
TYPE Original Research

PUBLISHED 25 November 2022

DOI 10.3389/frwa.2022.1058883

OPEN ACCESS

EDITED BY

Usman T. Khan,

York University, Canada

REVIEWED BY

Xander Wang,

University of Prince Edward

Island, Canada

Mirka Mobilia,

University of Salerno, Italy

*CORRESPONDENCE

Caterina Valeo

valeo@uvic.ca

SPECIALTY SECTION

This article was submitted to

Water Resource Management,

a section of the journal

Frontiers in Water

RECEIVED 30 September 2022

ACCEPTED 11 November 2022

PUBLISHED 25 November 2022

CITATION

Zhang Z and Valeo C (2022)

Verification of PCSWMM’s LID

processes and their scalability over

time and space.

Front. Water 4:1058883.

doi: 10.3389/frwa.2022.1058883

COPYRIGHT

© 2022 Zhang and Valeo. This is an

open-access article distributed under

the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other

forums is permitted, provided the

original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Verification of PCSWMM’s LID
processes and their scalability
over time and space

Zhonghao Zhang and Caterina Valeo*

Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada

Introduction: This paper explores the scalability of PCSWMM’s Low Impact

Development (LID) modeling tools within the urban stormwater computer

model.

Methods: The scalability is assessed for a variety of spatial and temporal scales

and for event (50-year return storm) and continuous inputs (daily rainfall for

an 11 month period), and with a focus on bioretention cells. The model is

calibrated for a moderate to large scale, semi-urban watershed on Vancouver

Island, British Columbia, Canada. Sensitivity analysis and specialized metrics

are used to verify internal model processes at a variety of scales.

Results: With regard to spatial scaling, changes in flow path length and

slope derived from Digital Elevation Models were the most impactful spatial

information when modeling flood event and the model’s surface layer was

the dominant contributor to peak flowrate and volume mitigation by the

bioretention cell. However, when modeling the continuous rainfall inputs,

storage layer related parameters dominated model outputs. Aside from the

soil layer’s depth, soil layer parameters such as hydraulic conductivity, showed

negligible influence on response to time series rainfall. Parameters that are

kept static by the model such as vegetation cover, hydraulic conductivity and

storage void ratio (but are naturally dynamic), were tested for their impact on

response if allowed to change seasonally or with excessive loading. Runo�

coe�cients were greatly impacted by storage layer parameter dynamics with

very little impact from vegetation. For event simulations, the berm height in

the surface layer was the dominant player in reducing peak flow as well as

total volume. An analysis to help illustrate sensitivity across spatial scales is

proposed.

Discussion: The Spatial Dynamic Sensitivity Analysis shows that parameter

sensitivity changes dynamically as LID implementation percentage changes. In

particular, the clogging factor, which is a parameter associatedwith the storage

layer, was highly influential for time series rainfall analysis. The LID model

concepts in PCSWM seem appropriate for events because the surface layer

dominates the response for very large storms. For smaller storms, continuous

time series, and larger spatial scales, the model could be revised to better

represent soil layer dynamics and vegetation cover, which were both currently

inconsequential to the model’s output.
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Low Impact Development, bioretention cells, model verification, stormwater models,
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Introduction

Urbanization leads to increasing stormwater runoff and

flooding (Ahiablame and Shakya, 2016; Shaneyfelt et al., 2021)

as well as degrading the quality of receiving waters. Low Impact

Development (LID) technologies are systems or practices that

use or mimic natural processes to mitigate the deleterious effects

of the increase in imperviousness arising from urbanization

(Environmental Protection Agency, 2012; Paule-Mercado et al.,

2017). LIDs include green roofs, bioretention cells, permeable

pavements, cisterns, etc. (Golden and Hoghooghi, 2018), and

provide a myriad of hydrological and environmental benefits,

including runoff volume and peak reduction, groundwater

recharge by increasing stormwater infiltration into the native

soil, water quality improvements, heat-island effect mitigation

(Xie et al., 2019), reduce soil sealing effects (Rodríguez-Rojas

and Grindlay Moreno, 2022), etc. Having evolved in urban

areas, LIDs are typically implemented at small scales. At these

scales, LIDs have been demonstrated as effective tools through

laboratory and field studies as well as in practice (Stovin et al.,

2012; Palla and Gnecco, 2015; Gülbaz and Kazezyilmaz-Alhan,

2017b; Piro et al., 2019). They are shown to effectively reduce,

mitigate, and prevent hydrological and meteorological risks

at small scales or plot scales (Jiang et al., 2015; Palla and

Gnecco, 2015; Herrera-Gomez et al., 2017; Liu et al., 2017; Seo

et al., 2017; Bai et al., 2018). However, when evaluating the

effectiveness of the LID, researchers often separate the LID from

the hydrological water cycle system and considered it a separate

component. This effectively ignores the interconnectedness

between components of the hydrological process and flow

transformation in the upstream and downstream zones (Nika

et al., 2020), thereby reducing the ability to scale-up these

infrastructure to larger, catchment scales. Statistical analysis

shows, that where LID implementation area is greater than

5% of the drainage area, there is only a slight improvement

in catchment water quantity and quality mitigation. This

improvement may increase with the area where LIDs are

implemented (Pennino et al., 2016) and naturally, the size of

LID implementation on a large scale will be the dominant

factor in evaluating LID performance. In the literature, large

scale LID simulations seem to be primarily used for flood

control (Lilburne and Tarantola, 2009; Carvalho et al., 2019)

and few studies have focused on evaluating the outcomes of

LIDs at larger scales (D’Ambrosio et al., 2022). In addition,

studies have shown that the performance of LIDs varies greatly

with rainfall distribution, and LIDs tend to perform better in

response to rainfall patterns that are of low rainfall intensity,

frequent and of short-duration (Peng et al., 2019), which tend

not to result in flooding. Despite this, there is interest in scaling

up LID implementation to larger, or catchment scales, instead

of just being relegated to small-scale, urban areas (Golden

and Hoghooghi, 2018). To do this successfully means that the

interconnection between the LID and the rest of the catchment’s

hydrological components must be understood at these larger

scales. Currently, because LIDs are studied at small spatial

scales, there is a lack of design guidelines for large scale LIDs

in watersheds, thus, preventing implementation at these larger

scales (Martin-Mikle et al., 2015). The complexity associated

with large scales and data availability issues can also limit the

implementation at larger scales. The natural complexity of the

interconnections in catchment hydrological components leads

to higher uncertainties in hydrological model output. Thus,

any LID model that ignores these interconnections would lead

to a reduction in accuracy in predictions of LID function

(Kaykhosravi et al., 2018).

LID design, construction and operation is often conducted

through computer models that can simulate LID function.

PCSWMM is a very popular urban stormwater model that

has incorporated LID concepts to model the urban hydrology

of catchments that contain such infrastructure. It uses quasi-

physically based representations of hydrological processes

in catchments with pervious areas, impervious areas, and

LIDs. Like any conceptual, hydrological computer model, the

water balance and dynamics are modeled with calibrated or

default parameters based on the literature, user experience, or

developer recommendations. These parameters can dramatically

impact simulation results (Carvalho et al., 2019) depending

on the mathematical representation of hydrological processes.

PCSWMM’s representation of LIDs has given rise to numerous

applications (Sakshi and Singh, 2016; Bond et al., 2021; Jeffers

et al., 2022) in the literature with calibrations and validations

on a wide variety of catchments. However, PCSWMM’s

representation of LID processes has yet to be verified.

Verification of a model, unlike validation, is the process

by which a model’s concepts are assessed for representing

reality within the bounds of uncertainty. To verify PCSWMM’s

representation of LIDs installed in moderate to large scale

catchments, an analysis of the LID concepts/equations is

required. This analysis must assess the reliability and degree

of consistency in the LID mathematical representation for

simulating actual observations for a wide range of spatial and

dynamic heterogeneity. It must also assess the model’s ability to

realistically represent the various components of the catchments’

hydrological water balance over space and time. Currently, five

different LID tools are modeled by PCSWMM and each is

conceptualized as a combination of vertical layers (Ahiablame

and Shakya, 2016). The tools range from bioretention cells,

rain gardens (unlined bioretention cells that drain to natural

surrounding soils), green roofs, permeable pavements and

others. There are large differences in these types of LIDS

but fundamentally, PCSWMM models the first four types as

layers in which water flows into adjacent lower layers. Thus,

three layers are used to represent the LID: a surface layer

(bioretention cell, green roof) sitting above a soil layer (or

pavement layer in the case of permeable pavements) that drains

into a storage layer beneath the soil layer. Layer characteristics
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and model equations depend on the type of surface, pavement

if any, soil type and subsurface storage capacity. PCSWMM

provides single- and multi-objective optimization techniques

for calibrating the parameters associated with each layer in the

model (Tobio et al., 2015).

A useful method for verifying simulated processes in

hydrological models is a sensitivity analysis (SA) (Pfannerstill

et al., 2015). This method determines the uncertainty in model

output given different sources of uncertainty in the inputs

(Saltelli et al., 2004) and has been widely used in hydrological

model research (Wagener et al., 2003; Reusser et al., 2009).

Temporal Dynamics of Parameter Sensitivity (TEDPAS) has

been demonstrated to be helpful for verifying model processes

through SA at varying time scales (Sieber and Uhlenbrook,

2005). Massmann et al. (2014) also proposed a new method

for visualizing time-varying sensitivities across time scales as

a means to verifying internal model process conceptualization.

While many urban hydrological models keep parameters static

no matter the simulation duration or whether or not those

parameters naturally change with time, the application of the

model over different temporal and spatial scales will lead to

differences in model sensitivity to model parameters.

Scaling is a concept that has deep roots in catchment and

hillslope hydrology literature. A model that is scalable means

that it represents the processes involved with enough robustness

that the model can be applied at virtually any scale. Han et al.

(2022) studied the impact of spatial density and connectivity

of LIDs such as green spaces on runoff treatment. When the

spatial location of the implementation of green space is limited,

increasing the connectivity between the various green spaces will

lead to increased resiliency during flood events (Han et al., 2022).

Current, urban hydrological models of LIDs, however, have yet

to be proven scalable beyond the plot scale and there is a lack of

research on whether computer models of LIDs have any chance

of being scalable given the mathematical representation of

hydrological processes. In order to further ensure the reliability

of LID models at larger scales, researchers need to conduct

further research on the parameter changes within the LID

model, and whether the output of the model when observing

the parameter changes matches the actual hydrological process

(i.e., have the concepts using these parameters been verified?).

When the model studied is consistent with theory (or expert

opinion), then one has greater confidence that the model can

effectively reflect the hydrological changes in the studied area

and is potentially scalable.

The specific objective of this paper is to use dynamic

sensitivity analysis to verify the LID representation in

PCSWMM and its suitability for catchment scale applications.

This will be accomplished by testing the response of the system

to spatial upscaling, temporal scaling with continuous times

series data, and testing the sensitivity of model parameters

over a wide range of possibilities. The LID selected will be the

bioretention cell due to its popularity, complexity and ability

for a wide range of water quantity and quality treatment. A

peri-urban watershed on Vancouver Island is used as the study

area. The results of this work will help to create better computer

models of LIDs that can model LID function effectively at a

variety of scales. This will lead to better designs and better

decision making by stormwater managers and stakeholders

interested in the role of LIDs in adaptation to changing climates.

Materials and methods

The process used to achieve the objective is shown in

Figure 1. Because testing the model should be as realistic as

possible, PCSWMM will be applied to a real catchment and

tested with parameter ranges that are as realistic as possible.

Upon identifying the study area, basic data are collected to

implement the model using ArcGIS and PCSWMM related

literature. Following this, three different sets of scenarios are

proposed to verify and test the scalability of the model.

Investigating the impacts of spatial scaling on PCSWMM

response is conducted by applying the calibrated model to a

single lumped catchment and then a moderately discretized

version of the same catchment using a large flood event.

Temporal scaling responses are tested by applying the model

under a continuous time series of rainfall for a typical (normal)

year; however, parameters that are known to change with time,

are altered over discrete time periods within the continuous

time series. Finally, a sensitivity analysis will be conducted

on all relevant parameters affecting output and the dominant

mechanisms will be identified through a ranking measure.

Study area

The study area is in Saanich on Vancouver Island, British

Columbia. The overall Saanich boundary area is 103.44 km2 and

contains many rural and urban landscapes and communities

extending north to the Saanich Peninsula. The area’s terrain is

undulating, with many glacier-washed rocky outcrops and the

elevation ranges from sea level to 229m. Within the Saanich

area, the Tod Creek watershed is used in the application

of PCSWMM. It is primarily rural with some connected

urban areas (currently estimated at approximately 20% of the

catchment; see Figure 2). The flow in this watershed is highly

variable, ranging from 1× 10−4 m3/s of water flow at the end of

summer, and up to 5 m3/s after a winter rainstorm. The result of

this change in water flow is that stream flow in this region can be

quite low in summer but with a high risk of flooding in winter.

In addition, there are four large natural lakes in the study area,

Maltby Lake, Prospect Lake, Durrance Lake and Quarry Lake

(Walsh et al., 1995). The watershed was delineated using ArcGIS

with input from a digital elevation model (30× 30m resolution)

of the Saanich area that was obtained from the USGS to flow out
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FIGURE 1

Methodology flowchart.

of Tod Creek at Saanich’s boundary. Saanich’s boundary data and

land use were obtained from the Saanich Data Catalog, and soil

type data is obtained from Google earth.

Meteorological data in the form of daily rainfall and

daily evaporation (Supplementary Table 1) and daily mean,

maximum and minimum temperatures were obtained from

the Government of Canada open data website (https://climate.

weather.gc.ca/historical_data/search_historic_data_e.html) for

the Victoria Prospect Lake (101Q6NN) rainfall station. For

the selected study area, rainfall data were only available for

1973-1986, and in this range, 1984 was deemed an average

year and therefore, the period selected for model calibration.

Temperature distribution curves were obtained from the nearby

weather station (1018620) at the Victoria International Airport

in Sydney, BC for the period of 1984. Data from 1960-90 Mean

daily Evaporation (Walsh et al., 1995) are also used as input

to PCSWMM, as shown in Supplementary Table 2. It should be

noted that in the calibration period, the Tod Creek catchment

had minimal urbanization estimated to be around 5% of the

total area.

The Tod Creek watershed shown delineated in Figure 2B

is 17.47 km²; however, the “Tod Creek below Prospect Lake”

(08HA054) flow gauge station is used to delineate the catchment

used in this research. The resulting catchment area draining to

the gauge (henceforth referred to as J300 shown in Figure 2C)

that is shown in Figure 2C in yellow is delineated using ArcGIS

to be 10.38 km². This flow gauge has 9 years of flow discharge

records (1982–1990) (08HA054). Note that the period of overlap

with available rainfall data from the Victoria Prospect Lake

rainfall station is only 1982–1986.

PCSWMM’s LID model equations for
bioretention cells

Bioretention cells are modeled by solving a set of simple

flow continuity equations through three layers. As shown in

Figure 3, only vertical water movement occurs within and

between layers in bioretention cells. By considering the water

balance of each individual layer, the rate of water transfer

between the layers over time, expressed in mm/h, is determined.

An inflow hydrograph to the LID unit is transformed into

a combination of runoff, infiltration, subsurface storage, and

subsurface drainage into the nearby native soil by numerically

solving the continuity equation (Equation 1) at each runoff time

step (Rossman and Huber, 2016).

PCSWMM conceptualizes a subcatchment as a rectangular

surface that has a uniform slope S and a widthW that drains to a

single outlet channel. Water balance is modeled using continuity

such that:

∂d

∂t
= i− e− f − q (1)

q = αi
(

d − dS
)5/3

=
1.0WS1/2

An

(

d − dS
)5/3

(2)

where i is the rate of rainfall plus snowmelt (mm/hr); e is the

evaporation rate (mm/hr); f is the infiltration rate (mm/hr); q

is the runoff rate (mm/hr) and d (mm) is the head of ponded

on the surface (t is time in hr). The runoff rate is computed

using Equation 2 where Wis the width for the rectangular area;

dS is the depth of the depression storage depth (and therefore,
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FIGURE 2

(A) Saanich area with Tod Creek draining to Saanich boundary in blue; (B) DEM image for the Tod Creek catchment; (C) watershed delineation

for the portion of Tod Creek catchment modeled by PCSWMM (shown in yellow); (D) land use; and (E) soil type.

d − dS is the net height of water leading to surface runoff); S

is the uniform slope for catchment; n is Manning’s coefficient;

A is the surface area of the sub-catchment and αi is defined

in Equations 3a and 3b. The equations specific to the surface

layer, soil layer and storage layer are given in the Appendix in

Supplementary material.

PCSWMM divides the sub-catchment into three subareas

(pervious subarea, impervious subarea, and zero-impervious

subarea) and solves for the depth of each subarea separately.

At the end of each time step, the runoff from each subarea

is combined to determine the overall sub-catchment runoff.

The difference between PCSWMM in calculating pervious area

runoff and impervious area runoff is related to the difference

in area and Manning’s coefficient n based on land use. With

regard to the pervious subarea, the coefficient αi for the pervious

subarea is:

α1 =
1.0WS1/2

A1nP
(3a)

where A1 is the pervious subareas and nP is the user designed

pervious Manning’s n. For impervious areas,
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FIGURE 3

Typical bioretention cell: (A) representation in PCSWMM; (B) important variables and parameters (in Equations below and in the Appendix).

α2 =
1.0WS1/2

(A2 + A3) nI
(3b)

where A2 + A3is the sum of impervious area and zero-

impervious area and nI is the user designed impervious

Manning’s n.

Surface runo� and flux constraints

It is assumed that any ponded surface water in excess of the

maximum freeboard (or depression storage) height D1 becomes

immediate overflow,

q1 = max
[(

d1 − D1
)

/1t, 0
]

(4)

where D1 is the berm height for surface ponding (mm), and d1

is the depth of water stored on the surface (mm). To ensure that

at any given time step (1t), the moisture levels in the soil and

storage layers are not negative, nor exceeding the capacity of

the individual bioretention cell layers, constraints are added to

the bioretention cell layers to limit flux rates. Input values such

as (D2 and D3) for these limits are to be provided by the user

and the following equations are used in PCSWMM (variables

are described in the Appendix, now in Supplementary material).

Regarding the soil layer, the amount of the drainable water

already present in the soil layer and the net amount of water

added to it over the time step limits the soil percolation rate f2.

HereD2 is the thickness of the soil layer (mm); θ2 is the soil layer

moisture content (volume of water/total volume of soil); θFC is

the soil’s field capacity moisture content.

f2 = min
[

f2, (θ2 − θFC)D2/1t + f1 − e2
]

(5)

Regarding the storage layer, the amount of unused volume

in the storage layer and the net amount of water (D3− d3) taken

from storage layer (D3 is the depth of the storage layer and d3 is

the depth of water in the storage layer) over the time step both

serve to limit the soil percolation rate. In the Equation (6), φ3 is

the void fraction of the storage layer (void volume/total volume).

f2 = min
[

f2,
(

D3 − d3
)

φ3/1t + f3 + q3 + e3
]

(6)

The volume evacuated by drainage and soil evaporation over

the time step, together with the amount of accessible empty pore

space, limits the soil water infiltration rate f1.

f1 = min
[

f1, (φ2 − θ2)D2/1t + f2 + e2
]

(7)

Clogging factor

Clogging can decrease a bioretention cell’s hydraulic

conductivity K with time. A clogging factor (CF) is defined in

the model as the amount of layer void volume that experiences

complete clogging in the layer, and it is assumed that the

conductivity is lost linearly with the amount of clogged void

volume. Then K at a particular time t can be determined

as follows:

K3S (t) = K3S (0)

(

1−
Q (t)D3φ3

CF

)

(8)
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where K3S (0) is the initial saturated hydraulic conductivity of

the soil; CF is the clogging factor for the entire bioretention cell;

Q(t) is the cumulative inflow volume per unit area of the LID at

time t:

Q(t) =

∫ t

0

(

i(τ )+ q0(τ )
)

dτ (9)

where i(τ ) + q0(τ ) is the rainfall plus captured runoff inflow

to the LID accumulated up to time t and τ represents time in

the integrand.

Clogging only applies to simulations lasting several months

or longer because it is a long-term process. PCSWMM assumes

that clogging, or the decline in infiltration rates for bioretention

cells, happens at a constant rate proportional to the quantity of

void volumes that the LID unit treats over time. The number

of years (Tclog ) it takes to fractionally drop infiltration rate to a

degree Fclog can be used to calculate the clogging factor. The CF

is computed using the following formula:

CF =
Ia (1+ RLID )Tclog

φ3D3Fclog
(10)

where Ia is the annual volume of rainfall in inches; RLID is the

unit’s capture ratio; Tclog is the number of years; and Fclog is the

degree of decrease for an infiltration rate.

PCSWMM applied to the Tod Creek
catchment

Tod Creek below Prospect Lake streamflow station

(08HA054) was used as an outfall to delineate the lumped

catchment (referred to as catchment A) shown in Figure 4A.

Figure 4B shows the three sub-catchments (indicated as B1, B2,

and B3) also delineated by ArcGIS for the purposes of spatial

scaling exploration. Catchment A is 10.38 km2, B1 is 4.86 km2,

B2 is 2.51 km2 and B3 is 3.01 km2. The land use information

shown in Figure 2D is used to determine parameters, such as

impervious and pervious percentages, Dstore imperviousness

and perviousness, and zero-imperviousness percentage.

We selected the Green-Ampt method for infiltration, and

the soil information shown in Figure 2E provided the

suction head, conductivity and initial deficit by weight

of area.

In order to identify the values of soil related parameters

and other fixed features that do not change in time or space

(such as overall catchment area and soil type for example),

PCSWMM was calibrated using the Nash–Sutcliffe efficiency

coefficient (NSE) and the coefficient of determination (R2). The

daily rainfall data from the Victoria Prospect Lake (101Q6NN)

rainfall station close to J300 for the April to October 1984

period was used with the 08HA054 flow data to calibrate

the model applied to the lumped catchment A. The land use

data obtained was released in 2004, and after considering

land use changes over the past 20 years in the region, we

assigned a uniform percent imperviousness of 5% for the

calibration period in 1984. The size of the baseflow flowing

into J300 is set according to observed data at the flow

gauge. It is worth noting that in January, February, March,

November, and December, the baseflow is not 0, and the

values of the baseflow before and after calibration are shown

in Supplementary Table 3. In addition, the temperature data in

1984 fell below 0◦C prior to April and hence, the calibration

period was taken as April 15th to September 29th, which is

outside the snow period. Calibration focused on matching peaks

in the hydrograph (shown in Figure 4C) as closely as possible

as well as overall volumes. The calibration was conducted

at a daily time step given the rainfall hyetograph shown in

Figure 4C.

PCSWMM’s internal Sensitivity-based Radio Tuning

Calibration (SRTC) tool allows the user to select initial

values for control parameters, as well as specify uncertainty

levels. This tool was used to calibrate various parameters,

particularly those related to soil type. Parameters affected by

soil type are suction head (calibrated to 3.976mm), hydraulic

conductivity (calibrated to 0.872 mm/hr) and initial deficit

fraction (calibrated to 0.298). In addition, we also calibrated

the monthly distribution of the baseflow, and the calibrated

and observed hydrographs are shown in Figure 4C. The final

NSE value was 0.69 [considered “good” according to Moriasi

et al. (2007)]. We use these calibrated soil parameters and the

baseflow pattern for subsequent modeling analysis. It is worth

noting here that since the time interval of our rainfall data is

24 h, extreme values will be poorly modeled in comparison to

minute or hourly data (which were not available for the study

region). The main point of the calibration was to capture the

monthly distribution of J300 baseflow as well as soil related and

land use parameters. The final calibration parameters are given

in Supplementary Table 4.

Minimal urbanization scenarios for 50-year
return period rainfall and timeseries rainfall

Intensity-Duration-Frequency (IDF) curve data for the

50 year design storm is obtained from Environment Canada

(https://climatedata.ca/resource/idf-curves-and-climate-

change/) for the Victoria International Airport Meteorological

station (1018620). The rainfall distribution for the 50 year

design storm is the Chicago distribution type and is shown in

Figure 5A. The authors applied the calibrated model with the

50-year return period rainfall storm and the response is also

shown in Figure 5A. The bioretention cell saturation level is set

to 75% before the storm, and the catchment area’s impervious

ratio remains at 5%.
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FIGURE 4

(A) Tod Creek draining to J300 showing catchment A; (B) Proposed sub-catchments B1, B2 and B3; and (C) Hyetograph and calibrated and

observed flow curves for modeling flow at J300.

Figure 5B shows a continuous time series rainfall data

from 1986 that is used in the temporal scaling investigation

as well as in the model verification portion of this research.

When comparing the 1986 rainfall data to the 1981–2010

Climate Normal, the 1986 rainfall is a relatively wet year

being 21% wetter than usual overall. The temperature was

average according to the 1981–2010 Climatic Normal. Also

shown in Figure 5B is a simulated rainfall data set created

using the real rainfall data of 1986. This was done to test the

effects of dynamic parameters that change bi-monthly. The

reason for creating the simulated rainfall series is because the

real rainfall data series of 1986 had periods of little-to-no

rain, making it impossible to see the flow response in these

periods given changing parameters. Thus, for those months

where rainfall was absent, the rainfall from wet sub-periods

within 1986 were simply replicated for the dry sub-periods as

shown.

Scenarios investigating spatial scaling
impacts

This part explores the impact of the percentage of LID

(to the total area) in the catchment as well as the impact
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of spatial heterogeneity and discretization. Considering future

urban planning for the area, we speculate a future impervious

area to be 40% in the not to distant future, as shown in Table 1.

FIGURE 5

(A) Hydrograph of calibrated model using 1984 land use case

(5% urbanization) for the 50-year return period rainfall event

(rainfall shown on the upper horizontal axis); and (B) continuous

hydrological times series used in temporal scaling and model

verification analysis.

Sensitivity to temporal scaling: Static and
dynamic parameter changes

The model was applied using the real continuous rainfall

series of 1986 (shown in Figure 5B) but only for lumped

catchment A, for an LID area of 5% of the catchment and using

calibrated values that remain static for the entire time period.

For continuous simulations, the initial saturation level is set

to 25%. To model the impacts of what should be dynamically

changing parameters affecting each layer, the Authors chose to

model bi-monthly periods in 1986 where certain parameters are

altered for each of those periods. In addition, because 1986 has

various dry periods in the mid to late summer that are not useful

for analyses, the authors created a simulated rainfall event by

repeating the rainfall in the first period for three more periods,

and repeating the November rainfall up to July-Aug. This is the

simulated rainfall shown in Figure 5B. Table 2 below illustrates

the dynamic parameter changes for each layer.

For all scenarios noted in Section Scenarios investigating

spatial scaling impacts and Section Sensitivity to model

concepts: Defining a range of LID parameters, LID performance

is assessed using the conventional formula shown in Equation

11a. The Authors propose an additional equation for calculating

LID performance and shown in Equation 11b.

P =
SONo LID − SOLID

SONo LID
× 100% (11a)

where P is the performance metric describing the percent

reduction (or increase) associated with the computed output

(either peak flowrate or total volume); SONo LID is the computed

output after urbanization with no LID implemented; SLID is the

computed output after urbanization in the various scenarios.

The following alternative equation for performance is proposed

and also used in this work:

TABLE 1 The scenarios setting for spatial scaling impacts analysis.

Scenario Scale LID % of area Remaining % imperviousness Remaining non-LID % Adjusted % imperviousness

S0 A, B1, B2, B3 0 40 100 40

S1 A, B1, B2, B3 1 39.6 99.6 39.75

S2 A, B1, B2, B3 2 39.2 99.2 39.51

S3 A, B1, B2, B3 5 38 98 38.77

S4 A, B1, B2, B3 10 36 96 37.5

S5 A, B1, B2, B3 15 34 94 36.17

S6 A, B1, B2, B3 20 32 92 34.78

S7 A, B1, B2, B3 30 28 88 31.81

Scale A refers to the entire modeled catchment A shown in Figure 4A. Scales B1, B2 and B3 refer to simulations of LIDs within subcatchments B1, B2 or B3, respectively. Hence Scenario

AS0 refers to the basis of comparison where there is no LID in the catchment. Scenario B2S5 refers to the scenario in which 15% of subcatchment B2 is comprised of bioretention cells

while other subcatchments have no LID implemented.
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TABLE 2 LID parameter changes in dynamic LID parameter analysis with surface layer parameters shown shaded in green, soil layer in light brown,

and storage layer dynamic parameter changes in light gray.

Name Setting Change track Jan–Feb Mar–Apr May–Jun July–Aug Sept Oct–Nov

Rainfall (mm) 364 364 364 479.2 239.6 479.2

Temperature Max/Min (0C) 9.2/0 11.4/3.7 19.9/6.9 24.2/10.3 18.9/8.5 15.3/3.2

Saturation Initial condition 0.25 0.4 0.55 0.7 0.85 1.0

Berm height (mm) 150 No change 150 150 150 150 150 150

Vegetative Cover (fraction) 0.03 Convex variation 0.1 0.3 0.55 0.8 0.6 0.1

Surface roughness (Manning’s n) 0.1 Convex variation 0.05 0.075 0.09 0.15 0.105 0.05

Surface slope (percent) 1 No change 1 1 1 1 1 1

Soil Thickness (mm) 650 No change 650 650 650 650 650 650

Porosity (volume fraction) 0.44 Decrease 0.44 0.396 0.308 0.264 0.22 0.176

Field capacity (volume fraction) 0.11 No change 0.11 0.11 0.11 0.11 0.11 0.11

Wilting point (volume fraction) 0.03 No change 0.03 0.03 0.03 0.03 0.03 0.03

Soil conductivity (mm/hr) 40 Decrease 40 36 28 24 20 16

Conductivity slope 7 No change 7 7 7 7 7 7

Suction head (mm) 48.26 No change 48.26 48.26 48.26 48.26 48.26 48.26

Storage height (mm) 200 No change 200 200 200 200 200 200

Storage void ratio (voids/solids) 0.75 Decrease 0.75 0.675 0.525 0.45 0.375 0.3

Seepage Rate (mm/hr) 6 No change 6 6 6 6 6 6

Storage clogging factor 60 No change 60 60 60 60 60 60

PLID =
SONo LID − SOLID

SONo LID − SOPre−Urban
× 100% (11b)

where SOPre−Urban is the computed output before any

urbanization. This performance metric helps to shed light

on the ability of the LID to return the catchment to pre-

urbanization levels.

Sensitivity to model concepts: Defining a
range of LID parameters

The SA in this work uses parameter ranges and user assigned

uncertainty to determine model sensitivity to parameter

changes. The uncertainty ranges shown in Table 3 for each

parameter, were devised based on the following expressions

given by PCSWMM using the SRTC tools:

RLow = RCurrent ×

(

1

1+ U/100

)

(12a)

RHigh = RCurrent ×

(

1+
U

100

)

(12b)

where RLow is the lower bound for parameter’s uncertainty

range; RHigh is the upper bound for the parameter’s uncertainty

range; RCurrent is the current parameter’s setting; and U is

the uncertainty percentage assigned by the user (we selected

100%). Table 3 describes the parameter settings corresponding

to the default bioretention cell values and the uncertainty ranges

determined with Equation 12. The variations inmodeling results

(i.e., peak flowrate and total volume for the 50 year rainfall

event and total volume for the real continuous rainfall series

of 1986) are assessed for a specific percentage change in each

input change. This process tests the sensitivity of the model to

uncertain inputs. For the 50 year rainfall event modeling, we set

to initial saturation level to 75% and for the real, continuous

rainfall data series of 1986, the initial saturation level is set to

25%. Because bioretention cells are mainly divided into three

layers, the basic settings of each layer are derived from Low

Impact Development Stormwater Management (2022). The SA

settings are given in Table 3.

Metrics for LID performance and SA a�ected by
spatial scale

PCSWMM computes what is referred to as the “average

normalized sensitivity” and given in Equation 13. This sensitivity

is computed by dividing the difference between the largest

and smallest objective output (the objective function is either

peak flowrate or total volume) by the objective function value

associated with the BOC’s parameter value.

Ni = ±
|MaxOi −MinOi|

OBOC
(13)
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TABLE 3 LID initial assignment parameter table, and sensitivity analysis range for event and continuous rainfall.

Layers Parameter Symbol Input variable Output variable BOC values 50 Yr event

range

Continuous

series range

Surface layer Berm height (mm) D1 i+q0 e1+f1+q1 150 [75, 300] [75, 300]

Vegetative Cover (fraction) 1-φ 0.03 [0.015, 0.06] [0.015, 0.06]

Surface roughness (Manning’s n) 0.1 [0.05, 0.2] [0.05, 0.2]

Surface slope (percent) 1 1 1

Soil layer Soil thickness (mm) D2 f1 e2+f2 650 [325, 1300] [325, 1300]

Porosity (volume fraction) φ2 0.44 [0.22, 0.88] [0.22, 0.88]

Field capacity (volume fraction) θFC 0.11 0.11 0.11

Wilting point (volume fraction) θWP 0.03 0.03 0.03

Soil conductivity (mm/hr) K2S 40 [20, 80] [20, 80]

Conductivity slope HCO 7 [3.5, 14] [3.5, 14]

Suction head (mm) ψ2 48.26 48.26 48.26

Storage layer Storage height (mm) D3 f2 e3+f3+q3 200 [100, 400] [100, 400]

Storage void ratio (voids/solids) φ3 0.75 [0.375, 1.5] [0.375, 1.5]

Seepage rate (mm/hr) K3S 6 [3, 12] [3, 12]

Storage clogging factor CF 60 0.5 [30, 120]

where i is the LID parameter; MaxOi is the largest objective

function value computed for the uncertainty range assigned

to that parameter (Table 3); MinOi is the smallest objective

function value over the uncertainty range; OBOC is the BOC’s

objective function value for that range; and Ni is the average

normalized sensitivity value provided by PCSWMM. In this

work, we run simulations using the information in Table 3 to

assign the uncertainty range for each parameter and record the

PCSWMM output for the suite of Ni values for all parameters.

These are then ranked to understand relative dominance of

parameters in the simulations.

To explore model sensitivity to scaling and parameter

uncertainty, a spatial dynamic sensitivity analysis (SDSA) is

proposed in which the following metric is plotted versus

LID implementation area (which is a measure of scaling in

this work):

SDSA
j
i = ±

N
j
i (RBOC)

j
i

(

RHigh − RLOW

)j

i

(14)

where i is the LID parameter; j is the LID implementation

area scenario; N
j
i is the average normalized value for parameter

i (given by Equation 13) for the LID implementation area

scenario j; (RBOC)
j
iis ith parameter value for the BOC case

shown in Table 3 and scenario j; and
(

RHigh

)j

i
and (RLow)

j
i are

defined in Equation 12 for parameter i, scenario j, and SDSA
j
i

is the metric that is plotted versus LID implementation area.

Sensitivity is normally defined as a change in output for a given

change in input
(

1y
1x

)

. Equation 13, which provides Ni for each

parameter is effectively
1y
y0

, which is likened to the performance

metrics shown in Equation 11. The metric given in Equation

14 is proposed because it combines the conventional definition

of sensitivity with PCSWMM’s average normalized sensitivity.

Plotting SDSA
j
i vs. LID implementation area for each scenario

j, provides a visual tool by which to assess the dynamics in

parameters with spatial scale.

Results and discussion

Impact of spatial scaling

As shown in Table 1, AS0 is the scenario that uses the lumped

catchment with 40% imperviousness and no LID implemented –

this represents the BOC in this part of the analysis. The results of

scenarios AS1 to AS7 as reductions in volume and peak flowrate

computed using Equation 11a are shown in Figure 6. Also shown

are the various water balance variables for each layer for the first

four scenarios. The figure only shows LID area percentages up to

15% as there was no impact beyond 10% because implementing

10% of the total area as an LID brought the system back to pre-

developed response. Hence only values up to 15% are shown.

The reason that only 10% of LID area is required to bring the

response back to pre-developed levels is for the simple reason

that the bioretention cell is modeled as a single reservoir within

the catchment. The LID area of 10% effectively captures all the

water that is provided by the 50 year rainfall event. A 10% area

amounts to 1 km2 for catchment A, which for all intents and

purposes, is a very large bioretention cell that is not often seen

in practice.

Frontiers inWater 11 frontiersin.org

https://doi.org/10.3389/frwa.2022.1058883
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Zhang and Valeo 10.3389/frwa.2022.1058883

FIGURE 6

The basis comparison results for di�erent scenarios in AS0–AS7. The horizontal axis in the figure at bottom right represents the implementation

percentage of LID in the overall area, and the vertical axis represents the percent reduction. The smaller panels show the hydrograph

components for scenarios AS1, AS2, AS3, and AS4.

The graphs also show the contributing amount provided by

each layer. The total inflow to the bioretention cell is the red line

and the response, or surface runoff from the cell is shown as the

green line in the panels depicting the contribution to volume

and peak reductions. As the amount of LID area increases, the

volume reduction is a linear phenomenon whereas the change

in peak rise more quickly with the change in LID percentage.

As well, the contribution by the storage layers is relatively

constant for increasing LID, the contribution by the soil layer

increases somewhat, but it is the surface layer that contributes

to the bulk of the response. This is consistent with the model’s

representation of the bioretention cell in which the surface

provides the initial and immediate water “treatment” and it takes

time for the water to reach the lower depths. The storage layer

impact is seen later in the hydrographs. The soil layer functions

as a buffer between the two other layers, contains the vegetation

roots, and provides additional water quality treatment.

Figure 7 illustrates the impact to peak flow and volume

(computed using Equation 11a) for the individual sub-

catchments (scenarios B1,2,3 for each of S1 to S7 compared to

S0). It is important to note that while the soil type had some

variation, the greatest difference in the three sub-catchments

is their physical characteristics, i.e., area, elevation change and

shape. Hence, Figure 7 performance metrics is computed as

a percent reduction in flow contributing to J300 per area of

the sub-catchment (that is, Equation 11a divided by the sub-

catchment’s area). Hence, this analysis illustrates the impact

of the “width” of the catchment, its slope and any routing

experienced by the flow (and thus, the outlet of the sub-

catchment’s distance from J300). The differences between each

sub-catchment are given in the Table 4.

PCSWMM models a catchment as a rectangle with a width

W, which is effectively the length of the water flow path

length from the most upstream point to the outlet. Where
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FIGURE 7

Reductions normalized by subcatchment areas for peak flow

and total volume.

TABLE 4 Physical properties of each sub-catchment.

A B1 B2 B3

Area (km2) 10.38 4.6 2.8 3.108

Width (m) 1,201.1 706.5 352.9 352.9

Slope (%) 15.277 13.3 15.89 17.94

Suction head (mm) 3.976 3.831 4.446 3.819

Conductivity (mm/hr) 0.872 0.932 0.758 0.875

Initial deficit (frac.) 0.298 0.289 0.312 0.299

the bioretention cell is located in the sub-catchment is in fact

irrelevant, and thus the only topology and spatial heterogeneity

considered in the model are the characteristics shown in Table 4.

B1 is the headwater catchment and it is also the largest. B2 is

the smallest sub-catchment with B3 being just slightly larger

than B2. The smallest sub-catchment B2 contributes the most

to peak flow reduction (comparatively), with the largest sub-

catchment B1, the headwater catchment, providing the least

reduction per area. This trend is also true when LID area is 5%

or more. This trend is reversed however, for lower LID areas

less than 5%. These changes in relative reductions for varying

LID area arises because of the elevation across the rectangle that

represents the sub-catchment in PCSWMM. B3 has the highest

slope for the shorter flow path length than the other catchments.

This suggests that implementing LIDs in areas of rapid flowrate

generation may contribute to a greater calculated reductions in

overall volume than in flatter, larger sub-catchments such as

that in B1. The changes in soil type are likely only marginal

contributions to the differences observed.

Obviously, LID area is one of the largest influencing factors

in the LID response. Figure 8 is an illustration of how even

small increments in area impact flow peaks and volumes. It

illustrates the impact of increasing the LID implementation

FIGURE 8

Sensitivity analysis for LID area changing with respect to J300

flowrates and volumes. BOC is 5% with percentage increments

from 2.5 to 10% LID area. Simulations are conducted using the

50 year event on lumped catchment A.

area in smaller increments (starting from 2.5%) than shown in

the previous graph. The J300 observation volume reductions

increase linearly with the area, which makes sense as storage

volume grows linearly with area because the depth is fixed.

The impact to peak flow, however, increases in a somewhat

undulating fashion suggesting a relative tradeoff between the

different parameters as the bioretention cell area increases. The

results show that an LID’s ability to reduce peak flow varies

at different LID implementation scales. When the LID area

is small, the surface layer, soil layer, and storage layer of the

LID are filled quickly with stormwater generated from the

upstream impervious surfaces. At the surface, Manning’s n can

influence the response since the LID is much rougher than the

impervious areas. By increasing the net LID area, one reduces

the imperviousness and changes the overall roughness, thereby

reducing peak flow. This apparent reduction in peak flow;

however, decreases as the area increases leading to a somewhat

convex shape. As the area of LID increases, the soil layer and

storage layer begin to play a more prominent role, and the

surface runoff generated gradually changes with increasing scale,

hence causing an undulating pattern in the peak flow curves of

Figure 8. When LID area is over 10%, there is negligible surface

runoff generated because of the bioretention cell, and the runoff

through J300 comes only from the pervious area. Similarly,

research using the SWMM5 model to retrofit existing gray

infrastructure in Italy showed that there was a threshold value

of area (in percent of total catchment area) retrofitted with LIDs.

Increasing the LID area above this threshold led to onlymarginal

gains in hydrological benefits (D’Ambrosio et al., 2022).

Impact of temporal scaling

Figure 9 shows runoff coefficients for catchment A, scenario

3 (5% of the area is covered with a bioretention cells) using
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FIGURE 9

Runo� coe�cient for each period in which there is a change in

surface, soil or storage parameters. The black line indicates the

static parameter runo� coe�cient for the sub-period.

the simulated 1986 rainfall for the parameters in Table 2. The

changes by layer are also shown with the same colors depicted

in Table 2 indicating the different layers. The surface layer is

dominated by vegetation in the summer period and a high

roughness. Relative to the BOC case (the black lines) using

static parameters in this simulation, the influence of vegetation

is to effectively increase runoff (as the runoff coefficient is just

slightly higher in the summer months). This seems counter-

intuitive and this is because of the manner in which PCSWMM

uses vegetation in the model’s concepts (Lisenbee et al., 2021).

In PCSWMM, vegetation is simply a mechanism that reduces

potential storage volume in the surface. However, the effect is

minimal demonstrating that the vegetation in bioretention cells

is not a significant factor in bioretention cell function according

to the model.

The soil layer changes are resulting from a progressive but

quite drastic decrease in hydraulic conductivity, and porosity

over the year. The soil layer’s contribution to raising the runoff

coefficient increases throughout the year as progressively higher

amounts of water go to saturating the soil quickly and generating

runoff under the very wet simulation that receives rainfall in

every bi-monthly sub-period. The runoff coefficient is highest

when everything is completely saturated in the final sub-period

of Oct-Nov.

The storage layer is impacted in the dynamic simulation by

a reduction in voids available to store water. In the continuous

simulation after a long, wet period, storage is the biggest

influence on water volumes when the soil is saturated and the

void ratio has diminished due to continual clogging. To further

explore the impacts of each layer’s dynamics on water volume,

Figure 10 illustrates the deviation from the static case in either

water balance terms (left column) or impact on total volume that

is contributed by each of the layers (right column). Noting that

this is a simulation with 5% coverage of bioretention cell area,

there should be significant reductions in flow overall as observed

in the earlier graphs.

Different than the event simulations, the surface layer

contributes very little to surface runoff or evaporation

(Figures 10A,B,F). The Hargreaves method of estimating

evaporation in PCSWMMwas used to calculate the contribution

to evaporation (considered to encompass both evaporation and

transpiration processes by the model) for the water balance.

However, the vegetation seems to have little impact on the

water balance components over time. Only the storage layer is

affected by evaporation (Figure 10B). This layer is the deepest

layer and as Figure 3B shows, it contributes to the bulk of

evaporation by simple virtue of the fact that that is where the

water supply for evaporation is stored. Regardless of the impact

of the soil layer and the surface layer to hinder or promote

evaporation, the model considers this a loss from storage in the

transmission of water from the cell (which is restricted to the

vertical direction). Figures 10C,D show the influence of soil layer

and infiltration mechanisms in overall water balance. The soil

layer seems to directly contribute to surface runoff but overall,

infiltration is not an influencing mechanism in the dynamics.

Figures 10E,F show that the storage layer is the dominant layer

in continuous simulations. Total volumes are of interest in

continuous simulations and the storage layer contributes greatly

to the resulting surface runoff, suggesting that for continuous

modeling, bioretention cells designed with this model, could

simply be comprised of a single layer – the storage layer.

Verifying model concepts

In this section, Equation 11b is used to test the model’s

sensitivity to given parameter uncertainties (shown in Table 3)

in terms of performance metrics. The performance metric

corresponding to each parameter in the event simulations

is computed using peak flow and volume output; but only

volume output is computed with Equation 11b when running

continuous simulations. All parameters are static in the

continuous simulations.

Sensitivity analysis using a single rainfall event

In this analysis, catchment A with a 5% bioretention cell

coverage under a 50 year rain event is simulated to determine

the sensitivity of the bioretention cell’s performance to each of

the parameter uncertainty ranges shown in Table 3. Figure 11

involves radar charts showing how parameter influences vary

relative to each other overall (Figures 11A,B, for peak and

volume, respectively), surface layer parameters only are shown

in Figures 11C,D, soil layer parameters in Figures 11E,F, and
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FIGURE 10

Results of dynamic changes of selected parameters over time. Left column illustrates influence on water balance and outflow from (A) surface

layer; (C) soil layer; and (E) storage layer for the time period. Right column illustrates influence of di�erent parameters relevant to the di�erent

layers on: (B) evaporation loss; (D) infiltration loss; and (F) surface runo�.

storage layer parameters in Figures 11G,H, for peak and

volumes, respectively.

The radar charts show the relative influence between

parameters in these simulations. Figures 11A,B, not surprisingly,

show that the area and the berm height in the surface layer

affect the peak runoff in event modeling as well as the volume.

Other parameters have a larger impact on volume mitigating

performance than they do on mitigating peak flow. This is

consistent with bioretention cell design and within the model.

Figures 11C,D show the influence of vegetative cover and surface

roughness in the surface layer parameters. They display only

a 50% impact for a 100% change in the parameter values,

rendering these parameters somewhat insensitive. The model

is highly affected by changes in berm height particularly for
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FIGURE 11

Influence of bioretention cell parameters in the 50 year rainfall event, 5% LID coverage in catchment A on mitigating: (A) peak flow and

(B) volume; influence of surface layer parameter on mitigating (C) peak flow and (D) volume; influence of soil layer contributions for mitigating

(E) peak flow and (F) volume; and influence of storage layer on mitigating (G) peak and (H) volume.
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larger increases. Figures 11E,F show that all soil layer parameters

are not very impactful to peak or volume, although, the model

is slightly more sensitive to soil thickness and porosity than

the other two parameters. Figures 11G,H show that peak flows

resulting from flood events are relatively insensitive to storage

layer parameters while the volume is somewhat affected by

the storage height. Thus, for flood events, the surface layer

parameters are the most impactful. In a flood event, the surface

layer will accumulate and the berm height determines the

water storage capacity of the surface layer. Surface runoff is

automatically generated when this height is exceeded. Besides,

raising the vegetative cover increases the total volume and peak

flow, and lowering the vegetative cover will lower the total

volume and peak flow. The increase in vegetative cover will

reduce the internal water storage available in the soil layer, so

that only a small portion of the water is retained in the voids

of the soil layer, thus, increasing overland flow. The change of

surface roughness has almost no effect on the total volume, but

the increase of the Manning coefficient will reduce the overflow

rate, so the effect of increasing this parameter is to reduce the

peak flow.

Regarding the soil layer parameters, the performance of the

bioretention cells is somewhat sensitive to soil thickness, and

porosity but not sensitive to field capacity and conductivity

slope. The soil’s field capacity determines the minimum soil

moisture content below which percolation will not occur.

However, during this rainfall event, the soil moisture content of

the upper surface layer was always greater than that of the soil

layer, so percolation always occurred. Changing this value will

have no effect on the flow observed at J300.

Similarly, increasing the porosity of the soil layer can reduce,

as well as delay the peak flow timing and reduce the total volume.

Conversely, reducing the porosity will increase the peak flow,

quicken the runoff peak’s time, and increase the total volume.

If the porosity is reduced to 0, this will mean that the current

bioretention cells are only functioning as a ponded layer. Thus,

the bioretention cells will become a small pond that slows the

peak time but does not fully perform the intended function of a

bioretention cell. Decreasing the percentage of soil conductivity

will advance peak flow timing and increase peak flow size. For

the current LID setting, the soil conductivity is set to 40 mm/hr,

and if this value continues to decrease, it will cause rainfall to

enter the storage layer from the ponding layer at a slower rate.

The accumulated water in the surface layer will become overland

flow. The suction head is derived from the soil conductivity, so

we did not analyze the influence of the suction head.

Storage heights can also influence response to rainfall

events. Increasing the vertical height and storage void ratio of

the storage layer will allow more water to be stored in the

bioretention cells, thus reducing total volume and peak flow.

Besides, it is observed that increasing the seepage rate will

increase the infiltration loss of the original soil, thereby reducing

the total volume and peak flow. The clogging factor is only

intended to function in continuous rainfall events over extended

periods of time.

To illustrate the relative dominance of the parameters in

terms of model sensitivity, the Authors used Equation 13 (Ni)

to create Figure 12. Dominance is measured relative to a specific

objective function, i.e., the total volume of peak flow, from

pervious and impervious areas as well as the total volume

computed at J300. The results show that in the AS3 scenario,

the LID area implemented is the dominant factor affecting

the total volume and peak flow. After area, Figure 12 shows

that there is really only one factor (out of 11 tested) that

dominates the LIDs ability to reduce peak flow (relative to

the other parameters): berm height, which is a surface layer

parameter. Total volume reductions are dominated by berm

height, porosity, and soil thickness, with the last two being soil

layer parameters. This is consistent with how bioretention cells

are intended to function for short-term floods. Figure 13 shows

the SDSA plot of Equation 14 for the parameters shown in

Figure 12 (and for the same event simulation) as a function of

the area of LID implemented. This helps to illustrate scaling

related effects on model sensitivity. Figure 13 shows that the

SDSA metric values for peak flow (Figures 13A,B) and volume

output (Figure 13C).

In Figure 13, the results show that flood event reduction

is most sensitive to berm height for both peak flow and total

volume within the sensitivity range used (Table 3) at all scales.

It is worth noting that Ni of Equation 13 used in Figure 12,

is only meaningful within each LID area implementation

scenario making it challenging to infer trends across LID

implementation scales. But this is possible when using SDSA

plotted in Figure 13 because this sensitivity metric combines

the model’s performance with the change in output given

the change in parameter input for a specific LID area. This

facilitates visualizing the relative role of the various parameters

to performance over LID size.

Figures 13A,B show that the parameters’ influence on

performance fluctuates with the LID area, especially between 1

and 2%. This observation shows that when LID is implemented

in small areas, changing the Manning coefficient (surface

roughness) is relatively more effective than changing the

berm height (in the uncertainty range assigned). As the LID

implementation area increases, the overall LID water storage

capacity tends to increase and the parameters affecting the LID’s

ability to reduce peak flow are mostly influenced by berm height.

Increasing this value can reduce the formation of surface runoff,

which is more efficient in reducing the peak flow than other

LID parameters. Figure 13B eliminates the berm height curve

to better illustrate the relative roles for all the other parameters

across scales. The figure shows that the soil layer’s porosity and

hydraulic conductivity as well as surface roughness shift relative

to each other when LID area is between 1 to 5%. At the smallest

scales, the surface roughness actually has a greater influence

on performance than the other parameters; but with just a
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FIGURE 12

Ranking parameters based on Equation 13 for bioretention cell response to the 50-yr rainfall event on AS3 (entire catchment with 5% LID

coverage).

little more area and scaling up, porosity, a soil layer parameter,

dominates the performance. In terms of mitigating peak flows in

flood events, the results show that the parameter designs should

focus on berm height when scaling up to larger LID areas.

For influences on total volume reduction objectives

(Figure 13C), the results show that no matter how the area

changes, berm height is always the most influential parameter

for flood events. Unlike Figure 13B, there is no change in relative

positioning of parameter influences across LID area (i.e., the

lines do not cross each other as they do in Figure 13B). However,

the slopes of the trends in Figure 13 change depending on the

change in LID area. Figure 13C shows that when the initial

LID area is small, and regardless of the uncertainty in LID

parameters, the LID will store all water in its surface layer

in a relatively short period of time, and given the initial LID

saturation of 75%, the storage layer is relatively insignificant

across scales. The soil layer’s porosity and thickness are the two

most important parameters outside of berm height in this figure,

but the role that porosity and thickness play in the physical

representation of the bioretention cell results in modeling the

soil layer as simply a reservoir with a net depth. There is no

real influence from soil hydraulics nor is there a meaningful

role for soil in that layer – it is just another reservoir. As the

area increases, each layer’s storage capacity (i.e., reservoir size)

increases correspondingly; the surface runoff formed by the LID

gradually decreases, the peak flow decreases and so does the

total volume of runoff. Figure 13 shows that physically-based

parameters play a significant role in performance for smaller

(less than 5%) LID implementation areas, suggesting that

PCSWMMs model concepts for bioretention cells lose their

physicality as LID area increases. This is because the increase in

LID area amplifies the water storage capacity of the LID such that

it can be modeled as a simple tank, and other more physically-

based parameters related to soil type or vegetation have marginal

influences on the physics behind the LID’s performance. The

horizontal axes in Figure 13 all stop at 10% because LID areas in

excess of 10% are unnecessary as runoff is no longer generated

in the catchment.

Sensitivity analysis using a continuous time
series

The above findings have shown that LIDs perform well

when dealing with a single, large rainfall event that could

potentially lead to flooding. However, bioretention cells should

be designed to be functional over long-term, continuous rainfall

events. The 11-month rainfall data observed in 1986 (shown

in Figure 5B as the blue hyetograph) was used to conduct a

similar analysis to Section Sensitivity analysis using a single

rainfall event but for a long-term simulation that only considers

impact on total volume. Equation 11b is used with scenario

AS3 to create Figure 14. Figure 14A shows all the parameters,

while Figures 14B–D show the sensitivity of volume predictions

to surface parameters, soil parameters, and storage parameters,
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FIGURE 13

SDSA values vs. LID implementation scale for scenarios AS1 to

AS4 for (A) for peak flow; (B) for peak flow but excluding berm

height; and (C) for total volume.

respectively. As seen previously, for continuous simulations, the

storage layer is the most important layer in affecting response.

But more importantly, the clogging factor that was discussed in

Section Clogging factor is enormously influential in continuous

simulations. The volume capacity of the storage layer is directly

affected by the clogging factor, which describes the rate at

which the bioretention cell clogs over time. Figure 15 ranks the

values of average normalized sensitivity (from Equation 13) for

this simulation. It confirms that clogging factor is second after

storage depth in terms of importance in mitigating total volume

in continuous simulations. It is worth noting that clogging factor

was set to 0.5 during the short-term rainfall events simulations

(Table 3), indicating that the bioretention cells would clog within

a short period of time. The clogging factor for the continuous

simulation (as shown in Tables 2, 3) was set to 60, which

indicates that the bioretention cell will ultimately lose its ability

to infiltrate water to the native soil in about 2 years. Examining

the observed rainfall at the end of 1985 (the year previous to

the 1986 rainfall data), December was dry, and the latter half of

November was also dry. As a result, we set the initial saturation

to 25%. In terms of total volume, increasing LID implementation

area will also effectively mitigate the impact of urbanization as it

did for large, short-term rainfall events. However, in terms of

temporal scaling, the impact to total volume mitigation in short-

term rainfall events was dominated by parameters in the surface

layer and some soil layer parameters. Storage layer parameters

were not a factor. Conversely, for long-term rainfall events, the

storage layer is much more significant than that of the soil and

surface layers in PCSWMM. Clogging factor, which is a storage

layer parameter, along with parameters related to native soil,

play a more significant role in representing the physics behind

performance over longer time series. Therefore, evaluating the

performance of LIDs should not be limited to short-term, flood

events but should be assessed under long-term rainfall events.

Table 5 shows the effect of clogging on predicted flow at J300

in the AS3 scenario. When analyzing time series, if the influence

of the clogging factor is not considered (effectively set to 0),

a final total volume obtained is 1,302,000 m3. If the clogging

factor is set to 60, the total water volume computed at J300

is nearly double that: 2,076,000 m3. The shows that when we

consider long-term rainfall events, setting a “reasonable” value

of clogging factor is essential; however, there is no guidance

on what this value is, other than it depends on a maintenance

cycle, which can be difficult to do where bioretention cells are

concerned. The attention to clogging has often been ignored

by previous studies (Ahiablame and Shakya, 2016; Gülbaz and

Kazezyilmaz-Alhan, 2017a; Bond et al., 2021) and is likely why

the performance ability of LIDs has been overestimated in

previous research (Lee et al., 2015; Conley et al., 2020). Similarly,

when performing event-based rainfall analysis, one should also

consider clogging because a small clogging factor can simulate

surface sediments being washed into the bioretention cell system

during high intensity rainfall, resulting in rapid infiltration loss

in bioretention cells.

With the dynamic changes of these parameters, the

mitigating effect of the bioretention cells on urbanization

gradually decreases. When bioretention cells respond to long-

term rainfall events, they gradually lose their function over time

due to the addition of the clogging factor parameter, which has

little supporting research to guide the process of guessing a
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FIGURE 14

The influence on bioretention performance (computed using Equation 11b) in AS3 and continuous timeseries rainfall from (A) all parameters;

(B) surface layer parameters; (C) soil layer parameters; and (D) storage layer parameters.

value. This factor essentially converts the LID from a permeable

area to an impermeable area by PCSWMM. Figure 15 shows

that the clogging factor had the third highest influence on

outcomes, which was related to its influence on infiltration.

The LID acts as a reservoir that captures and stores rainfall on

the surface and partially replenishes the groundwater through

infiltration to reduce the total volume. The clogging factor has

a significant influence on this process. Regarding total volume,

the analysis showed that LID area is also a dominant parameter

in continuous rainfall modeling. While increasing the LID area

can significantly reduce the total volume of runoff over the year,

it is the height of the storage layer that determines how much

water can be retained within the bioretention cells. This layer has

a significant impact on response to continuous rainfall modeling

and as Figure 15 shows, clogging factor is parameter that governs

the mechanisms in this layer.

The performance of bioretention cells varies not only with

temporal scales but also varies with spatial scales, which is

related to the size of application spatially. Naturally, area is

a dominant factor for mitigating both event and continuous

rainfall in PCSWMM. But this fact, coupled with the reservoir-

like system of layers that only moves water vertically, actually

works toward increasing the dominance of area over other

parameters as LIDs are scaled up spatially. Whenever area affects

modeling results, spatial heterogeneity must be considered in the

design at the scale of application, and therefore, when scaling up.

Conclusions

This paper examined the response of the bioretention cell

model within PCSWMM over different spatial scales, temporal

scales and the influence of how parameters that are naturally

dynamic are held constant by the modeled over time. A 50-

year rainfall event and two continuous rainfall series were used

on a 10 km2 semi-urban catchment to model the effects on

peak runoff and volume by the model. A variety of analyses

was conducted to verify the model’s concepts for accurately
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FIGURE 15

Ranked average normalized sensitivity (computed using Equation 13) for 1986 continuous times series rainfall in AS3.

TABLE 5 Influence of clogging factor (CF).

J300 1984

scenario

J300 AS3

CF = 60

J300 AS3

No clogging

Peak flow (m3/s): 4.266 6.359 3.932

Total Volume (m3): 1,869,000 2,076,000 1,302,000

representing bioretention cells over short- and long-term time

scales as well as different spatial scales.

In terms of spatial scaling, the location of the LID in the

catchment is not considered because PCSWMM models the

catchment as a simple rectangle with a uniform slope, width

and area where the LID is assumed to receive all the runoff

generated by the impervious area. In reality, locating an LID

is highly correlated with the LID’s performance expectations

but this cannot be accounted for by the model. Therefore, the

spatial autocorrelation and the spatial positioning of LIDs in

a connected system cannot be represented in PCSWMM; this

brings significant challenges to selecting the best location for

an LID at larger scales. The only way to consider location

for a large scale is to descretize the catchment into smaller

subcatchments that are different based on terrain information

and land use. In terms of spatial scaling, the models surface layer

was the dominantmechanism in flood event responses, while the

storage layer dominated continuous modeling. When testing the

impacts of parameter values correspnding to the different LID

layers, we observe inter-dependency in parameters within and

across the three layers. Without the appropriate observations to

verify their values, the current model setup suggests that with

regard to parameterization, themodel is over-parameterized and

could easily be duplicated with one layer or two depending, on

the circumstances and the scale (both temporal and spatial) of

the modeling. In addition, this work proposed a new method of

inferring spatial scaling impacts that helps to visualize difference

in parameter related sensitivities across scales.

PCSWMM’s LID parameters are static, whether the

simulation is for a single event or for a continuous time

series. Simulations were developed to model how normally

dynamic parameters that change (such as changes in vegetation

over the seasons and changes to hydraulic conductivity and

storage volume capacity) affect model response. The analysis

revealed that themodel is deficient in representing the vegetative

component of bioretention cells over long-term simulations.

In short-term simulations, the storage capacity of the surface

layer dominates the LID response but the only impact of the

vegetation in the surface layer model equations is through a

reduction in void space in the surface layer to store incoming

flood water. This relative ratio of vegetation factor and surface

layer void space is not realistic for modeling the impacts of the

vegetation on water quantity. The hydraulic conductivity and

related parameters for the Green-Ampt method had very little

impact suggesting that where soil processes might be important,

a simpler, less physically-based model of infiltration would be

just as adequate in producing the same model response.
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For the purposes of temporal scaling, unless the

mathematical concepts representing the surface and soil

layer are made more representative of reality as well as made to

be dynamic, the LID component for modeling bioretention cells

in PCSWMM could not be sufficiently verified. This is also true

when attempting to scale the model up to systems of connected

bioretention cells in larger catchments.
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