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Flood vulnerability is quantified by loss models which are developed using either empirical

or synthetic approaches. In reality, processes influencing flood risk are stochastic and

loss predictions bear significant uncertainty, especially due to differences in vulnerability

across exposed objects and regions. However, many state-of-the-art flood loss models

are deterministic, i.e., they do not account for data and model uncertainty. The Bayesian

Data-Driven Synthetic (BDDS) model was one of the first approaches that used empirical

data to reduce the prediction errors at object-level and enhance the reliability of synthetic

flood loss models. However, the BDDS model does not account for regional differences

in vulnerability which may result in over-/under-estimation of losses in some regions. In

order to overcome this limitation, this study introduces a hierarchical parameterization of

the BDDS model which enhances synthetic flood loss model predictions by quantifying

regional differences in vulnerability. The hierarchical parameterization makes optimal use

of the process information contained in the overall data set for the various regional

applications, so that it is particularly suitable for cases in which only a small amount

of empirical data is available. The implementation and performance of the hierarchical

parametrization is demonstrated with the Multi-Colored Manual (MCM) loss functions

and empirical damage dataset from the UK consisting of residential buildings from the

regions Appleby, Carlisle, Kendal and Cockermouth that suffered losses during the 2015

flood event. The developed model improves prediction accuracy of flood loss compared

to MCM by reducing the absolute error and bias by at least 23 and 90%, respectively.

The model reliability in terms of hit rate (i.e., the probability that the observed value lies

in the 90% high density interval of predictions) is 88% for residential buildings from the

same regions used for calibration and 73% for residential buildings from new regions.

The approach is of high practical relevance for all regions where only limited amounts of

empirical flood loss data is available.
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INTRODUCTION

Flood loss models are an essential component of risk analyses.
Loss models quantify the vulnerability of exposed assets to
different hazard characteristics. Flood loss models are developed
based on the synthetic approach (e.g., Penning-Rowsell and
Chatterton, 1977; Smith, 1994), the empirical approach (e.g.,
Elmer et al., 2010; Merz et al., 2013) or a combination of
both (Wagenaar et al., 2018). The empirical approach includes
statistical models developed using empirical data e.g., survey data
concerning flood loss and influencing factors of flood loss (Elmer
et al., 2010; Rözer et al., 2019). Synthetic loss models are based
on what-if scenarios and expert and engineeringmethods (Smith,
1994; Merz et al., 2010). They are not based on statistical analysis
of observed data (Penning-Rowsell and Chatterton, 1977). Due
to scarcity of empirical data, the synthetic models are rarely
validated against observed loss (Gerl et al., 2016). Thus, despite
the high standardization of the synthetic models, they may result
in biased and uncertain loss predictions (Merz et al., 2010).
However, in regions where only small amounts of empirical
flood loss data is available they seem to be the only possible
approach for loss estimation. Flood vulnerability often varies
across regions (Vogel et al., 2018). Regional characteristics such
as predominant building types, past flood experience, and socio-
economic aspects drive flood vulnerability (Jongman et al., 2012).

Owing to these constraints, flood loss models, both empirical
and synthetic, trained on particular regions do not perform well
when transferred as such to other regions (Cammerer et al., 2013;
Figueiredo et al., 2018; Wagenaar et al., 2018).

Hierarchical Bayesian approaches can be theoretically

conceptualized and implemented to capture causal effects
(Kruschke and Vanpaemel, 2015). A Hierarchical Bayesian
Model for flood loss prediction using empirical data has been
developed to capture spatiotemporal variability in damage
processes (Sairam et al., 2019b) and variability across flood
types (Mohor et al., 2021). Calibrating a synthetic model with
available empirical loss data within a probabilistic framework
resulted in a Bayesian Data-driven Synthetic (BDDS) model that
captures the flood vulnerability of households and enhances the
reliability of loss predictions, especially for data-scarce regions
(Sairam et al., 2020). The BDDS model is formulated based
on the premise that the observed loss values and predictions
from synthetic loss models may be seen as components of a
statistical model in which the predictions from the synthetic
loss model are considered as an exogenous variable (one that is
determined outside the model and imposed on the model). In
the model formulation, the synthetic loss predictions explain the
observed loss values. The BDDS is a fully probabilistic model
which enhances the synthetic flood loss functions by associating
probability distributions to their deterministic loss predictions.
Depending on the available empirical data and level-of-detail in
the synthetic model, the vulnerability differences at the object
(household) -level can be captured by the BDDS model. Building
characteristics, past flood experiences, risk management,
warning lead time, warning quality, and private precaution
are some of the aspects that strongly influence households’
flood vulnerability and consequently flood loss (Bubeck et al.,

2012; Hudson et al., 2014; Sairam et al., 2019a; Kreibich et al.,
2021). Since it is time consuming and expensive to collect data
concerning these aspects at the object (household)-level, and
only possible after a flood event, such detailed data is scarce
in many regions. However, ignoring these aspects may lead to
biased estimates of flood loss in an entire region.

The objective of this study is to develop a fully probabilistic
model that provides uncertainty quantification and explicitly
accounts for regional differences in flood vulnerability. We
propose a hierarchical parameterization of the BDDS model
at region-level. The implementation and performance of the
model is demonstrated using the Multi-Colored Manual (MCM)
loss functions and empirical loss data of residential buildings
from the regions Appleby, Carlisle, Kendal and Cockermouth
that were affected by the 2015 flood event in the UK. The
model is tested to enhance the predictive capability of MCM for
residential buildings from the regions used for training and from
new regions. Furthermore, vulnerability differences across these
regions are inferred from the model parameters.

DATA AND MODEL

Cumbria Floods, 2015
In December 2015, storm Desmond affected the North Western
part of the UK causing an extreme flood event in Cumbria with
a return period of 800–1,000 years. The event was characterized
by heavy rainfall, high temperature and soil moisture. The
event resulted in losses between £520 and £662 Million (Szonyi
et al., 2016). In many parts of Cumbria, the inundation was
a result of overtopped flood walls. The flood affected regions
were characterized by different levels of preparedness. Properties
behind the flood walls experienced inundation depth of almost
3 meters and inundation duration of up to 48 h. Many of
these properties, especially in big cities like Carlisle had low
awareness regarding the residual risk—in this context, residual
risk refers to the chance of failure of structural adaptation such
as dikes and flood walls leading to increased flood risk. Due
to the lack of awareness, they had not prepared for a flooding.
In contrast, residential properties in rural regions such as the
Appleby region which were not protected by structural measures,
showed high awareness and had implemented many property-
level precautionary measures. The Cocker region had been
already severely affected during the 2009 flood. After 2009, the
flood walls along Cocker river were raised and at-risk properties
undertook private precaution. These measures resulted in lower
water depths as well as reduced loss in this region during the
2015 flood.

After the 2015 event, computer-aided telephone surveys were
undertaken targeting the households that had suffered flood loss.
The households were from the towns of Appleby, Kendal, Carlisle
and Cockermouth located in the region of Cumbria. The survey
consisted of questions concerning the flood characteristics (water
depth, duration), building characteristics (type, construction
year), preparedness (private precautionary measures, emergency
measures, warning information etc.) and incurred loss to
building structure and contents. The reconstruction costs for
the houses were obtained from the Association of British
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TABLE 1 | Summary of empirical data: sample size of complete records; medians of water depth in meters, duration in hours, warning lead time in hours, absolute

building loss in £, and reconstruction value in £.

Region Sample

size

Water

depth (m)

Duration

(hours)

Warning lead

time (hours)

Building loss

(£)

Reconstruction

value (£)

Appleby 7 1.15 24 0 30,000 705,000

Carlisle 9 1.70 36 12 50,000 237,000

Cockermouth 12 0.31 21 0.5 8,500 372,000

Kendal 5 1.02 16 0 20,000 223,000

Total 33

Insurers (https://www.abi.org.uk/). The datasets that contained
water depth and building loss information were selected for
this analysis. This resulted in a dataset with 33 flood damaged
residential buildings. All these datasets provide information
pertaining to the initial appraisal of the MCM. The responses
from the households are summarized per region in Table 1.

Multi-Colored Manual
The Multi-Colored Manual (MCM) (Penning-Rowsell et al.,
2013) presents a deterministic flood loss model that estimates
flood losses in Sterling. The MCM provides a range of
synthetically-generated absolute losses corresponding to water
depths for residential and non-residential properties to provide
national consistent values for appraisals. The loss functions are
based on the best ownership and economic values available from
market-based surveys and synthetically generated loss functions.

For residential properties, unique loss functions are provided
for different types of flooding, duration of inundation, warning
lead time, building type, year of construction and social class;
and estimates of loss are provided for the building fabric and
contents along with the costs for cleaning and drying. In this
study, we utilize MCM loss functions relevant to residential
building fabric and divide the absolute loss estimates by the
reconstruction cost to obtain an estimate of relative loss (rloss).
Since empirical data concerning social class was not available, an
initial MCM assessment for building fabric loss was performed
utilizing different loss functions based on type of flooding, water
depth, duration of inundation, warning lead time, building type
and year of building construction.

RESULTS

Exploratory Data Analysis
MCM provides a multi-variable synthetic model that captures
damage processes affecting residential buildings based on
building and hazard characteristics explained in Section Multi-
ColoredManual. Flood damage processes are stochastic and there
is variability in damage processes across buildings, events and
regions. It is unlikely to sufficiently capture all loss influencing
factors and processes using a deterministic model. During the
2015 flood there was heterogeneity across the affected regions in
terms of flood awareness, flood experience and implementation
of private precautionary measures.

In order to understand the potential regional variability, the
agreement between observed loss and MCM predictions are

analyzed in Figure 1. The empirical loss obtained from post-

event surveys (observed relative loss) is represented as ˜rloss and
theMCMpredictions are represented as rloss_MCM. SinceMCM
is a deterministic model, a single value of rloss_MCM is obtained
for each building.

From Figure 1A, we see that most of the MCM predictions
fall below the reference line, thus, we can infer that MCM
consistently overestimates flood loss. A negative intercept in
the fit of residuals may potentially compensate for this over-
estimation.

Hierarchical Parameterization and
Bayesian Inference
The hierarchical parameterization of the BDDSmodel is aimed at
minimizing the deviation ofMCMpredictions from the observed
data, resulting in better prediction capabilities for regions within
and outside the training area. The model is fully probabilistic
which provides estimates of model reliability based on the
predictive distributions.

The region-level parameterization considers differences in
vulnerability across regions. Based on the exploratory data
analysis performed in Section Exploratory Data Analysis, the
empirical loss as the dependent variable is regressed against
the MCM estimation. Thus, the vulnerability of a household is
modeled using a logit transformed linear relationship between
the MCM loss prediction and the observed loss conditioned
on the region in which the household is located (Equations 2,
3). Figure 1A shows the model fit plotted over observed losses
against MCM estimation. The significance of the model structure
(linear relationship) is measured using the threshold based
on the Region Of Practical Equivalence (ROPE) for Bayesian
models (Kruschke, 2018). The ROPE is a region around 0
corresponding to practically no effect or negligible magnitude
(i.e., the model parameter is not significant). The proportion of
posterior distribution of parameter outside the ROPE is used to
either accept or reject the Bayesian parameters. The significance
test for the developed model shows that both parameters λr and
εr has 100% of the posterior distribution outside the ROPE.

r̃lossi|rloss_MCMi ∼ Beta(αi,βi) (1)

αi = µi × ϕr; βi = (1− µi)× ϕr (2)

µi = inv logit (λr × rloss_MCMi + εr) (3)
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FIGURE 1 | (A) Region-wise scatter plot of MCM predictions against

observed loss (black points) with reference 1:1-line (gray line) and predictions

using hierarchical parameterization of the BDDS model (red line); (B)

Region-wise posterior predictions using hierarchical parameterization of the

BDDS model (histogram) along with median observed loss (blue line) and

median of MCM estimate (black line).

In equations 2 and 3, subscripts i and r refer to individual
buildings and the region in which they are located. r̃loss is
modeled as a beta distribution with logit transformation, since,
unbounded distributions might result in implausible values
for r̃loss (Rözer et al., 2019). The beta distribution holds two
parameters α and β which are algebraically determined using
location parameter µ and variance parameter ϕ (Equation 3).
µ is a logit transformed function of the MCM predictions
(rloss_MCM) with parameters slope (λ), intercept (ε). The
parameters ϕ, λ and ε vary across the four regions. They
are made up of two components, the fixed component which
is common to all regions and the varying component which
determined the variability in damage processes across the regions
conditioned on the MCM predictions. Equations 2 and 3 are
comprised of three fixed parameters, one for each of the

ϕ, λ and ε; twelve region-level parameters, four (number of
regions) for each of the ϕ, λ and ε; three standard deviations
governing the variability across regions for each of the ϕ, λ,
and ε; one correlation coefficient between varying λ and ε. The
parameters of this multi-level model structure are estimated
using Bayesian inferences.

Bayesian inference allows us to include our assumptions
regarding damage processes as priors and available empirical
data as evidence for updating. Bayes’ Theorem (Equation 4) tells
us that the posterior distribution of our parameters depends
on the likelihood of the data and our prior estimation of the
parameter distributions.

p(θ |y) =
p̃(y|θ)p(θ)

p(y|θ)p(θ)dθ
(4)

The posterior distribution of our parameter estimates is
represented by p(θ|y). Our prior belief about the distribution
of the parameters is represented by p(θ). We initially provide
priors that describe our general belief about the distribution of
the parameters. For example, in Equation 3, ϕ is required to
be positive and hence given an un-informative generic prior,
gamma(0.01, 0.01). Similarly, the standard deviation terms that
govern variability at each level in the hierarchy are given weakly
informative priors which are constrained to be positive. e.g., half-
student t priors (Gelman, 2006). We also provide un-informative
generic priors to λ and ε to estimate the model parameters
based on the availability of evidence from empirical loss data
using the likelihood estimate p(y|θ). The model parameters
are approximated using MCMC (Markov Chain Monte Carlo)
sampling implemented using the software Stan (Carpenter et al.,
2017). Stan uses Hamiltonian Monte Carlo sampling, which uses
the gradient of the log probability to speed up convergence and
parameter exploration.

Model Performances and Inferences
The validation of the models is performed based on assessment
metrics: Mean Absolute Error—MAE (Equation 5) and Mean
Bias Error—MBE (Equation 6). These metrics measure the
model’s predictive capability using a point estimate as the
predicted rloss (e.g., deterministic estimate or median of the
predictive distribution). MAE represents the magnitude of the
error (precision) and MBE represents the direction of the error
bias (over-/under-estimation- accuracy). With respect to MAE
and MBE, the Hierarchical parametrization of the BDDS model
can be directly compared with the MCM predictions.

In contrast to the deterministic MCM, the BDDS is a
probabilistic model which provides a predictive distribution from
which Hit Rate (HR, Equation 7) and Interval Score (Equation
8, Gneiting and Raftery, 2007) can be determined. The HR
represents the percentage of predictions where the observed data
falls into the 90% High Density Interval (HDI) of the prediction
(HDI90; values between the 5th and 95th percentiles of the
distribution); the interval score (IS) is the width of the 90% HDI
(HDI90). The IS is penalized, if the prediction lies outside the 90%
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HDI. The HR and IS are measures of model reliability.

MAE =
1

n

n∑

i=1

∣∣∣r̃lossi−rlossi

∣∣∣ (5)

MBE =
1

n

n∑

i=1

r̃lossi− rlossi (6)

HR =
1

n

n∑

i=1

hi; hi =1 if rlossi ∈ HDI90i; 0, otherwise (7)

IS = HDI90i +
1

n

n∑

i=1

2

β

(
min (HDI90i) − r̃lossi

)
|r̃lossi

< min (HDI90) +
2

β

(
r̃lossi −max (HDI90i)

∣∣∣ {r̃lossi

> max (HDI90i)} (8)

Where r̃loss is the observed rloss from empirical dataset, rloss
is the 50th percentile of the predictive distribution and β =

1− (0.95− 0.05), for 90% HDI.
In reality, we are interested in predicting losses of houses

that are not in our training dataset. These include houses from
the same regions used for training as well as houses from other
regions. In order to test the models under a regional transfer
scenario, we perform Leave-One-Out (LOO) and Out-Of-Region
(OOR) cross validations (CV).

LOO-CV requires the model to be trained on n-1 buildings,
where n is the total number of buildings. The loss of the left-out
building is predicted. This is iteratively performed until the loss
prediction is performed for all the buildings in the dataset. OOR-
CV requires the model to be trained on all buildings from m-1
regions, where m is the total number of regions. The losses of
the buildings in the left-out region is predicted. This is iteratively
repeated until loss prediction is performed for buildings in all
regions. The assessment of the model performances for LOO and
OOR CV are given in Table 2.

The Hierarchical BDDS outperforms the deterministic MCM
with least MAE and least absolute MBE (Table 2). The MAE and
MBE are reduced by 52 and 93%, respectively, in the case of
LOO-CV and by 23 and 90%, respectively, in the case of OOR-
CV. The developed model, being probabilistic, also quantifies
prediction reliability using IS and HR. The posterior predictive
distribution corresponding to each region is shown in Figure 1B.
These results show that calibrating the synthetic MCM function

TABLE 2 | Performance of MCM and hierarchical BDDS models.

Metric Model

MCM Hierarchical BDDS

LOO OOR

MAE 0.178 0.086 0.137

MBE −0.127 −0.009 0.013

IS – 0.448 0.737

HR – 0.879 0.727

with available empirical data within a hierarchical probabilistic
framework results in precise predictions with high reliability.
That is, predictions from the developed model are consistently
closer to the observed loss values than the MCM estimates.

Based on these validation tests, the Hierarchical BDDS
model has higher prediction capability than the MCM for
both scenarios (LOO-CV and OOR-CV). Nevertheless, the
errors from LOO-CV are lower than the errors from OOR-CV.
Similarly, the reliability measured using IS(HR) from LOO-CV
is lower(higher) than the IS(HR) for OOR-CV. Based on these
results, we infer that the model performance is also dependent on
the quality and availability of empirical data from the regions to
which the model is applied. Thus, using local empirical data for
parametrization enhances the model’s predictive capabilities.

The parameters from the model defined in Equations 2,
3 are provided in Table 3. The estimates are provided along
with their standard deviations. The fixed intercept (ε) is
negative, as presumed in Section Exploratory Data Analysis.
The positive slope is also evident since we expect the MCM
predictions to follow a similar trend as the observations. The
model fit between MCM estimate and empirical loss is also
validated by the 5th and 95th quantiles of the model coefficients
being >0. The slope parameter shows the highest regional
variability. Small values of ϕ represent high deviation (large
credible interval of the beta distribution). Loss predictions
from Carlisle and Appleby, the two highly impacted regions
with varying levels of preparedness resulted in large predictive
intervals, compared to the other regions. Additionally, Carlisle

TABLE 3 | Model parameters estimate and standard deviation.

Parameter Estimate Standard deviation

ε −3.176 0.621

ϕ 1.883 0.461

λ 3.556 1.679

sd_ε 0.668 0.815

sd_λ 1.879 2.202

sd_ϕ 0.531 0.641

cor_ε_λ −0.186 0.584

εAppleby −0.008 0.587

εCarlisle 0.251 0.648

εCockermouth −0.172 0.585

εKendal −0.052 0.650

λAppleby −0.476 1.647

λCarlisle −0.182 1.690

λCockermouth −0.014 1.710

λKendal 0.660 2.003

ϕAppleby −0.056 0.454

ϕCarlisle −0.113 0.466

ϕCockermouth 0.111 0.448

ϕKendal 0.046 0.482

The region-level parameters are shown with the region names as subscripts; the standard

deviations of region-level parameters are shown with a prefix sd_; the correlation

coefficient between two varying parameters is shown with a prefix cor_.
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and Kendal with the highest intercept and slope, respectively
have buildings that are more vulnerable than the other regions.
This finding aligns with the fact that households in Carlisle
and Kendal were unprepared for such an extreme event—the
peak discharge of the 2015 event was almost 60% larger than
the 2009 event which led to overtopping of the flood walls
designed based on past flood levels. In particular, the households
behind the flood walls suffered high losses as they felt safe
and did not implement Property Level Resilience measures
(MSCA ETN Early Stage Researchers, 2019). On the other
hand, despite having had the least warning lead time and
high flooding duration, the residential buildings in Appleby
have the least slope, representing low increase in vulnerability
with higher water depths. The environmental agency’s (DEFRA)
pilot implementation of Property Level Resilience measures in
199 properties in Appleby in 2007 is a potential reason for
low vulnerability.

CONCLUSIONS

In this study, synthetic model calibration using a hierarchical
Bayesian approach is demonstrated using a small sample of
empirical flood loss data from the UK and the MCM. The
resulting flood loss model is fully probabilistic and provides loss
distributions which are precise and reliable. Using exploratory
analysis of the MCM predictions and empirical loss data, the
hierarchical parameterization included varying slope, intercept
and deviation across regions.

The validation results proof that, the hierarchical
parameterization of the BDDS model enhances the synthetic
loss model by reducing the absolute error and bias by 23 and
90%, respectively, for residential buildings from new regions and
by 52 and 93%, respectively, for residential buildings from the
same regions used for training. The model reliability in terms of
hit rate (i.e., the probability that the observed value lies in the
90% high density interval of predictions) is 88% for residential
buildings from the same regions used for calibration and 73%
for residential buildings from new regions and also captures
flood vulnerability differences across regions. This is a promising
step forward in calibrating synthetic models and determining

reliability of flood loss predictions and can be further improved
by including expert knowledge in the form of informative priors
and region-level variables.

Since the empirical dataset used in this study is small and
not representative of different flood damage processes in the
UK, robust inferences concerning drivers of flood vulnerability
cannot be made from this analysis. On the other hand, the results
show the high value of good quality empirical flood loss data for
developing reliable flood loss models, stressing the importance of
post-event data collection campaigns.

The example of a successful enhancement of a synthetic model
with very little empirical data stresses the practical relevance of
the approach for the many regions worldwide where only limited
amounts of flood loss data is available (or can be collected) but
where reliable loss estimates are urgently needed. The explicit
quantification of uncertainty in damage predictions driven by
the quality of available data and expert knowledge contribute
to making reliable risk management decisions at the household-
and region-levels such as determining insurance premiums and
implementation of flood protection.
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