCM–RCMs, assuming that the

function is stationary and the shortcomings of the GCM–RCMs

are the same for the future period. The bias correction is applied

to the daily values at the individual grid points for each climate

model. EQM has proved to bias-correct daily rainfall better than

parametric and theoretical distribution based methods (Enayati

et al., 2021). We then evaluate the performance of the raw

and bias-corrected GCM–RCM combinations in terms of their

ability to represent drought characteristics during the reference

period (1976–2005).

Climate change impacts on drought
characteristics

The potential future impacts of climate change on drought

characteristics at the basin scale have been investigated bymeans

of response surfaces. In a two-dimensional domain, response

surfaces display the changes in long-term mean drought

characteristics when the climatological input data (precipitation

and temperature) are systematically perturbed linearly as:

T (i)→To (i)+Xt (3)

P (i)→Po (i)Xp (4)

Observed climate data (To (i) and Po (i)) for the reference

period 1976–2005 is linearly and uniformly scaled at daily

time steps, i, within a user-defined range of possible future

changes given by the perturbation factors Xt and Xp for

temperature (additive) and rainfall (multiplicative), respectively.

Temperature is scaled in +0.5◦C increments up to +5◦C as

compared to temperatures of the reference period, leading

to eleven (11) different perturbations. Precipitation is scaled

in ±5% increments within the range from −35 to +10% as

compared to precipitation during the reference period, resulting

in ten (10) model realizations. The perturbed time series of

temperature and rainfall are applied in Equation 1 to obtain

the SPEI for each of all possible combinations of perturbed

input data series (11 × 10 = 110 realizations). Based on these

SPEI series, changes in MWB and drought parameters (DE, DI,

and DM) are derived. For a specific combination of perturbed

time series, the mean change as compared to the reference

period is plotted as one realization (i.e., one pixel) within the

11 × 10 domain of the response surface. The climate signals

from the bias-corrected GCM–RCMs are then overlaid over

the response surfaces to provide an illustration of their specific

Frontiers inWater 05 frontiersin.org

https://doi.org/10.3389/frwa.2022.1041452
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Mtilatila et al. 10.3389/frwa.2022.1041452

FIGURE 2

Taylor diagrams of (A) daily rainfall, (B) daily mean temperature, (C) monthly rainfall, and (D) monthly mean temperature. Cyan is for the

uncorrected (raw) model outputs, while red is the bias-corrected model outputs. Black shows ensemble means, where • is for uncorrected

outputs while* is for the bias-corrected dataset. O Represents the observed (reference) dataset. The Pearson correlation which is shown by the

azimuth from 0 to 90◦ is significant at the 0.05 significance level. The centered root mean square error (RMSE) is proportional to the distance

from the reference point on the x-axis (green lines) and is in mm/day or mm/month or degrees Celsius for daily rainfall, monthly rainfall and

temperature respectively. The standard deviation is proportional to the radial distance from the reference point.

future projections including their uncertainties (i.e., range of the

projections) (Vormoor et al., 2017; Mtilatila et al., 2020b).

However, the linear scaling of observed temperatures

and rainfall neglects possible modifications of the temporal

structures (e.g., sequences of dry/wet spells) due to climate

change, as it is the case with the delta method of statistical

downscaling (Sunyer et al., 2012). To overcome this issue, we

also perturbed future projections of the 16 GCM–RCMs after

having removed their mean climate change signal. That is,

temperature and rainfall of the bias-corrected RCP8.5 scenario

for the period 2071–2100 is first leveled to the observed data (i.e.,

removing the mean projected change signal—in magnitude)

and then systematically perturbed as shown in Equations

3, 4 (see Vormoor et al., 2017 for details). This way, we

preserve changes in the temporal structure as projected by the

climate models.

Again, the MWB and drought parameters are estimated

from the individual SPEI series resulting from the perturbed

time series. In total, we generated 17 response surfaces

(16 GCM–RCMs and one observed dataset) based on 1,870

perturbed times series (1obs + 16 GCM–RCM × 11Xt × 10Xp).

If the changes in temporal structures of temperature and rainfall

have no influence on droughts, then the response surfaces

generated by perturbed GCM–RCM data and observed data are

expected to be alike. In this study, we illustrate two response

surfaces for each target variable: one shows the mean of the 17

individual response surfaces, and the second one summarizes

the differences between the 17 response surfaces as given by the

coefficient of variation (CV) for DE and DM, or the standard

deviation (SD) for DI and MWB. The larger the CV or SD, the

larger is the influence of the temporal structure on the water

balance or a specific drought parameter.
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Results

The results section is subdivided into two parts. The

verification of temperature, rainfall, MWB and meteorological

drought characteristics as represented by the 16 GCM–

RCM combinations using the historical period of 1976–2005

is presented in Section Performance of GCM–RCMs. This

is followed by changes in the future MWB and drought

characteristics in Section Projected drought characteristics.

Performance of GCM–RCMs

Precipitation and temperature

The Taylor diagrams (Taylor, 2001) comprising Pearson

correlations (r), standard deviation and centered root mean

square errors (RMSE) are used to verify the 16 GCM–RCMs

against observations for rainfall and temperature. To determine

the potential improvement contributed by EQM, both raw and

bias-corrected daily rainfall and temperature are presented in

Figures 2A,B. Since the generation of drought characteristics

is done at monthly scales, the verification of monthly rainfall

and temperature is also included (Figures 2C,D). Not only does

the Taylor diagram provide the opportunity to compare models

with observations, but the models can also be compared with

one another.

The ensemble members of the raw dataset have a bias that

ranges from −25 to +21% for daily rainfall, hence the need

to conduct bias correction. For daily rainfall (Figure 2A), the

standard deviation of the observed daily rainfall is 3.3mm, while

all the uncorrected raw models except one show larger standard

deviations. The deviation of the raw dataset ranges from 3.1

to 5.0mm. After the bias correction, the dispersion of values

in the dataset is reduced as the standard deviation range shifts

to between 2.9 and 3.5mm. The improvement introduced by

EQM is also observed with the Person correlation coefficient

between the observed and GCM–RCM ensemble members. The

correlation improves from between 0.39–0.7 (raw ensemble

members) and 0.53–0.71 (EQM ensemble members). Similarly,

the root mean square error (RMSE) improves from between 2.6–

4.8 and 2.6–3.1mm per day. Considering the ensemble mean,

the RMSE improves from 2.1 to 1.8mm, and the correlation

coefficient improves from 0.79 to 0.85. At the monthly time

scale (Figure 2C), the skill of the EQM ensemble improves

considerably, as the correlation is in the range of 0.66–0.87

(0.86 for the ensemble mean) and 0.79–0.88 (0.91 for the

ensemble mean) for uncorrected and bias-corrected ensemble

members, respectively.

The bias of daily mean temperature is less than rainfall, as

it ranges from −6 to +11% for the raw ensemble members. The

correlations are similar for both datasets which range from 0.7 to

0.84 (raw data) and from 0.72 to 0.85 (EQM data) (Figure 2B).

Again, the ensemble mean correlation between the observations

and the models are also similar, at 0.91. The standard deviations

for both raw and corrected model outputs are near the reference

point. However, the RMSE for the ensemble mean slightly

improves from 1.1 (raw) to 0.9◦C (EQM). Looking at the raw

ensemble members, their standard deviations are greater than

those of the observations, while the bias-corrected values are

mostly around the observed standard deviation of 2.2◦C. At

the monthly time scale (Figure 2D), the standard deviations

of temperature for the ensemble members also remain around

2.2◦C, while the uncorrected members range from 1.9 to 2.9◦C.

The correlation coefficients and RMSE show similar patterns as

at the daily time scale.

In summary, EQM improves the skill of the GCM–

RCM ensemble by reducing the spread and magnitude of

ensemble members. Most models represent the temperature

of the region better than rainfall. Aggregating individual

ensemble members into ensemble means as well as aggregating

from daily to monthly time scales improves the statistical

measures significantly.

Meteorological water balance (MWB),
standardized precipitation and
evapotranspiration (SPEI) and drought
characteristics

To illustrate the effectiveness of EQM, the deviations in the

MWB as estimated from the raw and bias-corrected climate

simulations and compared to observed data for the reference

period are also assessed (Figure 3A). In addition, the deviations

of the SPEI, DE, DI, and DM are also evaluated (Figures 3B–E).

MWB

The observedMWBmean is+5.5mm, and in Figure 3A, the

benefit of EQM becomes the clearest, as it corrects the water

balance bias from the inter-quartile range (IQR) of between

−13.4 and +2.4mm, (ensemble mean: −3.9mm) to between

+4.8 and +6.8mm (IQR) (ensemble mean: +5.6). The bias

correction has managed to correct all the models from negative

to positive MWB and closer to observed MWB values.

SPEI

Figure 3B shows the deviation of the SPEI for moderate

drought events (SPEI ≤ −1). For the raw dataset, the bias

ranges from−14.6 to+1.3% (IQR), and after bias correction the

deviation is reduced and counts from−7.9 to−2.1% (IQR). The

deviation of the ensemble mean improves from −9.4% for the

raw dataset to−4.4% for the bias-corrected dataset (Figure 3B).

Drought characteristics

The deviation in the drought parameters DE, DI, and DM

are shown in Figures 3C–E. The smallest deviation for both

Frontiers inWater 07 frontiersin.org

https://doi.org/10.3389/frwa.2022.1041452
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Mtilatila et al. 10.3389/frwa.2022.1041452

FIGURE 3

Bias assessment of (A) monthly mean meteorological water balance (rainfall minus PET, in mm/month), (B) standardized precipitation and

evapotranspiration index (SPEI) for moderate drought (SPEI < −1), (C) drought events (DE), (D) drought intensity (DI), and (E) drought months

(DM) per year in the GLMB.

the raw and bias-corrected datasets is found for DI, Figure 3D

(mean raw: −0.8% vs. mean EQM: +2.2%). The size of the

ensemble distribution is similar but the EQM ensemble shows

slightly larger values. For DM (Figure 3E), the range in the

deviation of the raw and EQM ensembles is also similar, though

based on the IQR, the EQM range has smaller deviations than

raw values [EQM: −3.3 to +15.6% (IQR) vs. raw: +6.4 to

+26.7% (IQR)]. However, the mean deviation of the EQM

ensemble (+7%) is considerably smaller than the raw ensemble

(+14%). Less influence of EQM bias correction is noted for

the estimation of DE as the deviation of the raw dataset ranges

from −28.6 to +3.6% (IQR) while the deviations of the EQM

ensemble range from−28.6 to−10.7% (IQR) (Figure 3C).

To sum up, analogous to the improvement in rainfall,

EQM considerably improves the estimation of the MWB from

the GCM–RCM ensemble for the reference period. However,

the effect of EQM on the estimated drought parameters

is comparably small and does not necessarily lead to an

improved representation of drought characteristics for the

reference period.
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FIGURE 4

The standardized precipitation and evapotranspiration index (SPEI) series for observations and the 16 bias-corrected GCM–RCM combinations

and associated ensemble means for (i) the historical period 1976–2005, gray-ensemble members, black-ensemble mean, and red-observations.

(ii) 2021–2050 and 2071–2100 future periods. Green-RCP4.5 and yellow-RCP8.5.

Projected drought characteristics

Standardized precipitation and
evapotranspiration index (SPEI)

Figure 4 presents the SPEI time series of the 16 GCM–RCMs

and their ensemble means for the period 1976–2005 (historical

period), 2021–2050 (near-term period), and 2071–2100 (far-

term period) using the bias-corrected datasets. The SPEI during

the historical period shows high uncertainty and variations

among the individual models. As a result, the ensemble mean

of the models rarely goes beyond −1 and +1, and it is clearly

noticed that the ensemble members are poorly representing the

observed SPEI (RED graph) during the historical period. Over

time, though, the SPEI decreases which indicates an increase in

DI from the historical period to the near- and far-term periods

in Malawi. The wet episodes noted during the historical period

become fewer and fewer in the future, as dry conditions become

more prominent. The increase in drought during 2021–2050 is

similar for both RCP4.5 and RCP8.5, but the mean intensity of

RCP8.5 is 21% more than that of RCP4.5. During 2071–2100,

the SPEI based on RCP4.5 stabilizes, while the SPEI based on

RCP8.5 constantly keeps on decreasing. It is also noted with

many ensemblemembers that they have one continuous drought

episode during the entire period of 2071–2100. The model

uncertainty (spread of models) is large, which starts during the

historical period and increases over time. The SPEI based on

RCP8.5 shows greater uncertainty than based on RCP4.5, and

the mean intensity of the SPEI based on RCP8.5 is 171% larger

than that based on RCP4.5 during this period.

Projected changes in drought characteristics

The previous sections have illustrated the limited ability

of the GCM–RCM ensemble (both raw and bias-corrected)

to represent the observed meteorological water balance and

drought characteristics for the reference period. This also

limits the credibility of the GCM–RCM ensemble in projecting

potential future changes. Therefore, we opted for the response

surface approach as described in Section 3.3 to illustrate the

sensitivity of droughts to systematic changes in temperature and

precipitation (Figure 5). The future projections of temperature

and precipitation of the GCM–RCMs are overlaid on the

response surfaces to illustrate the ensemble uncertainty.

The summary of the GCM–RCMs is also represented in

Table 2.

Meteorological water balance (MWB)

The mean MWB is sensitive to both temperature and

rainfall changes (Figure 5A) as the estimates decrease with

both increasing temperature and decreasing precipitation. The

MWB at the reference point, R (1P = 0%; 1T = 0◦C)

is ∼+4.1mm, indicating that the rainfall amount is greater

than evapotranspiration (water surplus). However, for the most
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FIGURE 5

Response surfaces for mean meteorological water balance-MWB [first row-(A,B)], mean drought events-DE [second row-(C,D)], mean drought

intensity-DI [third row-(E,F)] and drought months-DM per year [fourth row-(G,H)] at the aggregated scale of GLMB. The response surfaces are

(Continued)
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FIGURE 5 (Continued)

produced using systematically perturbed precipitation (y-axis) and temperature (x-axis) data as inputs. The points added on the surfaces reflect

climate change signals as projected by 16 GCM–RCM combinations. The di�erent symbols refer to di�erent periods and scenarios

(rectangle/circle: RCP4.5 2021–2050/2071–2100; triangles/diamonds: RCP8.5 2021–2050/2071–2100 for the bias-corrected datasets. Thick

colored symbols are the mean of the climate model ensemble for the bias-corrected datasets for the respective periods and scenarios:

light-green/dark-green for RCP4.5 2021–2050/2071–2100; yellow/orange for RCP8.5 2021–2050/2071–2100. Response surfaces in the left

column show the mean of 17 individual response surfaces (16 generated based on leveled GCM–RCMs plus 1 based on scaling observed time

series). Panels to the right show the standard deviations and coe�cient of variation, respectively, of the 17 individual response surfaces. “R”

marks the mean of each drought parameter for the reference period, i.e., no scaling.

TABLE 2 Summary of GCM–RCM results.

Period Reference 2021–2050 2071–2100

Scenarios RCP4.5 RCP8.5 RCP4.5 RCP8.5

Ensemble mean Range Ensemble

mean

Range Ensemble

mean

Range Ensemble

mean

Range

Mean DI −1.6 −2 −2.8,−2 −2.4 −3.6,

−1.8

−3.7 −5.5,

−2.4

−7.8 −9.0,

−4.9

Mean DE 6 7 4, 7 6 3, 7 3 2, 6 1 1, 2

Mean MWB (mm) +4.1 −3.9 −13.2,

−3.9

−8.6 −17.9,

+0.8

−18.4 −28.8,

−8.6

−50.2 −59.5,

−25.8

Mean MWB/year (mm) −0.1 −0.1 −0.4,

−0.1

−0.3 −0.6, 0 −0.6 −1.0,

−0.3

−1.7 −2.0,

−0.9

Mean DM/year (months) 4 7 7, 10 9 5, 11 11 9, 11 12 11, 12

DM change/year (months) 0 +3 +3,+6 +5 +1,+7 +7 +5,+7 +8 +7,+8

Ensemble mean changes and ranges in DI, DE, MWB, and DM per year compared to the reference period (Ref).

extreme combination of scaling (1P=−35%;1T =+5◦C), the

MWB is negative (∼-92.3mm) implying that evapotranspiration

clearly exceeds rainfall. It is also found that already an increase

of just 1◦C in temperature (1P = 0%; 1T = 1◦C) changes

the water balance to −3.9mm implying that evapotranspiration

becomes higher than rainfall in the area. Similarly, the change in

rainfall of ±5% (1P = ±5%; 1T = 0◦C) changes the MWB to

+8.8/−0.5 mm.

Considering the GCM–RCM ensembles, most of the

models suggest future MWB between −3.9 and −13.2/+0.8

and −17.9mm during 2021–2050 for RCP4.5/RCP8.5. These

estimates reflect a decrease in MWB between −195 and

−422%/−80 and −537% respectively. During 2071–2100 and

for RCP4.5, the water balance is in the range of −8.6 to

−28.8mm, which reflects a decrease of −320 to −802%. For

RCP8.5 on the other hand the water balance is from −25.8

to −59.5mm, reflecting a decrease of −729 to −1,551%. The

ensemble mean changes for the different periods and RCPs are

−3.9 (−195%) and −18.4 (−549%) (RCP4.5 2021–2050 and

2071–2100), and −8.6 (−310%) and −50.2 (−1324%) (RCP8.5

2021–2050 and 2071–2100) as seen in Table 2. Otherwise,

the mean MWB change per year ranges from −0.1, −0.3,

−0.6 to −1.7mm for RCP4.5 2021–2050, RCP8.5 2021–2050,

RCP45 2071–2100 and RCP8.5 2071–2100 respectively. The

standard deviation among the models (Figure 5B) seems to be

affected only by temperature scaling which indicates the relative

importance of the temporal structure of the input data series on

the estimation of PET. However, the overall standard deviation

is below 8% which shows a high model agreement, indicating

a small influence of the different model temporal structures on

mean water balance.

Drought events (DE)

The number of DE ranges from 1 to 7 for the 30-year period

under study (Figure 5C). The reference point, R, shows 6 events

during the reference period. With increasing temperature, the

number of DE first starts to increase (up to 1T = +0.5◦C)

before gradually decreasing until a single big drought event over

a 30-year period is reached (from 1T = +3.5◦C). Combining

temperature increase with a decrease in rainfall, which also

reduces DE, the situation of only one long lasting drought event

occurring over 30-year period is reached earlier. Considering

the GCM–RCM ensembles, DE ranges from 4 to 7 events for

RCP4.5 during 2021–2050 and from 3 to 7 events for RCP8.5.

During 2071–2100, the events are between 2 and 6 for RCP4.5
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and between 1 and 2 for RCP8.5. The ensemble average suggests

7 events, and 6 events during 2021–2050 for RCP4.5 and RCP8.5,

respectively, and 3 events and 1 event during 2071–2100 for

RCP4.5 and RCP8.5, respectively (Figure 5C and Table 2). The

climate models agree well in areas where DE is reduced to one

event only (Figure 5D). The effect of the temporal structure

of the GCM–RCM ensemble is greatest within the transition

zone from DE = 2 to DE = 1. Thus, it seems that the models

differ in terms of the timing to attain a lower number of DE

(Figure 5D).

Drought intensity (DI)

Like the water balance, the mean DI is also sensitive

to both temperature and rainfall changes (Figure 5E) i.e., DI

increases with increasing temperature and decreasing rainfall.

The areas in the response surface with only one DE show the

highest DI. The DI for the reference point, R is ∼-1.6 (SPEI

value), which refers to the severe drought category (−1.5 ≤

DI > −2). However, with the slight increase in temperature

or decrease in rainfall, the mean DI reaches the extreme

drought category (DI ≤ −2). For temperature scaling by 1T

> +4◦C, the influence of precipitation scaling on DI decreases.

That is, even with increasing precipitation, droughts reach

comparatively high intensities due to high PET. It is found that

1◦C increase in temperature increases the DI by 28% while the

increase/decrease in rainfall by ±5% changes the DI changes by

−8 and+11% respectively.

For the period 2021–2050, the GCM–RCM ensemble shows

a range in DI from −2 to −2.8 (RCP4.5), and −1.8 to −3.6

(RCP8.5). For 2071–2100, the DI ranges from −2.4 to −5.5

(RCP4.5) and −4.9 to −9 (RCP8.5) as shown in Table 2. On

average (ensemble means), this accounts for an increase in

DI of +25, +50, +131, and +388% for RCP4.5 2021–2050,

RCP8.5 2021–2050, RCP45 2071–2100 and RCP8.5 2071–2100,

respectively. The agreement of the models varies with both

temperature and rainfall, there is a higher model agreement at

lower temperature changes when precipitation is close to the

reference point and the standard deviation is <10%. Otherwise,

the standard deviation is between 10 and 25% for the rest of

the areas implying the influence of the temporal structures on

mean DI (Figure 5F), This influence is larger in areas with

only one drought event occurring over the 30-year period

(Figure 5D), indicating that although the 17 different response

surfaces agree on a single drought event during these areas they

differ considerably in intensity.

Drought months (DM)

The pattern of DMper year over the 30-year period is similar

to that of DE. Particularly for the combinations of temperature

and precipitation scaling leading to only one long = lasting DE

over 30 years (Figure 5C), where there are 12 drought months

per year (Figure 5G). The whole-year drought event is reached

when precipitation is scaled by 1P ≤ −25% (with no changes

in temperature), or when temperature is scaled by 1T = +3◦C

(no changes in precipitation). However, with the increasing

temperature of the global limit (United Nations, 2015) of either

1T = +1.5◦C or 1T = +2◦C, the 12-month drought per

year is reached if it is associated with a rainfall decrease of

1P = −15% or 1P = −10% respectively. The GCM–RCM

ensemble means suggest DM per year ranging from 7 to 10

months for RCP4.5 and 5 to 11 months for RCP8.5 during the

2021–2050 period. On the other hand, during 2071–2100 the

DM range from 9 to 11 months for RCP4.5 and 11 to 12 for

RCP8.5 (Table 2). On average, the increase in DM by +3, +5,

+7, and +8 more months than the reference period per year

for RCP45 2021–2050, RCP8.5 2021–2050, RCP45 2071–2100

and RCP85 2071–2100 respectively as shown in Table 2. The CV

is almost zero where the maximum DM is reached indicating

a negligible relevance of differences in the temporal structure

of the climate input data. Still, in the area where the majority

of the GCM–RCM ensemble members cluster especially for

the 2021–2050 period, the CV is comparatively large (∼30%)

(Figure 5H).

Discussion

Reliability of climate models

Although the GCM–RCMs simulation results are not the

perfect reproduction of the observations, they are found to

represent the climate conditions in the region reasonably

well. This is particularly the case for temperature at monthly

timescales, which has a lower bias between raw GCM–

RCM temperature simulations and observations than for

precipitation (Enayati et al., 2021). Still, the bias-corrected

dataset outperforms the raw dataset and also reduces the

uncertainty range. It is also noted that the ensemble mean of

both raw and bias-corrected temperature and rainfall performs

better than individual models which agrees with de Araujo and

Bronstert (2016) who systematically evaluated CORDEX Africa

climate simulations for Malawi. This also is in line with the

assumption that different climate models are random samples

from the distribution of possible models centered around the

mean (Jun et al., 2008).

The rainfall simulation performance of the climate models is

lower than for temperature, and its error signals are transferred

to the estimates of the MWB. With reference to drought

characteristics, the deviation of the estimations by the bias-

corrected and raw datasets as compared to estimations based on

observed climate data are in most cases similar or even worse.

That is, the benefit of EQM for adjusting the temperature and

precipitation simulations does not translate into an improved

estimation of drought characteristics. This is a result of the
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fact that EQM bias correction preserves the temporal patterns

of the climate variables as they are simulated by the GCM–

RCMs. Drought characteristics like DE and DM, however,

are influenced by the temporal structures of climate model

simulations. Imperfect simulation of the temporal structure

of precipitation in particular, can lead to incorrect drought

estimates, although EQM has improved the mean and variance

of simulated temperature and precipitation. This limits the

credibility of the GCM–RCM ensemble for future projections

on drought characteristics in the region. The limitation of EQM

for the adjustment of future projections is that it assumes the

transfer function to be stationary in time. This is particularly

critical for the highest quantiles making this method less suitable

for rare occurrences, i.e., intense precipitation and floods (Paz

and Willems, 2022).

Due to the limited credibility of the climate model ensemble,

we have applied the response surface approach for this task

since it allows for an illustrative overview of many possible

changes including an illustration of the uncertain projections of

the GCM–RCMs given by the overlaid spread of the ensemble

member distributions. Like in many climate impact studies, we

focus on the differences (future period minus reference period)

obtained by the same models instead of the absolute values. In

this way, the bias errors from the reference period may be offset

(Maraun et al., 2010). In this study, we have only used a single

bias correction method, and yet according to Wu et al. (2021),

about 35% of uncertainty in the future projections is contributed

by bias-correction methods. Therefore, it will be interesting to

find out whether other bias-correction methods can reproduce

results similar to those of the EQMmethod.

The potential impacts of climate change
on droughts in the GLMB

Despite the internal structural differences and uncertainties

that exist among the models, they all agree on the increase of

meteorological drought intensity in the future. This is well in

line with other studies finding similar results in the (South-)East

African region (e.g., Dai, 2012; Nguvava et al., 2019; Haile

et al., 2020). Future drought events between 2071 and 2100

are projected to be almost four times more intense and by 8

months longer–lasting (ensemble mean RCP8.5) as compared to

the reference period. Consequently, the number of events will

decrease with higher temperatures and lower precipitation.With

the increase in temperature (and therefore a probable increase

in evapotranspiration) and decrease in rainfall, the MWB will

decrease roughly by −0.1 to −0.3 mm/year during 2021–2050

(Table 2). On the other hand, during 2071–2100 the decrease

in the MWB will be between −0.6 and −1.7 mm/year. This

will increase DI by +25 to +388% and DM between +93 and

+223% in the future depending on time period and scenario.

These numbers may seem very high, yet similar results for

DI and drought duration have been reported by Haile et al.

(2020) for some Eastern African countries like Tanzania, which

borders Malawi.

These numbers and the projected possibility of a single

multi-decadal drought in the far future are quite concerning.

This also underlines the crucial role of future droughts in this

region. Spinoni et al. (2020) identified many regions in southern

Africa including areas in Malawi to become global drought hot-

spots in the future. The estimation of the drought characteristics

in this study is based on the SPEI and refers to the long-

term mean and variance of the MWB (see Equation 1) for the

climate normal period 1976–2005. When we consider drought

events at the end of the 21st century, e.g., in the 2090s, we

will then refer droughts to a “new-normal” period. This will

lead to less severe SPEI values than reported in this study.

However, as clearly shown by this study, the “new-normal” will

be generally warmer and drier than current conditions, which

may re-define our current understanding of droughts in this

region. It is worth emphasizing that the drought assessments in

this study are based on a drought index which also considers

evapotranspiration in addition to precipitation. Several studies

(e.g., Ahmadalipour et al., 2017; Mtilatila et al., 2020a) have

compared drought assessments based on SPI vs. SPEI and found

differences in drought characteristics depending on the index

used. For Malawi, drought estimations based on SPEI show

higher drought magnitudes compared to drought estimations

based on SPI (Mtilatila et al., 2020a). Both indices, though,

show a decreasing trend from 1976 to 2013 (thus increasing

drought). For other regions like in North America and Europe,

and at the Horn of Africa, the direction of trend in droughts

depends on the choice of the index (Ahmadalipour et al.,

2017; Spinoni et al., 2020). SPEI considers the crucial role of

evapo(trans)piration which can be expected to increase given

rising temperatures as projected by the GCM–RCM ensemble.

However, the estimation of PET, which is needed to compute

the SPEI, is not trivial and thus uncertain. For instance, PET—

here estimated by the Thornthwait method—assumes sufficient

soil moisture to maintain active transpiration and tends to

overestimate evapotranspiration which can temporally be water-

limited. Potentially, this leads to an overestimation of SPEI.

The study has also shown how important it is to keep

the global temperature increase below +1.5◦C as stipulated in

the United Nations Framework Convention on Climate Change

(UNFCCC)—Paris Agreement (United Nations, 2015). Beyond

this threshold, there is a likelihood of having 12 drought months

per year if associated with a decrease in rainfall of at least−15%.

All the models under RCP8.5 during 2071–2100 agree on this

possibility. Since climate factors including droughts contribute

to crop failure in Malawi by 53.3% (Coulibaly et al., 2015), the

more severe and longer-lasting future droughts as projected in

this study will impact the agricultural sector and affect food

security and the economy of the country.
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From this perspective, future droughts will also impact

the availability of water resources for hydropower production.

Referring to Mtilatila et al. (2020b), who found that a

temperature increase of +1.5◦C combined with a rainfall

decrease of <-20% will turn the Shire River flow from perennial

to seasonal, this will signify extreme hydrological drought in

the country. The extreme meteorological droughts (DI < −2)

that occurred in the 1990s resulted in an extreme hydrological

drought on Lake Malawi that significantly reduced the Shire

River flow (Mtilatila et al., 2020a). During this time, the lake

level of Lake Malawi was reduced by −0.9m on average and

went down to −1.9m when the drought was at its peak. It was

also found by Mtilatila et al. (2020a) that both the duration

and intensity of the meteorological droughts had an impact

on the strength and duration of the hydrological drought.

Therefore, the future DM andDI will surely result in very intense

hydrological droughts that will affect the Lake Malawi level and

hence the Shire River outflow, thereby affecting the communities

downstream including hydropower production (Bhave et al.,

2020). The role of evaporation is essential for Lake Malawi’s

water balance and lake outflow to the Shire River where more

than 95 % of the country’s electricity productions takes place.

Hydrological projections agree on a reduction in mean lake

level, outflow and Shire River discharge as a consequence of

climate change. In turn, future hydropower production is likely

to decrease between −1 and −24% during 2021–2100 based on

both RCP4.5 and RCP8.5 resulting in a reduced reliability of

hydropower production due to climate change (Mtilatila et al.,

2020b).

Conclusion

This study analyzed the reliability of an ensemble of 16

GCM–RCM combinations from the CORDEX Africa initiative

in simulating the temperature and precipitation statistics as

well as drought characteristics in the GLMB, Southeast Africa.

Also, the benefit of EQM bias correction of the GCM–RCM

ensemble was investigated. The models have some limitations in

representing the drought characteristics in the region. Therefore,

the “top-down” approach of impact assessment has been

extended to the scenario-neutral “bottom-up” method which

provides the quantifiable sensitivity of drought characteristics

toward the changes of temperature and precipitation. However,

different from the delta approach, the sensitivity analysis in this

study has taken into consideration the temporal changes of the

models. Three major conclusions can be drawn from this study:

• The GCM–RCM ensemble simulates temperature

dynamics better than precipitation dynamics compared to

meteorological observation data, which is not a new feature

of GCM results; see Bronstert et al. (2007). As such, errors

in rainfall projections contribute highly to the uncertainty

in drought characteristics.

• Bias correction improves the ability of the GCM–

RCM ensemble to reproduce meteorological conditions

and—to some degree—the meteorological water balance.

However, it has only relatively small effects on the

estimation of drought characteristics. This limitation

reduces the credibility of the GCM–RCM ensemble for

the projection of potential future drought conditions.

Therefore, the future projections of drought characteristics

have been combined with a response surface approach

that illustrates the outcome of a systematic sensitivity

analysis of droughts toward changes in temperature and

precipitation conditions. The differences in the temporal

structure of the input data time series as projected

by the different climate models have been preserved.

Overlaying the bias-corrected future projections on the

response surface for the individual drought indicators

illustrates the spread of the projections, and thus the

ensemble uncertainty.

Future droughts in Malawi will likely become more severe

compared to the reference period (1976–2005). The entire

GCM–RCM ensemble agrees that droughts will be more intense,

while the number of drought events will decrease due to

long-lasting future drought episodes. The degree of drought

intensification depends on the scenario considered. On average,

projected droughts based on RCP8.5 are 1.7 times more severe

than droughts based on RCP4.5. However, the range in the

projections of the individual ensemble members is also high,

which illustrates the high uncertainties in the GCM–RCM

ensemble. Despite the high uncertainties and therefore, the

limited credibility of the climate projections, the information

generated here can aid in planning and (water-)managing

activities for climate change adaptation measures in Malawi.

This is of particular relevance for water management issues

referring hydro power generation and food production, both

for rain-fed and irrigated agriculture. The study focused on

temporal changes in drought characteristics over the whole

GLMB aggregated over large spatial scales. Future investigations

should also establish spatially distributed change projections.
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