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Understanding impacts of climate change on water level fluctuations across Earth’s large

lakes has critical implications for commercial and recreational boating and navigation,

coastal planning, and ecological function and management. A common approach

to advancing this understanding is the propagation of climate change scenarios

(often from global circulation models) through regional hydrological models. We find,

however, that this approach does not always fully capture water supply spatiotemporal

features evolving from complex relationships between hydrologic variables. Here, we

present a statistical approach for projecting plausible climate-related regional water

supply scenarios into localized net basin supply sequences utilizing a parametric vine

copula. This approach preserves spatial and temporal correlations between hydrologic

components and allows for explicit representation and manipulation of component

marginal and conditional probability distributions. We demonstrate the capabilities of our

new modeling framework on the Laurentian Great Lakes by coupling our copula-derived

net basin supply simulations with a newly-formulated monthly lake-to-lake routing model.

This coupled system projects monthly average water levels on Lake Superior, Michigan-

Huron, and Erie (we omit Lake Ontario from our study due to complications associated

with simulating strict regulatory controls on its outflow). We find that our new method

faithfully replicates marginal and conditional probability distributions, as well as serial

autocorrelation, within and among historical net basin supply sequences. We find that

our new method also reproduces seasonal and interannual water level dynamics. Using

readily-available climate change simulations for the Great Lakes region, we then identified

two plausible, transient, water supply scenarios and propagated them through our model

to understand potential impacts on future water levels. Both scenarios result in an

average water level increase of <10 cm on Lake Superior and Erie, with slightly larger

increases on Michigan-Huron, as well as elevated variability of monthly water levels

and a shift in seasonal water level modality. Our study contributes new insights into

plausible impacts of future climate change on Great Lakes water levels, and supports

the application and advancement of statistical modeling tools to forecast water supplies

and water levels on not just the Great Lakes, but on other large lakes around the world

as well.
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1. INTRODUCTION

The Laurentian Great Lakes watershed is home to more than
40 million inhabitants (MacKay and Seglenieks, 2013) and has a
surface area of roughly 244,000 km2 (Moukomla and Blanken,
2016), the largest of any lake system on Earth (Gronewold
et al., 2013b). Regional ecological health and economic security
are closely interwoven with this system, in large part because
of the capacity of the Great Lakes to support diverse habitats

(Cvetkovic and Chow-Fraser, 2011), commerce (Millerd, 2011;
Meyer et al., 2016), and recreation (Nevers and Whitman, 2011;
Gronewold et al., 2013c). The capacity of the Great Lakes to
support these activities is, in turn, dependent on historical and
future water quantity and quality dynamics (Mortsch and Quinn,
1996), including (but not limited to) those associated with coastal
water level variability (Mortsch andQuinn, 1996; Gronewold and
Stow, 2014a). Given the great economic and ecological value of
the Great Lakes, and recognizing the potential risks associated
with ongoing climate change (Pryor et al., 2014), understanding
plausible future water level dynamics on the Great Lakes is

paramount. Indeed, Great Lakes scientists have undertaken this
very endeavor for decades (Quinn, 1978; Croley, 1990; Angel and
Kunkel, 2010).

Previous attempts to quantify shifts in the Great Lakes

hydrologic cycle reflect the role that climate change has
already been playing across the region (Marchand et al., 1988;
Quinn, 2002). Some of these historical projects, many of which
have come under scrutiny (Lofgren and Gronewold, 2013),
focused on translating that understanding into seasonal and
interannual water supply forecasting systems using a “change-
factor” method (Croley, 1990) based on output from a chain
of lake thermodynamics and rainfall-runoff models collectively
known as the Advanced Hydrologic Prediction System, or AHPS
(Gronewold et al., 2011). This modeling framework (Croley,
1990) was subsequently adopted in a range of climate impact
studies (Hartmann, 1990; Hayhoe et al., 2010). Importantly, some
of these studies employed a perturbed time series of historical
data (using either a multiplication factor, or ratio, based on
separate climate modeling results) as future forcings. These
forcings were intended to be representative of a future climate.

The perturbed climate data became input for the AHPS,
which translated climate variables such as daily temperatures,
precipitation, and humidity into water supply components (also
commonly referred to as a “net basin supply,” or NBS). More
specifically, NBS in the Great Lakes is typically defined as the sum
of terrestrial runoff into each lake, and net atmospheric water
supply (precipitationminus evaporation) over the surface of each
lake (Mailhot et al., 2019). This value is typically expressed as a
height of water over each lake surface (Music et al., 2015). Due to
the large surface area of the Great Lakes relative to basin size,
overlake precipitation, overlake evaporation, and runoff have
similar annual magnitudes, but very different seasonal dynamics
(Lenters, 2001; Gronewold et al., 2013a).

Despite variation in emission scenarios considered across
previous studies (Music et al., 2015), those (most of which
were published prior to 2010) that employed the Croley (1990)
methodology predicted substantial decreases in both NBS and

water levels on the Great Lakes (Lofgren, 2004). Lofgren et al.
(2011) and Lofgren and Rouhana (2016) subsequently identified
methodological flaws in the estimation of evapotranspiration
in the AHPS core runoff model (the large basin runoff model,
or LBRM), leading to arguably biased formulations of runoff
and NBS resulting from the use of near-surface air temperature
as a proxy for potential evapotranspiration (Milly and Dunne,
2017). Furthermore, application of the change-factor method
only represents shifts in mean, and later variance, of hydrological
components. This method does not fully account for the
full probability distribution underlying each water balance
component (Music et al., 2015). Correctly representing evolving
solar radiation dynamics in relatively simplemodels that simulate
the hydrologic impacts of climate change (Lofgren et al., 2013)
is just one challenge facing the Great Lakes water resources
planning community.

There are other challenges, however, associated with more
contemporary methods that utilize hydrological output directly
from global circulation models (GCMs). Manabe et al. (2004),
for example, utilized a GCM to demonstrate that water rich
regions of North America, such as the Great Lakes basin,
would experience a significant increase in runoff and outflow,
suggesting a parallel increase in water level. However, GCMs
typically lack the regional specificity necessary to reflect climate
interactions at the scale of a lake system (Music et al., 2015;
Briley et al., 2021); some models grossly misrepresent or even
simply don’t include critical lake-atmosphere interactions that
affect the regional climate and propagate into meteorological
phenomena (Wright et al., 2013; Bryan et al., 2015; Fujisaki-
Manome et al., 2017). Other regional processes such as soil and
vegetation interactions and rainfall over small watersheds can
have a significant cumulative effect on water availability, but are
similarly misrepresented, or even neglected, in GCMs (MacKay
and Seglenieks, 2013).

An alternative approach that has gained popularity in recent
years is downscaling GCM results with regional climate models
(RCMs), often coupled to a lake-atmosphere model (Gula and
Peltier, 2012; MacKay and Seglenieks, 2013; Music et al., 2015;
Notaro et al., 2015; Mailhot et al., 2019). Studies utilizing RCMs
have demonstrated the possibility for much more varied results
than had previously been considered under the “change-factor”
method (Winkler, 2015). MacKay and Seglenieks (2013), for
example, projected single digit centimeter declines in water levels,
while Notaro et al. (2015) projected both large increases in
water level (+42 cm on Michigan-Huron) using one regional
model (RCM-CNRM), as well as significant decreases (−29.6 cm
on Michigan-Huron) using a different regional model (RCM-
MICROC5). These findings underscore the substantial variability
that either different RCMs, or that different parameterizations
within a given RCM, can introduce. In contrast, studies using
ensembles of multiple RCMs to project hydroclimate scenarios
resulted in less extreme changes in average water supply. Most
recently, a study of 28 climate simulations under five RCMs
predicted only small increases in average NBS across the basin,
but projected an amplification of the seasonal NBS cycle driven
by increases in both precipitation and evaporation (Bartolai et al.,
2015; Mailhot et al., 2019).
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To provide more robust simulations of plausible NBS
time series under climate change scenarios, we introduce a
methodology utilizing a parametric regular vine copula to predict
monthly NBS component values given a hypothesized change
or trend in each component. Copulas are multidimensional
cumulative distribution functions (CDFs) that originate from
marginal CDFs (Schölzel and Friederichs, 2008; Laux et al.,
2011; Lee and Salas, 2011; Maity, 2018). More specifically,
copulas encode relationships between some number (e.g., d) of
marginal probability distributions (in our case, for d hydrological
variables) and a new d-dimensional joint probability distribution
that preserves serial and cross-correlation.

As such, copulas represent an efficient tool for simulating
long-term environmental variables that are highly correlated
across space and time. Previous studies have shown that
copula models have the potential to successfully represent these
dependencies (Pouliasis et al., 2021). Other conventional (and
perhaps more common) statistical models in water resources
research, such as autoregressive, fractional Gaussian noise, and
non-parametric models, have the potential to misrepresent (or
even not represent at all) them (Lee and Salas, 2011). Here,
we utilize a specific type of copula, referred to as a “vine”
copula, which constructs the multivariate joint distribution using
a series of bivariate relationships (rather than a single dependence
structure across all variables simultaneously).

Prior studies have also, more specifically, evaluated the efficacy
of copulas in capturing hydroclimate phenomena on other large
bodies of water, suggesting that hydrologic behavior can plausibly
bemodeled using copulas (Lee and Salas, 2011; Latif andMustafa,
2020; Pouliasis et al., 2021; Zaerpour et al., 2021). However, many
conventional copulas (such as Frank, Clayton, and Gumbel)
are prohibitively complex at higher dimensions (Lee and Salas,
2011). While Gaussian and student’s-t copulas can accommodate
joint distributions of many dimensions, we focus our attention
on vine copulas to allow for uniquely structured bivariate
dependencies such as heavy tail weighting, multimodality, and
physical boundary conditions.

Likewise, it is advisable to use regular vines under certain
circumstances in which the dependence structure of the variables
is unclear, a condition reflected in the high number of monthly
NBS component variables across the Great Lakes (Latif and
Mustafa, 2020). With this in mind, we are able to use vine copulas
to capture overarching variable interactions while simultaneously
managing all constituent pairwise dependencies.

Therefore, the approach we introduce intends to leverage
the strength of regular vine copulas to capture spatial and
temporal distributional dependencies between monthly NBS
components for large lakes and, in particular, for each of the
Laurentian Great Lakes. We couple these statistically robust
NBS simulations with a lake-to-lake routing model utilizing
monthly stage-fall discharge equations. Monthly outflow models
(as opposed to annual-scale models often used in multi-
decadal simulations) allow us to represent seasonal variability
in water supplies evolving from factors such as ice cover and
vegetation. We demonstrate the utility of this methodology
by simulating historical and future water levels under two
plausible hydroclimate scenarios that represent a continuation

of observed NBS component trends, and a blending of existing
trends with RCM NBS change projections. We use these water
level simulations to assess three metrics of water level behavior:
long-term average, seasonality, and frequency of extreme values.

2. METHODS

2.1. Copula Calibration
We began by extracting historical water balance data for the
Great Lakes using archived output (Do et al., 2020a) from
the Large Lake Statistical Water Balance Model (L2SWBM)
(Gronewold et al., 2020). The L2SWBM utilizes a Bayesian
framework (Press, 2003; Gelman et al., 2004) to assimilate
independent hydrological data products across the Great Lakes
and subsequently infer the “true” monthly value for each
water balance component. Although these monthly values are
ultimately unknown, the L2SWBM is constrained by a traditional
water balance equation, and uses multiple data sources to develop
prior and likelihood functions for each component. Thus, the
posterior estimates of the L2SWBM reconcile observed (or
simulated) values from independent data products to close the
water balance of the entire hydrologic system (Gronewold et al.,
2016).

For this study, we specifically extracted median NBS
component values from the L2SWBM to calibrate the copula. We
calibrated the copula model as a “Regular Vine” copula within
the RVineStructureSelect() function in the VineCopula package
(Nagler et al., 2021) in the R statistical software program (R
Core Team, 2017). We converted our 70 year NBS component
observations into pseudo-observations which are both readable
by the RVineStructureSelect() function, and rank-normalized
to the interval [0,1]. The RVineStructureSelect() function then
optimally generates a maximum spanning tree with edge weights
as the correlation of pairs of variables amongst the 108 variables
(3 lake systems × 3 water balance components × 12 months).
Likewise, the RVineStructureSelect() function assigns them to the
most appropriate bivariate copula family.

We then used the RVineSim() function to generate simulated
values for each lake water balance component. We used
quantile functions to map component values from [0,1]
space into “real” values. The marginal distributions for each
water balance component were, following previous protocols
established in developing the L2SWBM (Gronewold et al., 2016,
2020; Do et al., 2020b), prescribed as three-parameter gamma,
Gaussian, and log-normal for precipitation, evaporation and
runoff, respectively. The three-parameter gamma distribution is
parameterized using the same shape and scale parameters as a
conventional gamma distribution along with an additional shift
parameter. As described in the following sections, this approach
allows us to propagate plausible climate change scenarios through
changes in the parameters of each probability distribution.

2.2. Outflow and Routing Model
To propagate the monthly water balance components generated
by the copula into simulated monthly water levels, we developed
an outflow model to capture flow dynamics between the lakes.
Specifically, we encoded a conventional stage-fall discharge
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(SFD) equation, which simulates lake outflow as a function of
water surface elevation in an upstream and (in some cases,
depending on the extent of backwater effects) downstream
lake (Gessler et al., 1998; Schmidt and Yen, 2008; Westerberg
et al., 2011; Apps et al., 2020). SFD models are particularly
prevalent in the Laurentian Great Lakes, where they have been
used for decades in long-term water level simulation studies
and operational forecasting systems (Brunk, 1968; Quinn, 1978;
Labuhn et al., 2020; Quinn et al., 2020; Thompson et al., 2020).

To simulate outflow (Q) from Lake Michigan-Huron, we
used the following SFD formulation with both stage and fall
components to accommodate the effects of backflow through the
Detroit and St. Clair Rivers.

Q = am(z2 − z1)
b(z2 − zsill)

c

where z2 and z1 represent upstream and downstream lake
elevations, respectively, and zsill represents a constant lake “sill”
elevation (roughly analogous to the elevation of the channel
bottom). Model coefficients are represented by a, b, and c,
where a subscript m indicates that a coefficient is allowed to
vary seasonally. This approach allows our models to account for
monthly changes in the relationship between water levels and
channel flowwhich result from factors such as channel vegetation
and ice cover (Derecki and Quinn, 1986; Lu et al., 1999).

To simulate outflow from Lake Superior and Lake Erie, we
used (following conventional protocols) the following simplified
SFD model (superscripts are added to differentiate flow values
and coefficients derived from the simplified SFD model;
subscripts differentiating models for Lake Superior and Lake Erie
are removed for clarity):

Q′
= am

′(z2 − zsill)
c′

Taking the logarithm of each formulation leads to the following
linear models:

ln(Q) = ln(am)+ b ∗ ln(z2 − z1)+ c ∗ ln(z2 − zsill)+ ǫ

ln(Q′) = ln(am
′)+ c′ ∗ ln(z2 − zsill)+ ǫ

′

where ǫ and ǫ
′ are model error terms.

We then conducted a Bayesian analysis to estimate
model coefficients using historical Great Lakes beginning-
of-month water level measurements, and monthly average flow
measurements, as data (i.e., for z2, z1, and Q). We obtained this
data from publicly-available archives maintained by the National
Oceanic and Atmospheric Administration (NOAA) Great Lakes
Environmental Research Laboratory (Smith et al., 2016), and
originally developed by the Coordinating Committee on Great
Lakes Basic Hydraulic and Hydrologic Data (Gronewold et al.,
2018).

2.3. Climate Scenario Selection
To demonstrate the utility of our water level forecasting
framework, we evaluated three 50-year water supply scenarios.
The first scenario is a “baseline” scenario, executed without any
perturbation of the original copula water balance component

parameters. We then developed and evaluated two additional
50-year water supply projections, each developed under
different climate-perturbed water supply conditions. The
historical baseline simulation will hereafter be referred to as
SC1. After comparing our baseline scenarios and historical
observations to ensure a minimal bias, we then base our
analysis on an intercomparison between our three model
simulations. This approach minimizes the impacts of any
potential biases (which we attempt to minimize through
model calibration) in our historical simulations (Frigon et al.,
2010).

While most multidecadal Great Lakes water level forecasts
acknowledge the impact of climate change on future water
level regimes, there has not been a focus on identifying and
propagating existing climate change signals directly into future
water supply scenarios (Notaro et al., 2013, 2015; Lofgren and
Rouhana, 2016). Instead, water levels are typically simulated
under future emissions or temperature change scenarios, but
those scenarios are sometimes inconsistent with observed
trends in NBS components. To address this shortcoming in
conventional regional water supply forecasting, we identify
significant trends in NBS components from 1950 to 2019 to
inform our first plausible climate scenario. This approach, in
effect, reflects a continuation of existing water supply trends.

More specifically, we identified and quantified trends in
monthly L2SWBM NBS component data from 1950 to 2019 for
Lake Superior, Michigan-Huron, and Erie. For each combination
of month, lake, and component (108 total), we developed a linear
model to represent historical trends. Following similar climate
studies (Hu et al., 2019; Daba et al., 2020; Banda et al., 2021),
the linear model was developed using the conventional Theil-
Sen statistical test (Sen, 1968). To simplify our prescription of a
linear trend, we did not utilize seasonal decomposition thatmight
reflect impacts of teleconnections such as El Niño, the Pacific
Decadal Oscillation, or the Arctic Oscillation (Trenberth, 1997;
Ghanbari and Bravo, 2008) that could impose a cyclical effect.
We calculated model residuals using the Sen slope linear model,
and analyzed them for trends that might reflect either model bias
or heterostochasticity (Cook and Weisberg, 1983).

We utilized the Theil-Sen test to quantify existing trends
in all components without regard to the significance of the
trend. However, we only incorporated the linear model for
components with trends that were significant at p <0.05 for
either a sieve bootstrapped student’s t-test or Mann-Kendall test
of significance. Sieve bootstrapping (Bühlmann, 1997) allowed
us to correct for the possibility of serially correlated or non-
normally distributed data in these significance tests, and has
been previously employed for detection of hydrometeorological
trends (Noguchi et al., 2011; Wang et al., 2020). Miller and
Piechota (2008) demonstrate the utility of using multiple
tests of significance to more robustly capture trends in
hydroclimate data. The Mann-Kendall test, in particular, has
been widely coupled with Theil-Sen slope estimations (Chen
and Grasby, 2009; Gyamfi et al., 2016; Banda et al., 2021).
Given a detection of significance by either test, the Theil-Sen
slope (mm*month-1*year-1) was retrieved and incorporated
into our first transient climate scenario, hereafter referred
to as SC2.
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While few historical monthly NBS components exhibit
statistically significant trends, Lake Superior’s historical water
balance can be characterized by increased precipitation and
runoff throughout the winter months. Evaporation demonstrated
much weaker and often slightly negative trends across the
hydrologic year and lake system. These observed trends
(summarized in the Supplementary Figure 1) depict a tendency
toward a “wet” future that are ultimately reflected in SC2.

We then evaluated existing literature to inform a second
transient climate scenario (SC3) that represents a blend of
our observed trends with RCM predictions of NBS component
supply. Mailhot et al. (2019), for example, utilize an ensemble
of five NA-CORDEX RCMs to simulate NBS components under
two emissions scenarios and identify trends in the components
using the Theil-Sen test. We utilized statistically significant
biweekly trends, propagated to a monthly time frame, from the
RCP-8.5 emissions scenario in this study, which represents high
greenhouse gas emissions and, consequently, comparatively high
mean temperature increase (Van Vuuren et al., 2011). The trends
derived from Mailhot et al. (2019) were then added to a baseline
trend, which we calculated as a fractional (0.3) proportion of
observed trends. It is informative to note that SC3 is characterized
bymuch greater increases in evaporation, andmoderate increases
in precipitation and runoff, relative to SC2. Both SC2 and SC3
are plausible, transient water supply scenarios represented by
slope factors (mm/month*year) for each combination of month,
lake, and NBS component. A summary of the changes in water
balance components encoded in both SC2 and SC3 can be found
in Supplementary Figure 1.

2.4. Developing and Evaluating Water Level
Projections
For each of our three scenarios (i.e., SC1, SC2, and SC3), we
generated 1,000 water level sequences across a 50-year horizon
with SC1 beginning in 1951, and SC2 and SC3 each beginning
in 2000. Using observed initial water levels in each time period
as a starting point, we iteratively simulated outflow for each
subsequent month from each lake using the previously described
SFD outflow models (Quinn et al., 2020; Thompson et al.,
2020). We combined simulated outflows and water balance
components for eachmonth to calculate the total monthly change
in water level on each lake. This change in water level consists
of four parts: inflow, NBS, diversions, and outflow. Inflow was
determined using the outflow from the upstream lake which,
in our case, applies only to Lakes Michigan-Huron and Erie.
We generated NBS component predictions using our copula.
Our simulations also include average monthly interbasin water
supplies into Lake Superior from the Long Lac and Ogoki
diversions, out of Lake Michigan-Huron through the Chicago
canal system, and out of Lake Erie through the Welland Canal
(Quinn and Edstrom, 2000; Hunter et al., 2015).

2.4.1. Change Analysis and Validation
We analyzed long-term average, seasonality, and frequency of
extreme values in water levels in our 1,000 50-year sequences
from each model simulation. Given the probabilistic nature of
our model, each plausible sequence (i.e., ensemble member)

has a different mean water level. These long term averages
were aggregated to one simulation average. We also analyzed
probability distributions to fully illustrate any shift in mean water
level outcomes.

We captured potential changes in the seasonal water level
cycle bymeasuring the likelihood that the annual water level peak
or trough falls within a given month. Therefore, any shift in the
timing of yearly water level highs and lows was reflected in a shift
in the probability distribution of highs and lows across months.
Seasonal trends were quantified by comparing the average day
that an annual high or low occurs. We compared the zero
centered probability density function of all future water levels to
historical water levels to identify if any change in the likelihood
of extreme values has occurred, which would be reflected by
variations in the tails of a distribution. Changes in occurrence
patterns of these extreme values is quantified by measuring the
percent of occurrences that fall outside of two standard deviations
from the zero-centered mean of the baseline simulation.

3. RESULTS

3.1. Validation
3.1.1. Copula-Simulated Historical NBS Sequences
We find that the marginal distributions simulated by the
copula for each lake and component reasonably match
observational distributions in both mean and shape
(Supplementary Figures 5–7). We do find, however, that
bimodality of some water balance components is not reflected
clearly in the copula simulations. This result is not particularly
surprising, given that our copula simulates a large number
of samples (1,000) from a parametric and smoothed joint
distribution, while the historical data is based on 50 values.

We also find that the copula simulations also capture
autocorrelation in each water balance component (see
Supplementary Figures 2–4). Minor disparities between
simulated and observed autocorrelation could be the result
of our selected parameterization of component distributions.
Similarly, spatial correlation among different components
and lakes is sufficiently reproduced in our copula (see
Supplementary Figures 8–13). These findings collectively
suggest that our long-term simulations of NBS components for
the Great Lakes, using a newly-developed copula, are relatively
robust. Aggregating monthly NBS component values to lakewide
NBS totals, we find that bias in long term NBS is roughly 2%.

3.1.2. SFD Historical Outflow Simulations
A comparison between simulated and observed historical
monthly water levels on, and outflows from, Lakes Superior,
Michigan-Huron, and Erie (Figure 1) indicates that our
simulation framework provides a reasonable representation not
only of marginal and multivariate distributions for precipitation,
evaporation, and runoff, but also of the water level and flow
water balance components as well. More specifically, we find that
our simulated water levels have a long-term bias of roughly 1 cm
for Lake Superior, 4 cm for Lake Michigan-Huron, and about
12 cm for Lake Erie. The bias in simulated outflows is roughly
2% for Lake Superior, 1% for Lake Michigan-Huron, and 4% for
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FIGURE 1 | Comparison between simulated and observed historical time series of water levels (left) and lake outflows (right) for Lakes Superior (top),

Michigan-Huron (middle), and Erie (bottom) from January 1951 through December 2000. Gray lines represent 100 ensemble members from our model simulation

(randomly sampled from 1,000 to facilitate reproducibility and clarity). Black lines represent observed values, and red lines represent a single ensemble member (same

member for all panels) to reflect individual simulation variability.

TABLE 1 | Comparison of long-term average water levels (in meters) for each lake

based on a historical simulation of the observed data period, and two future

climate change scenarios.

Lake Superior Lake Michigan-Huron Lake Erie

Baseline (Scenario 1) 183.42 176.54 174.18

Scenario 2 183.50 176.66 174.27

Scenario 3 183.45 176.60 174.24

Lake Erie. These values are well within the range of reasonable
tolerance for historical simulations, particularly in light of the
fact that most historical RCM-based simulations have biases that
are either not reported, or well-exceed those presented here.

3.1.3. Water Level Change Analysis
Mean water levels for observed data, our historical model run,
and two future water supply scenarios are summarized inTable 1.

Scenarios SC2 and SC3 indicate a slight net increase in average
water level on Lake Superior, with increases of 8 cm (SC2) and
3 cm (SC3), respectively. Similar changes are expected on Lake
Michigan-Huron (increases of 12 and 6 cm for SC2 and SC3,
respectively) and on Lake Erie (increases of 9 and 6 cm for
SC2 and SC3, respectively). Importantly, both future scenarios
suggest an increase in long-term average water levels across
all of the Great Lakes. These findings are consistent with the
RCM-CNRMmid-century water level projections in Notaro et al.
(2015) and are a plausible consequence of slight to moderate
NBS increases projected by Mailhot et al. (2019) and Music et al.
(2015).

All three of our model runs yield comparable marginal
distributions for mean water level, as shown in Figure 2.
Overlapping distributions between the baseline simulation
and future scenarios indicate that any individual model
run (i.e., ensemble member) may fall within the range of
simulated historical values and, in some cases, even indicate
a decline in water levels. Therefore, our findings indicate
that while an increase in water levels is likely across the
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FIGURE 2 | Probability distribution of all (600) simulated water level sequences for SC1 (red), SC2 (green), and SC3 (blue) for Lakes Superior (top), Michigan-Huron

(middle), and Erie (bottom).

Great Lakes, our range of plausible water supply scenarios
includes both the possibility of a rise or fall in long-
term water levels. We notably find that continuation of
observational trends in NBS components alone, via scenario SC2,
results in greater water level rise than is demonstrated when
RCM-based NBS component projections are incorporated via
scenario SC3.

The seasonality of annual water level highs and lows is
included in Figure 3. Scenario SC2 causes only slight shifts in
the timing of annual maximum and minimum water levels,
with changes of <1 week across all lakes. Peak water levels
occurred an average of 3 days earlier on Lake Superior and
Michigan-Huron relative to the baseline simulation, while
water levels on Lake Erie peaked an average of 7 days later.
The average date of annual minimum water levels did not

change significantly for any lake under scenario SC2. In
contrast, scenario SC3 results in a more significant shift in the
seasonality of water levels across all three lakes. Water levels
peak an average of 14 and 24 days sooner on Lake Superior,
and Michigan-Huron, respectively, while Lake Erie remains
unchanged. Lake Michigan-Huron displays the greatest shift in
timing of the annual low water level, with this trough occurring
an average of 11 days earlier under scenario SC3 than baseline
simulations indicate.

While experiencing an insignificant shift in overall timing,
Lake Superior does undergo an intensification of annual lows
that occur during the month of March, indicating that a
temporal concentration of this seasonal inflection point may
occur. Our findings are consistent with both observational
trends and climate projections that annual water level rises
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FIGURE 3 | Frequency of occurrences of annual water level maximums (above the x-axis) and minimums (below the x-axis) for SC1 (red), SC2 (green), and SC3 (blue)

for Lakes Superior (top), Michigan-Huron (middle), and Erie (bottom).

and falls are occurring earlier, particularly annual maximum
levels on Lake Superior (Lenters, 2001; Gronewold and Stow,
2014a). However, we find this shift in water level seasonality
to be significantly greater in annual maximums than in annual

minimums. The most apparent plausible change in the seasonal
cycle of water levels is a shift earlier in the year, while there
is relatively little compelling evidence for amplification or
dampening effects.
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FIGURE 4 | Comparison of zero-centered probability distributions of all simulated water levels between SC1 and SC2 (top) and SC1 and SC3 (bottom) for Lakes

Superior, Michigan-Huron, and Erie.

Figure 4 displays the zero-centered probability density
function of water levels for each simulation.While all threemodel
simulations yield similar water level distributions, differences are
evident in the tails of the distributions, representing a change in
the occurrence of extreme water levels. Two standard deviations
from the zero-centered mean of the historical simulation on
each lake is used as a threshold to measure the frequency of
extreme values. This results in a threshold of 0.3, 0.47, and 0.45
m deviations from the mean for Lake Superior, Michigan-Huron,
and Erie, respectively.Water levels fall outside of these thresholds
an average of 3.0% more frequently across lakes under scenario
SC2 than is historically simulated, while frequency increases
by an average of 2.1% under scenario SC3. Our findings also
demonstrate that the increased frequency of extreme water levels
is of comparable magnitude at both the high and low ends
of the distribution, and that water levels are less concentrated
around the mean under both scenarios. This indicates that future
water levels may demonstrate greater dispersion from the mean
in both directions relative to the historical record, supporting
ongoing speculation about future increased variability of Great
Lakes water levels (Gronewold and Rood, 2019). Increased

dispersion of water levels is also consistent with the possibility
of an enhancement in the annual cycle of water supply (Manabe
et al., 2004; Mailhot et al., 2019), though we do not find
compelling evidence of an overall amplification of seasonal
water level dynamics in this study. Increasing magnitudes of
both precipitation and evaporation provide another plausible
explanation for greater water level variability, as imbalances in
these competing hydrologic forces can result in significant water
level deviations from the long-term average (Gronewold et al.,
2021).

4. CONCLUDING REMARKS

Great Lakes hydroclimate studies prior to 2011 widely used the
“change-factor” method and consistently simulated significant
declines in future water levels (Croley, 1990; Hartmann, 1990;
Angel and Kunkel, 2010; Hayhoe et al., 2010). These findings
led to a regional narrative reflecting a future of drought, aridity,
and chronic low water levels (Gronewold and Stow, 2014b).
The low water levels in many of these simulations, however,
was a consequence of misguided modeling assumptions based
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on the use of air temperature as a proxy for solar radiation
(Lofgren et al., 2013). A response to this narrative was catalyzed
through a shift to the use of state-of-the-art downscaled RCM
outputs to drive NBS and water level simulations. We have built
upon this body of research by using a statistical model that
maintains spatial and temporal correlation among water balance
components, while allowing manipulation of the water balance
component marginal distributions to reflect plausible climate
change scenarios. Our results indicate that this approach (based
primarily on the use of copulas) presents a promising alternative
to regional water supply forecasting.

Our results indicate a slight to moderate increase in
average water levels on all lakes under both plausible water
supply scenarios. SC2 demonstrates greater increases than SC3,
indicating that current trends in NBS components alone, if
continued, could result in greater water level rise than would
occur if RCM-predicted climate trends also take place. In
contrast, SC3 results in greater shifts in the timing of the annual
water level cycle, most notably demonstrated by the annual
maximum occurring earlier in the year on Lake Superior and
Michigan-Huron. Both plausible future water supply scenarios
indicate an increased dispersion of water levels from the long
term average. This finding indicates that, despite a rise in average
levels, extreme low water levels are still likely to occur in
the future.
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