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Anthropogenic litter is omnipresent in terrestrial and freshwater systems, and
can have major economic and ecological impacts. Monitoring and modeling
of anthropogenic litter comes with large uncertainties due to the wide variety
of litter characteristics, including size, mass, and item type. It is unclear as to
what the effect of sample set size is on the reliability and representativeness
of litter item statistics. Reliable item statistics are needed to (1) improve
monitoring strategies, (2) parameterize litter in transport models, and (3)
convert litter counts to mass for stock and flux calculations. In this paper,
we quantify sample set size requirement for riverbank litter characterization,
using a database of more than 14,000 macrolitter items (>0.5 cm), sampled for
1 year at eight riverbank locations along the Dutch Rhine, 1Jssel, and Meuse
rivers. We use this database to perform a Monte Carlo based bootstrap analysis
on the item statistics, to determine the relation between sample size and
variability in the mean and median values. Based on this, we present sample
set size requirements, corresponding to selected uncertainty and confidence
levels. Optima between sampling effort and information gain is suggested
(depending on the acceptable uncertainty level), which is a function of litter
type heterogeneity. We found that the heterogeneity of the characteristics
of litter items varies between different litter categories, and demonstrate that
the minimum required sample set size depends on the heterogeneity of the
litter category. This implies that more items of heterogeneous litter categories
need to be sampled than of heterogeneous item categories to reach the same
uncertainty level in item statistics. For example, to describe the mean mass the
heterogeneous category soft fragments (>2.5cm) with 90% confidence, 990
items were needed, while only 39 items were needed for the uniform category
metal bottle caps. Finally, we use the heterogeneity within litter categories to
assess the sample size requirements for each river system. All data collected for
this study are freely available, and may form the basis of an open access global
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database which can be used by scientists, practitioners, and policymakers to
improve future monitoring strategies and modeling efforts.

KEYWORDS

macroplastic, sampling, Rhine, Meuse, heterogeneity, sample set size requirements,
anthropogenic litter, database

1. Introduction

litter called litter) is
omnipresent in the natural environment and has major

Anthropogenic (hereinafter
economic consequences such as damage to vessels, and
ecological impacts including ingestion and entanglement (Lau
etal., 2020; van Emmerik and Schwarz, 2020). Litter is defined as
any solid manufactured waste item that enters the environment
through intentional or unintentional improper disposal
(McCormick and Hoellein, 2016). In response to these threats
many efforts have been made to reduce the amount of litter in
the natural environment. Understanding and quantifying litter
sources, transport, and accumulation processes may increase
the efficacy of prevention and reduction efforts. Previous studies
have demonstrated that the transport and accumulation of
litter in water, both in the vertical and horizontal dimension,
strongly depends on the interaction between the fluid dynamics
and the characteristics of the litter (Morales-Caselles et al.,
2021; Kuizenga et al,, 2022). For example, the settling rate and
transport of litter in water is affected by the density, surface area,
and size of the litter (Kukulka et al., 2012; Chubarenko et al,,
2016; Kowalski et al., 2016; Schwarz et al., 2019). Pedrotti et al.
(2016) observed that in the Mediterranean Sea the abundance
of high-density polymers decreased when moving away from
the coast. Furthermore, wind driven transport of litter on land
strongly depends on the density, shape, and size of litter items
as well (Garello et al., 2021; Mellink et al., 2022a,b). Finally,
the retention of litter in (riparian) vegetation depends on the
size and shape of the litter (Cesarini and Scalici, 2022). To
improve our understanding of the behavior of litter in the
natural environment, such as litter transport pathways and fate,
and to improve litter monitoring and modeling, it is therefore
essential to identify the variability litter characteristic and the
corresponding statistics, and the implications of this variability
for sampling efforts.

Litter is a heterogeneous entity (Roebroek et al., 2021),
as it comes in many shapes (Ballerini et al., 2022), varying
in size, mass, density, and the rate at which it degrades
over time (Delorme et al, 2021). Uncertainty arises when a
generalized value, such as an average, is used to represent
a heterogeneous variable like litter (Schwarz et al, 2019).
However, it is unclear what the relation is between sample
set size and reliability and representativeness of the statistics.
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Reliable item statistics are needed to improve monitoring
efficiency, when determining how many items need to be
sampled to characterize a system. Furthermore, transport
models should be parameterized with reliable item category
statistics, since litter transport and retention dynamics strongly
depend on the material characteristics. Roebroek et al. (2022)
show that litter transport model uncertainty decreases with
several orders of magnitude with increasing availability of
litter data. Consequently, litter transport models that do not
accurately capture litter heterogeneity, inevitably feature a
greater level of uncertainty. Furthermore, litter heterogeneity
introduces additional uncertainties in the conversion of
litter amounts (and fluxes) to mass (per unit time), and
vice versa (Van Calcar and van Emmerik, 2019). Such
conversions often rely on generalized litter masses to convert
the observed number of items to a total mass (Vriend et al,
2020b). For specific rivers the uncertainty can be several
orders of magnitude (Roebroek et al, 2022). Due to the
heterogeneous nature of litter, a generalized conversion factor
based on generalized litter masses, induces higher uncertainty,
and consequently a representative value per litter type is
ideally needed.

To obtain a representative value per litter type, a
representative sample size is needed. Many scientific disciplines
notice the relation between sample size and some sort of
measurement of error (e.g., Lamé and Defize, 1993; Cardini and
Elton, 2007; Hennig and Cooper, 2011; Maggio and Franklin,
2020) and sample size determination is considered an important
step in protocol design (Lenth, 2001). Where undersized studies
produce useless results, oversized studies use more resources
than necessary (Lenth, 2001). Especially in the highly dynamic
riverine environment, uncertainty can increase if the sample
size is not large enough, while resource investments are limited
(Droppo and Jaskot, 1995; Bartsch et al., 1998). Additionally,
potential measurement errors increase the need for a larger
sample size (Freedman et al., 1990). In litter studies this could
include errors such as misinterpretation or misclassification
of an object by the observer. All studies notice a decrease
in error or uncertainty when sample size increases, and most
studies advocate for a larger sample size. Deciding the trade-
offs between sample size and required statistical certainty,
requires technical, statistical, and scientific knowledge (Lenth,
2001). Therefore, a way to describe minimal required sample
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size is needed. A way to assess this, would be comparing
the “true value” of the desired parameter, to a subset of the
sample and study the resulting deviation in parameter value
(Cardini and Elton, 2007), which could be investigated using a
Monte Carlo Bootstrap analysis (e.g., Bauer, 1958; Kim, 2012;
Constantin et al., 2021). However, such an analysis has never
been done for litter studies, and suggestions for the sample
size have not been made. This study presents an approach
to determine what sample size is needed for representative
and reliable litter statistics, based on a Monte Carlo Bootstrap
analysis. This analysis is based on a dataset containing the
characteristics (item category, length, width, and mass) of more
than 14,000 riverbank litter items. We found that increasing
the sample set size decreases the uncertainty in the sampled
litter statistics. However, it was found that reducing uncertainty
through increasing sample set size, levels off beyond a certain
sample set size. We also found that the heterogeneity of the
characteristics of litter items varies between different litter
categories and demonstrate that the minimum required sample
set size depends on the heterogeneity of the litter category.
With the dataset and analysis presented in this study we aim
to contribute to improving the efficiency of litter monitoring
strategies, the accuracy of litter transport models, and the
conversion of litter item counts to litter masses for stock and
flux calculations.

2. Methods
2.1. Study area

The catchments of the studied rivers Rhine, IJssel, and
Meuse (Figure 1), are heavily industrialized and densely
populated (~300 inhabitants/km?) (van der Wal et al., 2013).
The river Rhine (Bovenrijn) enters the Netherlands at Spijk,
161 km from the river mouth. At 147 km the Rhine bifurcates
into the Waal (67% of the discharge), Nederrijn (22%), and
IJssel (11%) (Schielen et al., 2007). The Waal and Nederrijn then
converge at 42 km from the river mouth. The river Meuse enters
the Netherlands at Eijsden, 250 km from the river mouth, and
discharges 10% of the mean discharge of the Rhine-system (230
and 2,200 m3/s, respectively). Near the coast (~80 km from the
sea), the branches of the Rhine and Meuse systems converge
and intertwine. Ultimately, the Rhine-Meuse system drains into
the North Sea, while the river IJssel drains into lake IJssel after
125 km.

Sampling locations were chosen to be at the upstream and
downstream end of the Dutch section of the rivers Rhine (R),
Meuse (M), and IJssel (I]) (Figure 1). Supplementary material A
provides a detailed description of the sampling areas. The
sampling areas at Nijmegen (R1) and Rotterdam (R3) are located
along the river Rhine, while Arnhem (R2) is located at the
Nederrijn beyond the first major bifurcation of the Rhine.
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Arnhem (IJ1) and Kampen (IJ2) are situated on the river IJssel,
while the river Meuse was sampled at locations in Maastricht
(M1), Ravenstein (M2), and Moerdijk (M3). Location M3 is
located beyond the point where the rivers Rhine and Meuse
merge, and is therefore affected by both river systems. Location
M3 and R3 are in the tidal zone, and can therefore be subject to
bidirectional currents.

2.2. Sample collection and processing

Riverbank macrolitter was collected once per month
between January and December 2021 at eight riverbank sites.
Location R2 was sampled only in January and December, and
location M1 was not sampled in January due to limited sample
collection and processing capacity. The width of the sampling
area was defined as the distance from the waterline to the high
waterline, having a maximum value of 25m (van Emmerik
et al., 2020). The waterline is defined here as the interface
between the river and the riverbank. The high waterline can
be identified in the field by the fact that a proportion of the
organic matter floating at the river surface is deposited at this
elevation along the water margin once the peak flow begins
to recede. Sampling was carried out until one of the following
criteria was met: (1) coverage of 100 m length, (2) collection of
material equaling 80 L, or (3) a sampling time exceeding 90 min.
These limits were set based upon the availability of surveyors for
the sample collection, the state of the riverbank (the required
sampling time can be considerably higher if there is dense
vegetation), and available capacity for subsequent laboratory
analysis of the sampled material. The width of the sampled
locations varied between 1 and 10m and the length between
10 and 100m. It should be noted that riverbank sampling
is biased toward larger items, since smaller items are more
difficult to identify by eye (Hanke et al., 2019), hence statistics
for the smaller macrolitter items (<1cm) should be taken
with caution.

Collected samples were analyzed in the Laboratory for
Water and Sediment Dynamics at Wageningen University.
First, the items were manually and superficially cleaned
of sediment and organic debris to preserve the state in
which they were sampled. Items may have fragmented
during transport, which may have led to more litter items
being analyzed in the laboratory than originally sampled.
Second, the items were categorized using the River-OSPAR
protocol (Supplementary material B), developed by the North
Sea Foundation (van Emmerik et al., 2020). This protocol is
based on the OSPAR guidelines for beach litter monitoring
(OSPAR Commission, 2010), with adjusted categories to better
account for items frequently found in (Dutch) rivers. The
protocol includes 111 specific item categories, divided over
nine parent categories (i.e., plastic, rubber, textile, paper, wood,
metal, glass, sanitary, and medical items). The River-OSPAR
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FIGURE 1

and Moerdijk (M3; vegetated; 56 km from the mouth).

Arnhem DJssel (1J1)
g

Nijmegen (R1)

The study area (A) with the sample areas (Google Earth; Landsat and Copernicus). (B) The white line has a length of 100 m.

Supplementary material B provides more detailed information on the riverbanks. Sampling locations are chosen at the upstream and
downstream end of the Dutch part of the river Rhine (R), Meuse (M), and IJssel (1J). The river Meuse has an additional midpoint measurement,
and the river Rhine has an additional sampling area beyond the first major bifurcation. The sampling areas at Nijmegen (R1; sandy; 130 km from
the mouth), Arnhem (R2; sandy; 130 km from the mouth), and Rotterdam (R3; stones; 30 km from the mouth) characterize the river Rhine,
Arnhem (131; sandy; 125 km from the mouth) and Kampen (1J2; vegetated; 16 km from the mouth) characterize the river IJssel, and the river
Meuse was sampled at a location in Maastricht (M1; vegetated; 250 km from the mouth), Ravenstein (M2; vegetated; 138 km from the mouth),

categorization system gives a detailed overview of the abundance
of various types of litter. To facilitate direct comparison
with other categorization methods in future research efforts,
we included a “conversion table” (Supplementary material F)
for rapid re-categorization in one of the other published
categorization methods (Nally et al, 2017; Kiessling et al,
2019; Schwarz et al., 2019; Vriend et al., 2020a; Fleet et al,,
2021).

Finally, we determined the mass, length, and width of
the 14,052 items sampled between January and May, and
in the months of August and November. Due to limited
resources, items were not analyzed in the other months.
The mass was weighed on a scale (0.01g accuracy). In
case individual items did not reach the minimum detectable
mass, multiple items of the same category were weighed
collectively, and a mean value assigned to each. For item
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length and width, the two longest axes were measured with 0.1
cm accuracy.

2.3. Data analysis

2.3.1. Determination of item category
heterogeneity

Category heterogeneity ¥ [-] was used to assess item
category variability. This represents the normalized standard
deviation (also known as coefficient of variation) and is
defined as

v=—
1%

1

in which o is the standard deviation and p is the mean of a
certain category parameter, such as item length or mass.
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2.3.2. Determination of sample set size
requirements

The number of items needed to accurately represent
category statistics depends on the category heterogeneity. We
studied the relation between statistical uncertainty and sample
size, which can be used to determine how many items are
required for a representative and reliable value of the mean item
mass across all riverbanks (sample set size requirement, SSR).
A representative value means that the subset of the population
accurately reflects the characteristics of the full population, while
a reliable value means that the method to determine this value
consistently has the same outcome. To this end, we randomly
drew a subset from the total set and calculated the mean mass.
The size of the subset ranged from one item to all items in
the total set. Next, a Monte Carlo based bootstrap analysis was
performed 10,000 times for each subset size to determine the
deviation of the subset from the dataset mean. From these runs,
we calculated the 50, 75, 90, and 95% confidence intervals.
These simulations were run using all litter categories lumped
together, and for each single item category with more than
10 sampled items (59 out of 111 item categories, representing
89% of the total number of items). In this way, the number of
items needed to give a representative estimate (within a certain
confidence interval) of the mean mass of an item category could
be determined. A deviation of 5, 10, or 20% of the actual mean
value (the mean mass based on the whole category) is given.
All subsequent analysis was performed for the 90% confidence
interval with a 10% deviation from mean, and the results might
change for different combinations of those. Finally, the same
analysis was carried out to calculate the values for median mass
and mean length for all items, and as an example for two item
categories (soft fragments >2.5 cm and metal bottle caps). This
analysis could be performed for other item variables (e.g., length,
width) and statistics (median) as well, but was considered out of
scope for the present study.

2.3.3. Determination of river system
heterogeneity

The concept of litter heterogeneity and SSRs per item
category can be upscaled to a riverbank location or even a whole
river-system, to allow for characterization of heterogeneity at
various scales. The heterogeneity of a location or a river system is
based on the items found in this system, and the corresponding
SSRs. Based on the SSR for a 90% confidence interval and a
deviation of 10% from the mean, an item category is defined
as homogeneous, heterogeneous, or mixed based on the median
SSR, the median SSR, and mean SSR of all categories:

Homogeneous: SSR; < n(SSR,j)
Mixed : n(SSRy) < SSR; < 1 (SSRyp)
Heterogeneous : t(SSR,j) < SSR;
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in which g is the mean and n the median of SSR;. SSR; is the
sample set size requirement for item category i, while SSR,y
represents the SSRs of the whole population.

Finally, if less than 10 items were collected, no SSR was
calculated, and the item heterogeneity was left undefined.
All items found within a system were classified this way,
and subsequently the ratio between homogeneous, mixed,
heterogeneous, and undefined items were determined on
multiple scales. This allowed for comparison between the
riverbank locations, and between the Meuse, Rhine, and IJssel
river systems.

3. Results and discussion

3.1. Riverbank macrolitter classification

In total 16,488 items (184 kg) were collected and categorized
from eight riverbanks over 12 months, of which 14,052 (85%)
were measured and weighed. For a detailed description of the
length distribution of the items, see Supplementary material E.
The majority of items were plastics (70% of item count, 33%
of total mass) and mainly composed of unidentifiable plastic
fragments (50% of all items) (Table 1). This result is in line with
the findings of van Emmerik et al. (2020), who found 55.8% of
riverbank litter items to be fragments along the Dutch Rhine-
Meuse system. Although plastic dominates the collected item
count (Table 1), local spatial variations exist (Figure 2). This
can mainly be contributed to the type and use of riverbank
(Supplementary material A), which play a role in which items
are trapped and retained (Liro et al., 2022). For example,
recreational areas, such as R1, show a lower percentage of plastic
items (for example only 15% of item counts for R1) and are
dominated by consumer items such as cigarette filters, metal
bottle caps, and glass bottles.

The average item mass was 11.1g (6.1 g for plastics), and
the median mass was 0.55g (0.53g for plastics) (Table1).
The summarizing statistics per item category can be found
The
mean and median mass indicated a highly positively skewed

in Supplementary material C. difference between the
distribution with many light items and relatively few heavy
outliers. The large number of fragments (for example soft
fragments, hard fragments, foam fragments) are responsible for
this skewedness (Figure 3A). Heavy outliers include items of
scrap metal such as bikes, and metal pipes (Figure 3B). The
skewed distribution may have far reaching consequences for
setting up a mass-balance using only summarizing statistics. For
example, estimates of floating plastic flux, based upon items per
hour (which is subsequently converted to mass per year), can
differ by an order of magnitude when using either the mean or
the median mass for this conversion (van Emmerik et al., 2022).

The 10 most frequently found items (Figure 3) represent
56% of the total amount of items and 65% of the total
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TABLE 1 Statistics of all the collected litter.

Location Length of Most commonly Total Total Total Total Median Mean Mean Mean
measurement found item number mass of number mass of mass (g) mass (g) item mass
periodsx ( of items items of plastic plastic density density

) (kg) items items (kg) (items/m) (9/m)
All - Soft fragment 16,488 184 11,596 (70%) 61 (33%) 0.55 11 8.13 385
(>2.5cm) (14%)

RI 12(7) Cigarette filter (49%) 3,193 12 471 (15%) 2.7 (22%) 0.55 4.8 332 7.01

R2 2(1) Other metal 378 1 231 (61%) 0.29 (27%) 0.55 3.1 255 6.79
(<50 cm) (26%)

R3 12(7) Soft fragment 1,141 47 702 (62%) 10 (22%) 3.30 49 2.52 41.0
(>2.5cm) (23%)

M1 11(9) Hard fragment 4,983 20 4,540 (91%) 13 (66%) 0.53 43 15.1 54.4
(>2.5cm) (9%)

M2 12(7) Soft fragment 1,286 33 1,130 (88%) 12 (38%) 0.70 28 327 233
(>2.5cm) (27%)

M3 12(7) Soft fragment 3,429 25 3,119 (91%) 17 (69%) 0.49 9.3 327 154
(>2.5cm) (24%)

1 12(7) Wet tissue (19%) 422 35 231 (55%) 0.42 (1%) 0.67 90 0.346 4.44

12 12(7) Soft fragment 1,656 11 1,172 (71%) 4.0 (36%) 0.30 8.4 5.29 17.12
(>2.5cm) (27%)

*In parentheses: the number of months in which lab analysis was performed.
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FIGURE 2

Map showing the eight riverbank locations along the Dutch Rhine (R1, R2, and R3), Meuse (M1 and M2), and IJssel (131 and 132) rivers. For each
location, the total number of litter items (left pie chart) and the total mass of litter items (right pie chart) found for the nine parent litter
categories (plastic, rubber, textile, paper, wood, metal, glass, sanitary, and medical) is shown. The diameters of the pie charts indicate the total
amount and mass of the items.

mass. The 20 most abundant items represent 66% of the count or mass as demonstrated in Figure3. In terms of
total item count and 87% of the total mass, respectively. frequency, plastic fragments, food packaging, and items related
The top 10 items vary strongly when considering the item to consumables and cigarette filters are the most abundant
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List of the top 10 most frequently found items based upon (A) item amount and (B) mass. Item categories are defined as homogeneous (italic),
heterogeneous (bold), mixed (normal), or undefined (gray) based on the analysis below.

Other metal (< 50 cm) —

Other textile |

Old iron scrap

categories (Figure 3A). In terms of mass, the top 10 items
mainly consist of higher-density items such as metal (mean
mass 41g), wood (mean mass 176g), and glass (mean mass
27 g) (Figure 3B). This discrepancy between abundance in count
and mass emphasizes the importance of mass statistics for
reliable estimates of litter mass balances. Although accumulated
material on riverbanks is often expressed in item count per
surface area, item mass per surface area is more relevant for
closing the mass balance. Considering that items will likely
increase over time due to fragmentation, we consider item mass
per surface area a more appropriate indicator for riverbank
litter accumulation.

3.2. Item category heterogeneity

Item characteristics in the dataset can vary significantly
within and between litter categories. To be able to give an
accurate measure of mean, median, and standard deviation of
litter item categories (Supplementary material C), the sample
size must be large enough to capture the mass and length
variability within a category. The number of items needed
to accurately represent category statistics (within a certain
uncertainty level), depends on the heterogeneity of the category.
Aggregated categories in the River-OSPAR system (e.g., soft
fragments larger than 2.5 cm), may have large variability in item
mass and size. For categories consisting of relatively uniform
items (e.g., cigarette filters) this may be the opposite. The
variability within a category can be characterized by a category
heterogeneity ¥ (Equation 1) and is presented as histograms
of length and mass (Figure 4). Wider distributions, such as
that of soft and hard fragments, belong to more heterogeneous
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item categories, which is reflected in ¥ (1.03 and 0.92 for item
length, respectively). Note the axis scale break in the x-axes of
Figures 4F-J, which indicate a wider histogram than inferred
from the visible histogram. Narrower distributions, such as
cigarette filters and metal bottle caps are described by a lower
category heterogeneity (¢ = 0.08 and ¥ = 0.14 for item length,
respectively). Item heterogeneity is one of the most important
factors that determines how many items should be sampled
to obtain representative item statistics and these SSRs are
discussed below.

3.3. Sample set size requirements

By collecting more litter items, the item statistics (such
as median and mean mass or length for example) become
less uncertain, and this is especially relevant for heterogeneous
litter categories. The amount of statistical uncertainty decreases
with increasing sample size, meaning that the possible range
of outcomes of the mean or median from the subset,
differs increasingly less from the total population. However,
uncertainty shows an inverse exponential decrease with sample
size. Larger sample sizes only reduce statical uncertainty to a
minor extent after a certain threshold. This threshold represents
the minimum number of item samples that is required in order
to obtain a representative number (within certain confidence
bounds) of mass and length statistics.

To describe the mean mass of all litter at the sample locations
with a maximum deviation of 10% of the mean based upon
the total population with 90% confidence, at least 8,900 items
need to be sampled and measured (63% of the total amount
of weighed items). To capture the representative mean length
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(A-J) Length (left column, green) and mass (right column, purple) distribution of the five most commonly found items, and their corresponding
category heterogeneity ¥. The scale break in the x-axis of panels indicate a wider histogram than inferred from the visible histogram.

1,200 items (9%) need to be collected, while only 173 items
(1%) are needed to describe the median mass (Figures 5A-D).
The more heterogeneous an item category, the more samples
need to be collected to obtain representative mass and length
statistics. An example for the SSR of a homogeneous and
a heterogeneous subclass is presented for the heterogeneous
category “soft fragments larger than 2.5cm,” 990 items (42%
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of full sample) are needed to find a mean mass (within 10%
of the mean mass based on the full population) with 90%
confidence (Figures 5E-H). When determining the mean mass
of homogeneous item categories such as “metal bottle caps”
(Figures 5I-L), only 38 (6% of full sample) items suffice.

The number of samples to be collected and measured
depends on the acceptable confidence boundary and a maximum
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level of deviation from the mean of the total population. In
the aforementioned examples, a maximum deviation of 10%
was allowed and estimated with 90% confidence. With these
conditions, an accurate representation of the mean mass of food
packaging is reached when 150 items are measured. However,
if a deviation of £20% is permitted, only 110 items are needed
to reach the uncertainty required. Similarly, if a confidence
boundary of 50% is permitted, only 95 items are required
to represent the mean mass (£10%). The level of confidence
and maximum level of deviation allowed therefore impact
the SSR.

We show the SSR of 59 item categories with more than 10
items in Table 2, which may be used in to find a balance between
statistical uncertainty and sampling effort in future monitoring
efforts. These 59 item categories make up 89% of total amount
of collected items. The mean SSR equals 158 items, while the
median equals 40 items. Our dataset does not include sufficient
samples for all categories to provide an estimate of the mean
mass within the selected confidence boundaries and deviations
of the mean in this study. When the number of items needed to
represent the mean mass is equal to the total number of items
collected (indicated by the red shade in Table 2), or when a
level of uncertainty (confidence boundary and deviation from
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the mean) is never reached (represented by N/A in Table 2),
it is not possible to provide a SSR. For the highest confidence
boundary (95%) and lowest deviation from mean (5%), this is
the case for 37 items categories. Table 2 also shows the category
heterogeneity for each item category, calculated based upon the
available dataset, even if it was not sufficiently large enough
to determine SSRs. As demonstrated in the aforementioned
examples, to obtain the same uncertainty levels in the mass-
size statistics of riverbank litter, the SSRs of heterogeneous item
categories are higher than of homogeneous item categories. This
is underlined by the correlation (R-squared) between SSR and
category heterogeneity for these 59 item categories, which is on
average 0.45, but varies between 0.12 and 0.60.

The SSRs can be the baseline for monitoring protocol design
and serve as a rule of thumb or indication when making an initial
design. If required, the SSR analysis can be expanded to calculate
SSR based on median mass, mean, or median length and mean
or median width, based on this dataset. Since the SSR analysis
depends on the used item categorization method, we included
a “conversion table” (Supplementary material F) for rapid re-
categorization in one of the other published litter categorization
methods (Nally et al., 2017; Kiessling et al., 2019; Schwarz et al.,
2019; Vriend et al., 2020a; Fleet et al., 2021).
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TABLE 2 Sample set size requirements (number of items) based on mean mass for a selection of categories in the study database with more than 10 items.

e 12 abue ap

J21B/\\ Ul SI913U0.

T

Bio uisianuoly

OSPAR-ID  Name Total Omass ¥ (-) Deviation from mean

number ) (9)

of items

20% 10% 5%
Confidence boundary
05| 075 | 09 | 095 | 05| 075 | 09 095 | 05 | 0.75 0.9 0.95

3 Small bag 44 125 26.4 21 30 36 39 40 34 39 42 43 38 41 43 44
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42 Bottle (<0.5L) 127 404 75.1 1.9 34 63 82 90 74 110 120 120 110 120 | NJA | N/A
4.3 Bottle label 23 4.6 9.4 2.1 18 21 22 23 21 22 23 23 22 23 23 23
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Full table can be accessed in Supplementary material G. Requirements are given for various confidence boundaries and deviations from the mean. . indicates the category mean mass, o the standard deviation, and ¥ the category heterogeneity. Red
numbers indicate that the number of items needed to represent the mean mass is equal to the total number of items collected. N/A means that this level of uncertainty (confidence boundary and deviation from the mean) is never reached, and more

items need to be collected.

G825807'2202'eMH3/6855°0T


https://doi.org/10.3389/frwa.2022.1085285
https://www.frontiersin.org/journals/water
https://www.frontiersin.org

de Lange et al.

3.4. River system heterogeneity

The SSRs of the litter items can be used to assess
the heterogeneity of specific locations or entire rivers. This
application is shown in Figure 6, which displays the litter
heterogeneity based upon item count in the Rhine (R1, R2,
R3), Meuse (M1, M2, M3), and IJssel (I]1, IJ2) rivers, assuming
a 90% confidence interval with maximum deviation of 10%.
The litter on the riverbanks of the river Meuse and IJssel
belong mainly to heterogeneous categories such as the large
amount of hard and soft plastic fragments >2.5cm (SSR
1,300 and 1,000, respectively). Contrastingly the river Rhine
riverbanks encompass mostly homogeneous categories. When
zooming to location-level heterogeneity (Table 3), it is clear
that location R1 accounts for this. Location R1 can largely
be described as a homogeneous sampling location, which
contributes to the large number of homogeneous items in
location R1 (Table 3), such as cigarette filters (SSR 11) and
metal bottle caps (SSR 38) (Supplementary material D). The
heterogeneity of each sampling location (assuming a 90%
confidence interval with maximum deviation of 10%) as shown
in Table 3 strongly corresponds to the heterogeneity of its top 10
items (Supplementary material D).

Heterogeneity and SSRs vary considerably within and
between rivers, which emphasizes the need for river and site-
specific data collection. For example, more data should be
collected for heterogeneous systems. Therefore, identifying litter
heterogeneity per system can give an indication as to the
resource investment required to accurately capture the systems’
riverbank litter. When performing a Monte Carlo bootstrap
analysis on all items found within a river system, with a 90%
confidence boundary and a deviation of 10%, the river Rhine
can be sampled by measuring 3,000 items (78% of all items
found along the river Rhine). Similarly, 6,900 items (71%) are
needed for the river Meuse, and 2,000 (96%) for the river IJssel.
These items would give enough data to derive representative
mean mass statistics, but it does not provide any spatiotemporal
information. The SSR of river IJssel comprise of almost all items
in our database, and more items should be collected to confirm
the calculated SSR. The smaller SSR for river Rhine indicates
its homogeneous character, while the larger SSR for river Meuse
again confirms its more heterogeneous character. Furthermore,
due to the intrinsic uncertainty within heterogeneous items,
the uncertainty in litter statistics will always be larger for
heterogeneous systems than for more homogeneous systems.

4. Synthesis and outlook

This study quantifies the sample size requirements of
anthropogenic litter items and assesses their heterogeneity,
based upon more than 14,000 riverbank items. Our results show
that statistical uncertainties decrease with increasing sample
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set size, as might be expected, but the amount information
gain gradually diminishes when increasing the sample size.
Therefore, determining the appropriate sample size requires
finding an optimum between the acceptable uncertainty and the
requisite sampling effort. In addition, the results demonstrate
that heterogeneous litter item categories require larger sample
set sizes than homogeneous categories in order to obtain similar
uncertainty levels in the size and mass statistics.

The determination of litter heterogeneity and the derived
required sample set sizes are crucial for optimizing the efficiency
of litter monitoring protocols. Sample set size requirements can
make data collection more efficient, as it is known for what item
categories more and less items need to be collected and analyzed.
The SSR can serve as a limit on data collection to avoid wasting
resources on collecting data with uncertainty levels beyond the
scope of the research question for which the data are used.
This study provides a method to estimate SSR, and gives a
first indication of the order of magnitude of the number of
items that should be sampled for certain uncertainty levels for
specific litter items. The approach taken in this research can be
transferred to other systems, and the findings can be used as a
starting point for studies in other river systems. For example,
collecting homogeneous item categories can be performed in
less detail than measuring heterogeneous categories in future
monitoring campaigns. Furthermore, the analysis needed to
optimize monitoring in these different systems can be adopted
from this study. By starting with collecting very detailed data,
subsequent sample collection can be downscaled to ensure more
efficient monitoring. This can take the form of an iterative
process, during which, at any point in the study, the data
needs can be reassessed by performing a Monte Carlo based
bootstrap analysis.

Litter transport and fate models can benefit from including
litter statistics generated in this study. For example, models used
to study the transport behavior of litter could include the mass
and size of specific item categories. These parameters affect litter
behavior associated with buoyancy or wind sensitivity (Kuizenga
et al., 2022; Mellink et al., 2022a). Including such parameters
will therefore help to account for the fundamental transport and
retention behavior of different litter categories in river systems,
and potentially improve model results.

Similarly, the data presented in this study can be used
to improve models used to estimate the mass transport of
litter in rivers (see for example Meijer et al., 2021). Recent
insights gained by Roebroek et al. (2022) indicate that item-mass
conversion is a significant contributor to model uncertainty
in this type of model. Our dataset on items-specific mass-
statistics can thus be used to more accurately perform this
conversion, decreasing uncertainty in model results. The mass
statistics of litter categories can further be used to improve
item count-to-mass conversion in studies that currently do
not include mass. Including mass in these datasets allows for
data on environmental litter pollution to be compared with
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items). Mixed: median SSRa < SSRcategory < Mean SSRy. Undefined: SSR could not be determined.

TABLE 3 Litter heterogeneity per sample site, based on mean mass with a 90% confidence boundary and 10% deviation from the mean, in the river

Rhine (R1, R2, R3), Meuse (M1, M2, M3), and IJssel (131, 132).

Location Homogeneous (%) Mixed (%) Heterogeneous (%) Undefined (%)
All 16 13 64 7
R1 73 9 16 2
R2 7 5 62 26
R3 12 25 57 5
M1 8 10 81 1
M2 9 13 75 4
M3 7 13 78 2
IJ1 8 12 73 8
172 6 17 72 4

litter production, leakage, and transport, since all data are then
expressed in the same units (mass per unit time). This allows for
the study of the relation between these fluxes. For example, our
litter-statistics can be used to include mass in datasets that were
previously collected in item-count based studies (e.g., Crosti
et al., 2018; Gonzalez-Fernandez et al., 2021; Morales-Caselles
et al,, 2021). This can now be directly compared with data from
mass-based studies on, for example waste production and plastic
transport (e.g., Lebreton and Andrady, 2019; Borrelle et al., 2020;
Meijer et al., 2021). Including the mass statistics from our study
may also reduce the uncertainty in studies that perform item-
to-mass conversion using limited data (e.g., van Emmerik et al.,
2018; Vriend et al., 2020Db).

Several steps can be taken to assess and improve the
applicability of the data presented in this study. First, it should
be explored as to whether the SSR determined from the current
data are river-system specific or whether relevant parameters
such as item-specific mass of SSRs are transferable between
river systems. Our findings will most likely be applicable to
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riverine systems with similar climatological characteristics and
similar industrial and consumption patterns. Differences in
consumption, activities (Nelms et al., 2021), waste management,
riverbank morphologies, and vegetation (Liro et al., 2022) might
lead to other types of litter being present and different size
and mass statistics in other river environments. By applying
our methodology to existing litter datasets (e.g., Tramoy et al.,
2019) or by collecting a new dataset in a different type of river
system, the universality of our SSRs can be assessed. If the
results are comparable between different types of river system,
the sample size requirements presented in this study could act
as guidelines for future research thus guiding the scale of future
sampling efforts.

Second, the dataset presented in this study could form the
basis for an open-access global database. This is essential
for improving litter monitoring and modeling efforts.
Although global modeling studies are extremely relevant
to understand litter fluxes, litter data varies locally (Schwarz
et al., 2019), and local data are necessary to reduce the
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uncertainty in results. This local data can in turn be upscaled
to regional or global domains. The suggested open-access
database can be wused by scientists, policymakers, and
stakeholders to improve future monitoring, policymaking,
and solution designs.

5. Concluding remarks

We present a method to determine the sample size
requirements for specific item categories and for river systems.
These may be used to optimize data collection efforts, by
prioritizing the collection and analysis of items that have a larger
heterogeneity. The same size requirements vary considerably
between item categories and river systems. For a heterogeneous
item class such as soft fragments larger than 2.5 cm, 990 items
were needed to describe the mean mass with 90% confidence,
and when determining the mean mass of uniform items, such
as metal bottle caps, only 39 items were necessary. At least
8,900 items had to be sampled in order to describe the mean
mass of all litter items on all locations with a confidence level
of 90% and a maximum of 10% deviation from the mean.
For representative aggregated statistics on the river basin scale,
1,645, 2,065, 2,033 items have to be sampled for the Rhine,
Meuse, and IJssel, respectively. All collected data are openly
available, and can be used to optimize future monitoring efforts,
and constrain model parameters. Future monitoring strategies
can benefit from this work, by applying a similar strategy in
which a detailed data collection and a subsequent bootstrap
analysis, can lead to the downscaling of subsequent sample
collection. An example could be reducing the sampling effort for
homogeneous categories. With this paper we aim to contribute
to reducing uncertainties in litter monitoring and modeling, to
better understand and quantify litter abundance, transport, fate,
and impacts.
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