
METHODS
published: 22 June 2022

doi: 10.3389/frwa.2022.875732

Frontiers in Water | www.frontiersin.org 1 June 2022 | Volume 4 | Article 875732

Edited by:

Anne Jefferson,

Kent State University, United States

Reviewed by:

Nichoas Kinar,

University of Saskatchewan, Canada

Jordyn Wolfand,

University of Portland, United States

Dominick Ciruzzi,

College of William & Mary,

United States

*Correspondence:

Christa A. Kelleher

kellehec@lafayette.edu

Specialty section:

This article was submitted to

Water and Hydrocomplexity,

a section of the journal

Frontiers in Water

Received: 14 February 2022

Accepted: 23 May 2022

Published: 22 June 2022

Citation:

Kelleher CA, Gannon JP, Jones CN

and Aksoy Ş (2022) Best Management

Practices for Teaching Hydrologic

Coding in Physical, Hybrid, and Virtual

Classrooms. Front. Water 4:875732.

doi: 10.3389/frwa.2022.875732

Best Management Practices for
Teaching Hydrologic Coding in
Physical, Hybrid, and Virtual
Classrooms
Christa A. Kelleher 1,2*, John P. Gannon 3, C. Nathan Jones 4 and Şule Aksoy 5,6

1Department of Civil and Environmental Engineering, Lafayette College, Easton, PA, United States, 2Department of Earth and

Environmental Sciences, Syracuse University, Syracuse, NY, United States, 3Department of Forest Resources and

Environmental Conservation, Virginia Tech, Blacksburg, VA, United States, 4Department of Biological Sciences, University of

Alabama, Tuscaloosa, AL, United States, 5Department of Science Teaching, Syracuse University, Syracuse, NY,

United States, 6 The Graduate Center, The City University of New York (CUNY), New York, NY, United States

As the field of hydrologic sciences continues to advance, there is an increasing need

to develop a workforce with tools to curate, manage, and analyze large datasets.

As such, undergraduate and graduate curricula are beginning to regularly incorporate

scientific programing in the classroom. However, there are several key challenges to

successfully incorporating scientific programming into a hydrology course or curriculum,

such as meeting disciplinary outcomes alongside teaching students to code, equity

issues with access to computing power, and effective classroom management. While

these challenges were exacerbated by the global pandemic, shifting to online and hybrid

learning formats provided an opportunity to explore and re-evaluate the way we facilitated

our hydrology courses and integrated coding exercises and learning. In this article, we

reflect on these experiences in three very different hydrology courses (e.g., courses

housed in geoscience/engineering, environmental science, and biology programs) with

an eye toward identifying successes and opportunities for improvement. We explore

this by presenting ten best management practices (BMPs), representing a series of

recommendations we have for teaching a virtual, hybrid, or in-person hydrology course

that incorporates coding. While all recommendations provided can be applied to many

programming languages, the focus of the paper (given the expertise of the authors) is

on R. Our BMPs focus on technological facilitation, managing the virtual classroom, and

instructional resources, with lessons learned that are applicable to in-person instruction.

We also summarize the ways that the authors of this article integrate coding into

our coursework to serve as a framework for prepping new courses or those revising

existing hydrologic coursework. Above all, we hope these series of recommendations

will evolve as hydrology courses continue to emphasize computational skills alongside

disciplinary learning.

Keywords: coding education, hydrology, hydrogeology, computational thinking, STEM education and learning

https://www.frontiersin.org/journals/water
https://www.frontiersin.org/journals/water#editorial-board
https://www.frontiersin.org/journals/water#editorial-board
https://www.frontiersin.org/journals/water#editorial-board
https://www.frontiersin.org/journals/water#editorial-board
https://doi.org/10.3389/frwa.2022.875732
http://crossmark.crossref.org/dialog/?doi=10.3389/frwa.2022.875732&domain=pdf&date_stamp=2022-06-22
https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles
https://creativecommons.org/licenses/by/4.0/
mailto:kellehec@lafayette.edu
https://doi.org/10.3389/frwa.2022.875732
https://www.frontiersin.org/articles/10.3389/frwa.2022.875732/full

Kelleher et al. Hydrology Coding BMPs

INTRODUCTION

The field of hydrologic science—as well as science, technology,
engineering, and mathematics (STEM) fields—is built on
numerical inquiry. As hydrologists, we use data to interrogate
research questions, to support decision-making, to benchmark
variations and change, and to deliver new design solutions.
As computing capabilities have continued to advance,
and the volume and variety of the data we work with
has continued to expand, many professional hydrologists
and hydrogeologists are turning to scientific programming
languages, including R, Python, and MATLAB, to complete
daily tasks.

Scientific programming and closely associated skills are
prized within the STEM workforce. A recent US federal report
emphasizes that developing a national STEM workforce strategy
goes hand-in-hand with promoting an understanding of the
basics of computing and data science through research-based
pedagogical practices (National Academies of Sciences, 2016).
Indeed, work by Carnevale et al. (2011) identified the importance
of knowledge of computers and electronics, an overarching
knowledge domain that includes computer applications and
coding, as 1 of 10 core knowledge domains most closely
associated with STEM occupations. By their estimates, computer
and electronics knowledge is not only crucial to a very
high percentage of STEM occupations, but also represents a
transferable skill beyond STEM occupations (Carnevale et al.,
2011). Recent annual surveys indicate that more than 50% of
superiors working closely with college graduates ranked skill sets
associated with “complex problem solving”, “critical thinking”,
the “ability to analyze and interpret data”, and the “ability to
work with numbers and statistics” as “very important” for new
graduates (Finley, 2021).

Within the educational literature, the process of learning to
write code most commonly aligns with developing abilities in
computational thinking (Wing, 2006). Computational thinking
is often described as the process of defining a problem and
associated solutions such that either a human or machine (or
both) can execute the proposed solutions (Wing, 2006). While no
commonly accepted definition for computational thinking exists,
the definitions used across the literature emphasize abstraction
and automation (Lyon and Magana, 2020). Computational
thinking and, more broadly, computational knowledge, are
often developed within computer science (CS) courses as well
as in courses that teach programming in disciplines beyond
computer sciences, with the educational literature drawing
distinction between the two. Around the world, countries are
implementing the inclusion of computational thinking, digital
literacy, and computer programming across the curriculum, and
at the K12 and undergraduate level (National Academies of
Sciences, 2016; The Royal Society, 2017; Valente and de Almeida,
2020; Nesen et al., 2021). Though the educational literature
on computational thinking within programming courses (i.e.,
those outside of computer science departments) as well as the
existence of publicly accessible coding exercises across STEM
fields is expanding (Jacobs et al., 2016; Yan, 2017; Lin et al.,
2019), understanding of best practices is still nascent, particularly

at the disciplinary level. Overall, there is limited research on
teaching and learning to code; and there is a general lack
of educational materials to support teaching scientific coding
methods (Medeiros et al., 2019). For this reason, core practices
and publicly available repositories of teaching resources are
still lacking.

The onset and continued evolution of the COVID19
pandemic has fundamentally changed the way we deliver
content to students, and how we, the authors of this article,
specifically taught scientific programming. In particular, the
pandemic brought into sharp focus how we not only teach
about computing technology, but how we most effectively
use computing technology to accomplish this. Likewise, it
forced us to consider what elements of our delivery were
most effective in a virtual or hybrid classroom. Considering
our approaches to teaching coding, it became even more
important to minimize troubleshooting problems beyond just
those with code (software versions, wrong directories, and
more). Finally, it gave us the opportunity to reflect on and
revise our courses and associated expectations from the lens
of equity and inclusion within the classroom. This article
represents ten best management practices (BMP), a double
entendre given that BMPs are also used as conservation practices
in hydrologic science, that we have arrived at for delivering a
coding course at the undergraduate level. These BMPs represent
what we view as core practices, in that they are constantly
evolving through collaboration and feedback from learners and
practitioners. Our hope is that while these recommendations
were formulated in the context of virtual and hybrid teaching,
they will improve student learning outcomes upon returning to
in-person instruction.

WHAT DO WE MEAN BY “CODING”?

In this article, we are focused on approaches that we use to
teach others (particularly undergraduate and graduate students)
how to write code. Throughout the manuscript we primarily
use the term “coding” instead of “programming”. As highlighted
by Corradini et al. (2018) the term “coding” may be preferred
to “programming” given the many publicized initiatives that
include “coding” in the title, broad media use of the term,
and that, to put it simply, the term “coding” may sound
more interesting or exciting than “programming”. By “coding”,
we are referring to the process of students building skills in
writing one or more lines of code to perform analysis, including
computations, generating visualizations, or writing programs
or functions (e.g., multiple lines of code that build to achieve
some output; Van Merrienboer and Krammer, 1987). In non-
CS disciplines, this often requires combining learning discipline
specific knowledge alongside the commands and syntax of a
given programming language (Van Merrienboer and Krammer,
1987). The authors primarily use the R coding language. Thus,
most of the examples are given in R, but we note that the
principles introduced in this text can be translated to any other
programming language such as MATLAB or Python.

Frontiers in Water | www.frontiersin.org 2 June 2022 | Volume 4 | Article 875732

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles

Kelleher et al. Hydrology Coding BMPs

COURSES

Our reflections in this article are shaped by our experiences in
developing and teaching three different courses that incorporate
coding as part of course learning objectives and content. We
briefly outline these three courses below.

Course 1—Physical Hydrology
A mixed undergraduate-graduate course aimed at introducing
students to physical hydrology concepts. The course size was
18 students, with backgrounds split between the Earth Sciences
and Civil Engineering and met twice a week for 75min. The
course was taught at Syracuse University (Syracuse, NY, USA).
During the pandemic, the course was taught in the spring 2021
semester, though was offered in prior semesters as well. The
course operated in hybrid mode for lectures (1 day a week) and
in an online environment for all but the last few weeks for coding
examples (1 day a week). Students were introduced to R coding
to quantify hydrological processes, perform hydrologic analyses
and hydrological modeling, and to compare watershed responses
in variable environments.

Course 2—Hydroinformatics
A mixed undergraduate-graduate course taught at Virginia
Tech (Blacksburg, VA, USA) aimed at introducing students
to common introductory to moderately complex hydrologic
analysis using coding. During the pandemic, the course was
taught in 2021 during the spring semester, though was taught
prior to this offering. The course was 14 students, with
backgrounds in undergraduate data science and hydrology
courses, as well as graduate students with a variety of
backgrounds. This course was taught synchronously online
twice a week for 75min. Students were introduced to R over
the first 2 weeks of the course, and then each week the
class introduced hydrologic analyses and the coding concepts
necessary to complete them. Topics include basic statistics, flood
and low flow statistics, modeling, and basic geospatial operations
like delineating watersheds and stream networks.

Course 3—Ecohydrology
A mixed undergraduate-graduate course aimed at introducing
students to the water cycle and ecosystems taught at University of
Alabama (Tuscaloosa, AL, USA). Course enrollment included 20
students with backgrounds in environmental science and biology
and was taught in fall 2021. Weekly meetings included a 1-h
synchronous virtual lecture where students were introduced to a
broader topic, 1-h journal article discussion (graduate students
only), and 6-h lab. The longer lab period allowed the class to
be broken up into smaller groups. The first half of the course
focused on components of the water balance (i.e., watershed
storage, precipitation, streamflow, and evapotranspiration), and
the second half of the course focused on how water interacts
with ecosystems (i.e., wetland soils, plant-water interactions,
catchment biogeochemistry, and flow-ecology relationships).
Labs included a range of activities that included both empirical
data collection and data analysis using R.

DISCUSSION

Below we summarize 10 considerations for incorporating coding
into hydrology courses. We developed many of these practices
through our experiences with pandemic teaching but emphasize
that nearly all recommendations are applicable to a virtual,
physical, or hybrid classroom environment. For any instructors
who are currently teaching coding or considering adapting
their disciplinary courses (in hydrology or otherwise) to include
coding components, we underscore (as those beyond a novice
stage can forget) that learning to write scientific coding is
effectively learning a new language and can therefore be daunting
at any point in the process (Medeiros et al., 2019). Colloquially,
we’ve collectively encountered many students who have told us
they’re “just not good at coding”. Our answer to these students is
to emphasize that coding is just another skill that can be learned
through practice, like teaching. In our classrooms, we all sought
to foster a growth mindset throughout our courses (McGlynn,
2020), with many of the BMPs below reinforcing this overarching
and ever-important tone.

BMP 1: Motivate the Importance and
Benefits of Learning to Code Early in the
Semester
In our colloquial experience, we have found that starting a course
focused on coding off on the right foot requires demonstrating to
students (i) why they should care about learning to code and (ii)
how this skill will serve them now and into the future. One of the
best ways we’ve found to motivate and excite students about the
value of learning to code is to not simply tell students that coding
is important, but to show that coding can save time and effort.
In most cases, students have encountered spreadsheet programs
(e.g., Microsoft Excel, Google Sheets) and used these programs
for data manipulation and visualization. For this reason, we have
found that it is impactful to spend class time benchmarking
coding exercises against manual approaches combined with
spreadsheet programs.

In a hydrology course, one way to show what can be
gained by coding with students is by asking them to manually
download publicly available streamflow data and transfer it into
a spreadsheet program (Figure 1). The process to manually
download streamflow data from the National Water Information
System (NWIS) website can take some time, and even more
time at the first instance of students encountering the NWIS
dashboard (Figure 1). When juxtaposed with the fraction of
a second and few lines of code in R (using the dataRetrieval
package; (De Cicco et al., 2021), the gains from coding are clear
(Figure 1). An alternative, complementary approach is to engage
students in making a plot in Excel from basic data (such as
streamflow or any other dataset that relates to course content). In
this process, the students are asked to write a set of instructions
for how to make an Excel plot, such that the process can be
duplicated by another student, and to indicate or sum the number
of “clicks” needed to do so. Again, comparing this process to

Frontiers in Water | www.frontiersin.org 3 June 2022 | Volume 4 | Article 875732

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles

Kelleher et al. Hydrology Coding BMPs

FIGURE 1 | Comparing the steps involved to generate streamflow observations for plotting in Excel (top) vs. two lines of code in R (bottom).

writing a few lines of code to produce a high-quality figure in R,
MATLAB, or Python can emphasize the value of learning to code.

Another educational approach that we have used to show
students the value of coding is to convey this to them in many
formats. Outside of the classroom, one of the first places that
educators can make this case to their students is within their
syllabi. Within syllabi, it is always worthwhile to address the
importance of course content and how it matters to students,
both now and in the future; pointing to surveys of the workforce
and job growth estimates in certain occupations can all be used
to emphasize the value of learning to code in a hydrology
course. Graduate student and undergraduate students engaged in
research will have the additional benefit of coding serving their
future research project needs. These same motivators can also be
communicated in the first lecture of the semester.

The educational literature strongly supports motivating the
importance of learning to code early in the semester (Carter,
2006; Jacobs et al., 2016; Yan, 2017). In a literature review focused
on teaching surrounding introductory coding, Medeiros et al.
(2019) found that student motivation was one of the biggest
difficulties faced by students while learning to code. Likewise,
instilling (andmaintaining) studentmotivation is also a challenge
for instructors. More broadly, self-determination theory suggests
that intrinsic motivation plays a role in promoting learning in
educational settings (National Research Council, 2000; National
Academies of Sciences, 2018; Ryan and Deci, 2020). For example,
if an instructor provides opportunities for students to take
ownership of their work, it could lead to autonomous forms
of motivation and enhance learning and engagement. Engaging
students inmetacognitive talk about what they want to achieve by
the end of the course could also promote autonomy. Supporting

learning through authentic context, for instance, by providing
relevant examples to their daily lives, could motivate students
as well. Drawing on students’ lived experiences and prior
understanding helps facilitate engagement and active learning.

BMP 2: Start Slow, and Remember Not
Everyone Is Beginning With the Same
Knowledge and Technological Ability
When reflecting collectively on our experiences incorporating
coding into our classrooms, it was relatively easy for us to
identify common pitfalls we all encountered. To this end,
Figure 2 highlights these common pitfalls that we recommend
considering in the context of this best management practice.
Why did we encounter these pitfalls? Simply put: it’s easy to
forget what we didn’t know when we ourselves first learned to
code. Often referred to as the “curse of knowledge,” it is easy
for instructors to skip introductory or fundamental concepts that
are needed for a given task or skill (Kirschner and Hendrick,
2020). Moreover, students arrive in our classes from a variety
of backgrounds (i.e., confirmation of understanding from one
student is not necessarily representative of the entire classroom).
Addressing students’ prior understanding is central to learning
and engagement (National Research Council, 2000). Therefore,
when designing activities, it is important to remember students
are still developing their conceptual models of both hydrological
processes and requisite coding skills.

To both support student learning and to encourage instructors
to “start slow”, we suggest instructors practice “reverse
engineering” activities, outlining the steps that it took them to
achieve a given end point, and scaffolding these steps into a

Frontiers in Water | www.frontiersin.org 4 June 2022 | Volume 4 | Article 875732

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles

Kelleher et al. Hydrology Coding BMPs

FIGURE 2 | Common oversights when first teaching students to code.

given activity for students. Moreover, we encourage instructors
to then have students reverse-engineer their process for each
coding exercise, articulating what each step or line of code
achieves, and how they know this. Such approaches make student
thinking an explicit component of class exercises, and encourage
students to deconstruct their approaches, which can enhance
their learning (Kirschner and Hendrick, 2020). Furthermore,
as discussed previously, consider downloading streamflow data
from the USGS National Water Information System (NWIS;
https://waterdata.usgs.gov/nwis). This is a fairly common task for
hydrology students; and within the R environment, streamflow
data can be downloaded with one line of code using the
dataRetrieval package (De Cicco et al., 2021). On the surface,
it seems like this should be a simple exercise – the instructor
should be able to provide an example line of code and move on
to more advanced analysis. However, students must understand
several concepts before being able to execute this one line of code.
These concepts include: (i) What is an integrated development
environment (e.g., RStudio), (ii) How do we operate command
line software, (iii) What are libraries and how do we use them,
(iv) What are data types and data structures, (v) How do we
create variables and store/manipulate different data structures,
and (vi) What is a function and what is the syntax required to
use it. Notably, this list only considers scripting concerns; thus,
providing information on streamflow measurements and data
may be just as (if not more) important depending on the lessons
learning objectives.

To reverse engineer activities, take a step back and consider
all the steps necessary to complete the activity. As illustrated
by the example of downloading streamflow data, even a simple
2-line task requires a basic understanding of operating within
a coding environment. If you have not introduced students to
these concepts, it will be necessary to do so. As you are reverse
engineering your activity, it may be worthwhile to iteratively
revisit and adjust learning objectives to balance hydrologic
knowledge with coding skills.

BMP 3: Center Equity and Inclusion From
the Beginning
From our perspective, equity and inclusion are the top concerns
when teaching coding. If students feel they do not belong or do
not have access to yourmaterial, programs, or other aspects of the
class, the other components of your teaching will be ineffective.
Through our experience in the classroom, we have identified
three common barriers to running an equitable and inclusive
classroom, especially in the context of virtual teaching, and
offer specific solutions to each below. These issues are access to
high-speed internet, access to a fully functioning computer, and
student confidence issues stemming from feelings of imposter
syndrome, stereotype threat, or a lack of self-efficacy. We want
to note that all authors have experienced all of these challenges
in every hybrid or online coding class they have taught. As these
challenges are widespread, building your class to anticipate their

Frontiers in Water | www.frontiersin.org 5 June 2022 | Volume 4 | Article 875732

https://waterdata.usgs.gov/nwis
https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles

Kelleher et al. Hydrology Coding BMPs

existence can save instructors a lot of time while improving the
experience for all students.

Internet Access and Quality
It is common for students to have slow or faltering internet
connections for a variety of reasons. These include but are
not limited to unstable housing, poor quality rural internet,
power outages, or simply an overloaded connection with too
many users. These issues cannot be fixed, but we can adjust
the structure of our classes, so they do not leave these students
behind. First, it is imperative to record lecture sessions in an
online environment. This benefits students whose internet fails
during class, but also, if you make these recordings available
to everyone, students who just want to re-engage with lectures
to help learn the material. Second, flexible deadlines and/or
no penalties for late work can drastically reduce stress for
students trying to find a stable internet connection in time to
complete work. If instructors are flexible and compassionate,
these strategies and lower stake assignments can help students
perform better in the course. This also saves instructor time, as it
reduces email volume and adjustment of scores/deadlines in your
learning management system (LMS).

Functioning Computers
Another common issue, especially when trying to install and
run software on student computers, is that student computers
are not all of the same quality nor can they achieve the same
level of functioning. Even at universities that require students
to have a computer with minimum capabilities, by students’
third or fourth year, those computers are often in disrepair,
and may run slowly and be poorly functioning. Furthermore,
students may have netbooks or chromebooks, meaning that such
computers are incapable of running the software needed for
coding. However, these issues can largely be addressed by offering
ways for students to run required software in an internet browser
window through cloud-based applications or virtual machines.
RStudio can be run in a browser window using services such as
binder (https://mybinder.org) and rstudio.cloud (https://rstudio.
cloud). Additionally, the computing center at your institution
may be able to help you set up a system to run RStudio on a
virtual machine or server application. Moreover, many schools
are beginning to offer virtual lab computers, where students can
run a remote desktop in their browser window. In cases where a
student’s computer is completely non-functional, being prepared
with a laptop that can be loaned out is the best course of action,
but this is another benefit of having lectures recorded, as students
can work through classroom activities outside of class time on a
lab computer.

Imposter Syndrome, Stereotype Threat, and

Self-efficacy
Imposter syndrome and stereotype threat are anecdotally the
biggest hurdles to students learning to code in our classrooms.
In this context, when we use the term “imposter syndrome” we
mean students feeling like they don’t belong or are destined to
do poorly in the class, often manifesting as students sharing
with instructors that they “can’t code” or “are bad at coding”

often when they have not had any coding instruction. Stereotype
threat, on the other hand, is the anxiety students feel when they
fear they are conforming to a societal stereotype about their
social group (e.g., race or gender) and their performance on the
subject at hand, and has been shown to negatively affect academic
performance (Steele et al., 2002).

It is best to address imposter syndrome and stereotype threat
directly. For instance, you can communicate to your students
that you designed the class and activities to teach everyone
from the beginning, using methods that research has shown
enhance learning for everyone. Another approach is to encourage
students to focus more on learning goals than performance
goals. In the classroom, comparing coding to other skills can
contextualize the learning process. For instance, remind students
that they wouldn’t expect to be able to just jump on a skateboard
and effortlessly cruise around, so they shouldn’t expect to
immediately grasp coding concepts and practices. In both cases
the key to improvement is practice.

An additional strategy is to communicate to students that
those who put in effort and practice are the ones who learn
the material best, not those who are “naturally” good at it.
One impactful way to do this is to have students from the
previous semester write about their experience in the class: their
initial impressions of the course, their approach to the course,
and their recommendations to students in the future. Sharing
several of these, especially from students who found the material
challenging early-on but then did well, can be a powerful tool
for pushing back against student fears. Finally, we recommend
engaging in the literature on ways to combat stereotype threat
and other issues of inclusion in your classroom, as there are
many other strategies than the few mentioned here (Killpack and
Melón, 2016).

Self-efficacy, introduced by Bandura (1977), describes
student beliefs about their own ability to succeed at a given
exercise. Beyond coding education, science education research
consistently emphasizes the importance of self-efficacy in student
persistence and success in science (Pajares, 1996; McBride et al.,
2020). Furthermore, higher self-efficacy is often, though not
always (McBride et al., 2020), correlated with higher academic
performance (Meral et al., 2012; Honicke and Broadbent, 2016;
Loo and Choy, 2017) and even greater learning satisfaction
in computer-based learning environments (Artino, 2008). As
educators, we can support student self-efficacy through learning
strategies and effective pedagogy.

Very broadly, one way any instructor can support self-
efficacy in their classroom is to use active learning techniques,
such as many discussed throughout all BMPs. Ballen et al.
(2017) found that using active learning approaches improved
academic performance for underrepresented minority students
and increased all students’ perceptions of their science self-
efficacy. One approach we commonly employ in our classrooms
to support self-efficacy is collaborative learning. Numerous
studies in a variety of disciplines have shown that collaborative,
peer-to-peer interactions can enhance self-efficacy (Samiullah,
1995; Fencl and Scheel, 2005; Sidelinger and Booth-Butterfield,
2010; Sollitto et al., 2013; Lewis et al., 2021; Stoeckel and
Roehrig, 2021), especially in the context of learning to code

Frontiers in Water | www.frontiersin.org 6 June 2022 | Volume 4 | Article 875732

https://mybinder.org
https://rstudio.cloud
https://rstudio.cloud
https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles

Kelleher et al. Hydrology Coding BMPs

(McDowell et al., 2003; Hanks et al., 2011; Salleh et al.,
2011; Dirzyte et al., 2021). While peer-to-peer learning can be
challenging to accomplish virtually, the use of breakout rooms
can be one way to facilitate these types of interactions. In our
virtual, hybrid, and in-person classrooms, we have used peer-
to-peer interactions (often groups of two or three) during in-
class activities, to compare answers for short quizzes (see Section
Low Stakes and No Stakes Assessments), and as a part of two-
stage exams (see Section Two-Stage Exams) all in support of
self-efficacy and learning. Another approach shown to increase
self-efficacy is to have students map out their approach to a given
problem or activity, and then track their progression and plans
for next steps as they proceed (Schunk and Pajares, 2002). In
the context of coding education, work by Govender et al. (2014)
employed this approach by introducing students to a framework
for problem solving that they can use when working through
a coding exercise. In such a framework, students are taught to
approach each problem holistically, with coding being one piece
of the framework to arrive at a solution or end point (Govender
et al., 2014). Finally, McBride et al. (2020) showed that accessible,
inclusive, and student-centered practices increased students of
color and international students’ self-efficacy. Though we touch
on effective teaching practices later in this article, it is equally
important to mention this topic at this point in the text, given
such practices are deeply connected with equity and inclusion.

BMP 4: Do Live Coding
All three authors have anecdotally found live coding to be
an effective method of teaching students to write code. This
anecdotal observation is bolstered by the coding educational
literature, which indicates live coding is commonly seen as a
“best practice” across different disciplines (Brown and Wilson,
2018; Selvaraj et al., 2021) as it directly supports active learning
(Shannon and Summet, 2015) and exposes students to the process
that the instructor uses to write code, allowing them to see many
components of coding, including debugging and commenting,
in action (Rubin, 2013; Raj et al., 2018, 2020). We describe live
coding as the practice of an instructor typing out their code out
as they explain what the code is doing and how the statements
are constructed, with students following along on their own
computers, though other definitions exist (Selvaraj et al., 2021).
This challenging method of instruction has several advantages,
but also comes with pitfalls. Other potential methods to teach
coding include a flipped classroom approach and the use of slides
or board notes typical of other topics of instruction. In the flipped
classroom example, students complete interactive tutorials or
watch lecture videos outside of class and work on activities during
class time. We found this an especially helpful method, paired
with live coding, when introducing introductory topics, as it
offers students more guided practice using general introductory
tutorials (see more of these in Section BMP 6: Know What
Resources Are Available to You). However, we found that as
we progressed to more discipline-specific topics, live coding was
more advantageous, as it emphasizes in-the-moment problem
solving and troubleshooting (Raj et al., 2018, 2020), as well as a
view for students into how instructors write and construct code
(Selvaraj et al., 2021). In this section, we outline some of the

advantages and strategies for avoiding potential pitfalls, which we
have learned through time and practice.

In our experience, the two primary advantages of live coding
are that (1) students get immediate feedback when their code
does not run due to syntax errors and (2) live coding facilitates
weaving additional active learning and experimentation into live
coding lessons. More generally, live coding, if done well, can
serve as a form of scaffolding, an educational term that describes
the support provided to learners by (in this case) instructors
and more advanced peers to navigate different tasks (Harland,
2003; Anghileri, 2006; Sharma and Hannafin, 2007). In a live
coding exercise, a student who types something incorrectly or
has a common syntax error will either get an unexpected result
or get an error indicating their code cannot be run. Given an
appropriate amount of time and support to fix these errors, they
can become valuable learning experiences for the student. In the
absence of live coding, the identification of syntax problems and
other misunderstandings might not occur until the student is
working by themselves on a homework assignment. Additionally,
when running a live coding session, it is often easy to let students
explore and experiment to broaden their understanding. As
instructors we can ask them to tweak the code and observe and
explain the results. What happens if you flip the x and y axes in a
plot? Can they change a parameter value in a function, and what
is the result? These can be simple to execute and powerful for
enhancing student learning.

Live coding is a challenging method of instruction and
not without risk. In our experience the two most common
pitfalls are “losing” students (where students fall behind, can’t
see your code, or get lost), and accidentally discouraging
students from thinking they can learn the material. There
are a variety of ways you can prevent both outcomes. To
facilitate the ease of reviewing some of our favorite preventative
measures, we have included them in a bulleted list below.
Furthermore, Figure 3 addresses one of the more pernicious
problems with synchronous online live coding: how do you share
your screen so students can follow along on a single, small
computer display.

Given not everyone uses live coding in their courses, we
compiled an additional list of tips and tricks to keep in mind
when teaching in this fashion:

• Pace: Go slow! Be sure you give students time to catch up.
• Explain: Especially early on, explain every single thing you do.

This includes how to run lines of code, saving scripts, etc.
• Illuminate: Don’t correct errors you make without explaining

them. New coders struggle troubleshooting and this is a great
learning opportunity.

• Encourage: Normalize getting errors. It can even be good to
intentionally make some common errors and then talk about
them. Emphasize that getting and solving errors is part of
the process!

• Pause: If students are following along on their own computers,
pause frequently and ask students if they’ve had any “fun”
errors. Thank them for sharing them and explain how
you make corrections or find solutions when you have
similar errors.

Frontiers in Water | www.frontiersin.org 7 June 2022 | Volume 4 | Article 875732

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles

Kelleher et al. Hydrology Coding BMPs

FIGURE 3 | In a virtual environment, encourage students to be mindful of how they set up their screen. In this figure, we show one setup that has worked well for the

authors. The setup above shows an example of a student’s single screen. In it, the student has their zoom window sized to fit the top half of the screen and RStudio

sized to the bottom half. With this setup, the student can watch and code at the same time. It is critical for this to work that the instructor only shares part of their

screen, allowing them to show just their code, making it legible even when a small window on an already small screen. We recommend sharing an image such as this

at the start of the semester, especially for students participating in a virtual or hybrid learning environment.

• Reflect: Be careful with your language. Avoid saying things like
“we simply do this”, “we just do this”, “this is easy” or “this is
straightforward”. Students hear this and if they are struggling,
they may think they are not able to understand “easy” material
and therefore get discouraged.

• Avoid: Don’t make fun of spreadsheet programs (e.g., Excel).
Students may have had trouble with them in the past. Many
students will view learning to code as much harder than
learning Excel and may therefore start to think they cannot
be successful at learning to code.

• Share: When you have students complete a “challenge” or
activity on their own, ask them to explain what they did to a
partner before going over it in class. Then ask for a volunteer
to explain their solution to the class. Explaining your code to
someone else is a powerful learning tool.

BMP 5: Teach Students How to Help
Themselves and Learn From Their Errors
One of the components of teaching coding that the authors
of this piece are always seeking to improve is how to assist

students in learning how to help themselves when their code
doesn’t work (e.g., receiving errors) or perform as expected.
We have all had the experience when teaching a course—
often on the first day of demoing coding and asking students
to follow along—that a student says “my code isn’t working”.
Likewise, we have had the same experience via email as students
work through their first coding assignment. These four words
are bound to be repeated to you, as they were to us, again
and again.

In this context, there are several approaches that we
use to teach students how to help themselves and learn
from their errors. Above all, it is important to create a
classroom environment where students feel comfortable asking
for assistance and trust their instructors (Wang et al., 2021), and
where encountering errors is normalized (see Section BMP 4: Do
Live Coding). As instructors, we have shared with our students
our own struggles learning to code, and how we have overcome
these challenges; we always seek to be honest in how we represent
our own experiences, to remind students that learning to code
(and learning in general) is a process.

Frontiers in Water | www.frontiersin.org 8 June 2022 | Volume 4 | Article 875732

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles

Kelleher et al. Hydrology Coding BMPs

In the classroom, one of the best things we’ve found that
we can do as instructors is to create a classroom environment
where students feel comfortable asking questions and identifying
that they are unsure of next steps (Sidelinger and Booth-
Butterfield, 2010). One important consideration in this process
is to normalize encountering errors (when you are teaching and
hopefully live coding, see BMP 4). As experienced by the authors,
you probably won’t have to try hard to encounter errors that
become teachable moments! In these moments, students have
a chance to watch how you approach the debugging process,
often via an internet search, another advantage of live coding,
as described in Section BMP 4: Do Live Coding (Raj et al.,
2018; Selvaraj et al., 2021). As an instructor, “getting stuck”
is something to be upfront about (“it is going to happen to
everyone!”) and to discuss regularly as a class. One way to
communicate this to students is to emphasize to them that
learning to code is like learning to speak a different language.
However, the goal is not memorization. Therefore, the overall
objective of many discipline-specific courses that incorporate
coding is not to teach students to code, but instead to teach
them to problem solve in a coding environment. As educators
who use coding in our research, one point we often explain to
our students is that we, the instructors, rarely sit down and code
from memory; instead, we discuss how we approach coding for
our own projects—using example code (either ours or example
code we find via internet search), and debugging (the process of
finding and correcting errors in our code) via internet search.

One approach that many of us tried when first teaching
coding was to attempt to solve each students’ errors during in-
class exercises. This amounted to a lot of stress on our parts—
either moving from breakout room to breakout room or running
around the classroom. Above all, we have learned to resist the
urge to take the students’ computer (or virtually, take over
their computer via remote access) and fix the error. Instead, we
encourage the student (or team) to explain what they are trying
to do, and ask them questions to help they realize what they’ve
done wrong.

For in-class exercises when only a few students have errors,
one approach we have used in a virtual environment is to ask
individual students to share their screens, and work as a class
to spot the errors. This supports peer-to-peer interactions and
reminds students that their peers can help them find their errors
(instead of having them always come to the instructor). However,
depending on the size of a given class and the length of the
class period, this approach, and addressing all students who
encounter errors, is often ineffective. An alternative, with benefits
for all students, is to facilitate peer teaching, where students
work in small groups of two or three and code and troubleshoot
together (virtually, this can be accomplished via breakout rooms).
This approach is known as pair programming and is widely
lauded in the educational programming literature (McDowell
et al., 2003; Hanks et al., 2011; Salleh et al., 2011). In pair
programming, (often) two students work together to write code
at a single workstation. Pair programming is a useful approach
for both in-class activities as well as out-of-class assignments. The
educational literature has shown numerous positive outcomes
associated with this approach.

For in-class exercises, another effective practice is to have a
signal that students can use to let you, the instructor, know when
they are stuck. When in person, the Data Carpentries instructor
training recommends the use of green and red stickies: a green
sticker at the top of a computer monitor indicates no issues, while
a red sticker indicates a problem has been encountered (The
Carpentries, 2022). In the virtual classroom, the chat feature and
emojis can be used in a similar way. Students may try to use the
chat feature to message only the instructor; instead, encourage
them tomessage everyone, and again, normalize everyone solving
each other’s errors and helping each other to learn together.

Outside the classroom, we have found it effective to dedicate
portions of in-class time to discuss and develop with each class a
procedure for how each student should go about getting help if
they are stuck. This discussion serves two purposes: it indicates
to students how they can best share information via email with
their instructors if they are seeking help outside of office hours,
and it can address how students can use educational resources
to fix their own coding errors. As an instructor, it’s worth
considering how you prefer to assist students—is having them
email their code preferred? Can you spot issues from code copy
and pasted into an email? Be prescriptive about how students
should go about asking questions, what expectations you have
of approaches they should try before they reach out to you, and
how they should explain their issue and their approach when they
ask for help. It’s also worth considering what level of help you’re
willing to give—a hint, or more.

As part of classroom instruction, the instructor should
introduce students to the concept of debugging. The literature
on “debugging”—a word that broadly describes identifying
and fixing errors in code—is rich (McCauley et al., 2008).
As emphasized by the literature, debugging must be taught—
it is not a skill students will learn through the process of
writing code alone (Kessler and Anderson, 1986; Carver and
Risinger, 1987; Chmiel and Loui, 2004; McCauley et al., 2008). In
addition to providing examples during class, instructors should
introduce (and continue to remind students of) resources such
as StackOverflow and DaniWeb, where students may be able to
find discussions of those who have encountered (and solved)
similar errors or to post their own questions. In this vein, we
also recommend an assignment where students post their code
and an error they are having to a website, to engage students
in the process of intelligently framing a coding question for an
online forum. It’s worth pointing out to students that learning to
code is equally important as learning how to problem solve their
coding errors.

BMP 6: Know What Resources Are
Available to You
When each of us sought to either build our courses or to add
coding into our existing courses, one of the first things we did was
to begin looking for existing resources on educational websites
and as shared by colleagues on social media platforms. For this
reason, we remind all readers who are approaching teaching a
coding course (or incorporating coding into an existing course)
that there are always resources available to support your needs.

Frontiers in Water | www.frontiersin.org 9 June 2022 | Volume 4 | Article 875732

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles

Kelleher et al. Hydrology Coding BMPs

TABLE 1 | Freely available resources that can be used to incorporate coding into hydrology courses.

Resource category Title Website

Introductory Resources Swirl https://swirlstats.com

Basic Basics https://rladiessydney.org/courses/ryouwithme/01-basicbasics-0/

R for Data Science https://r4ds.had.co.nz/

CyberHelp at SESYNC https://cyberhelp.sesync.org/lesson/

Fundamentals of Data

Visualization

https://clauswilke.com/dataviz/

R for Cats https://rforcats.net/

R and Hydrology HydroInformatics https://vt-hydroinformatics.github.io/

Geocomputation with R https://geocompr.robinlovelace.net/

R for Water Resources Data

Science

https://www.r4wrds.com/intro/index.html

Hydrological Data and Modeling

Resources in R

https://cran.r-project.org/web/views/Hydrology.html

Course Materials and

Repositories

HydroShare https://www.hydroshare.org/

Earth Data Science by EarthLab https://www.earthdatascience.org/

Science Education Research

Center (SERC)

https://serc.carleton.edu/index.html

Data Carpentries Semester

Course in Biology

https://datacarpentry.org/semester-biology/

Resources are all based around R.

We advocate perusing such available resources before developing
your own assignments. In Table 1, we highlight several resources
related to hydrologic sciences and popular coding languages;
this is far from an exhaustive list but represents the tools
we are aware of and have often used in the classroom. We
recommend investigating materials that introduce the R basics
(or the basics of any given language) and that are interactive
(e.g., swirl), as they are great for initial homework assignments
or supplementing instruction. Depending on the discipline you
are teaching in, hydrology or otherwise, there are likely to be
other repositories for course assignments and modules (Table 1).
There are also many educators who host such material on their
personal websites, though these materials may be harder to find.
Finally, we encourage anyone pursuing this route to also network
amongst your colleagues, as many are more than willing to share
their course materials, and to eventually be willing to share your
own materials.

Though resources can limit the time you spend preparing
educational materials, the process of learning to effectively teach
coding will take time. In addition to these resources, the authors
also wish to highlight and recommend training offered through
Data Carpentries (see: https://carpentries.github.io/instructor-
training/). This type of training is not focused on how to teach
any specific computing language but can be thought of as a
training in how to effectively teach coding.

BMP 7: Align Hydrologic Content With
Coding Principles
This is the part of teaching we as instructors all struggled with the
most, as educators teaching course content infused with coding.
When students start such a course, they often haven’t used R

before, and, for many, are taking their first course in hydrology,
but are expected to possess working knowledge of both by the
end of the semester. If planned well, instructors can introduce
the skills needed to perform the analyses they are teaching. As
instructors, we are still perfecting our approaches to this, and
have found that reflecting and taking good notes after each lesson
has helped us iterate our approaches and our courses (especially
in terms of where students either immediately grasped a concept,
or a place where they collectively struggled). Based on our own
experiences, Table 2 shows examples from our courses that align
hydrologic course material and R coding.

BMP 8: Assess Student Learning Often and
With Low Stakes Interactions
In our coding courses, and in agreement with the educational
literature, we have found providing low stakes assessments
(anecdotally) appears to improve the classroom experience
for students as well as overall learning outcomes. Low stakes
assessments are those that provide students with an opportunity
to test their knowledge and receive feedback but via an
assignment or quiz that constitutes only a small percentage
of each student’s overall grade. We all have used low stakes
assessments that encourage students to actively engage with the
material by providing opportunities for repetition needed to
build skill competencies in a structured environment. Moreover,
such assessments provide instructors with real-time feedback on
the status of student learning (i.e., formative assessments). Below
are several assessments that we found useful in our courses that
draw from the educational literature.

Frontiers in Water | www.frontiersin.org 10 June 2022 | Volume 4 | Article 875732

https://swirlstats.com
https://rladiessydney.org/courses/ryouwithme/01-basicbasics-0/
https://r4ds.had.co.nz/
https://cyberhelp.sesync.org/lesson/
https://clauswilke.com/dataviz/
https://rforcats.net/
https://vt-hydroinformatics.github.io/
https://geocompr.robinlovelace.net/
https://www.r4wrds.com/intro/index.html
https://cran.r-project.org/web/views/Hydrology.html
https://www.hydroshare.org/
https://www.earthdatascience.org/
https://serc.carleton.edu/index.html
https://datacarpentry.org/semester-biology/
https://carpentries.github.io/instructor-training/
https://carpentries.github.io/instructor-training/
https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles

Kelleher et al. Hydrology Coding BMPs

TABLE 2 | Matching hydrologic concepts with coding concepts in a hydrology course.

Hydrologic concepts Coding concepts Useful R libraries

Differences in hydrographs across climate regions Commands and options for creating a figure ggplot2

Flow duration curves Creating vectors; Basic data wrangling (e.g., sorting) dplyr

Computing runoff ratios Basic data wrangling (e.g., aggregating and grouping) dplyr

Stage-discharge relationships Generating statistical models stats

Linear reservoir modeling for loops, if/then/else statements -

Estimating potential vs. actual evapotranspiration writing functions -

Watershed delineation Geospatial analysis Whitebox, tmap

Extracting watershed precipitation Geospatial analysis prism

Hydrologic model calibration and optimization Developing workflows TUWmodel, rtop

Low Stakes and No Stakes Assessments
In our coding courses, we have found short quizzes at the
beginning and end of class (∼5 questions over 5min) to be an
effective low stakes assessment (Narloch et al., 2006; Lyle and
Crawford, 2011). These assessments can be a mix of hydrologic
and coding-based questions, and we suggest the quizzes be very
similar in format (if not identical) from week to week. This
provides students opportunity for additional repetition and to
show improvement. Optional questions could include writing a
short snippet of code, answering multiple choice questions, or
drawing a conceptual model describing hydrologic process.

Retrieval Practice
In conjunction with pre- or post-class quizzes discussed above,
we suggest incorporating retrieval practice throughout class. For
example, one approach used by one of the authors is to provide a
code chunk to the class and instruct students to look for errors, or
to engage students in writing pseudo-code (i.e., provide a written
summary of what the code does; also described in the computer
science literature as verbal algorithm specification) as part of
their assignments. Importantly, these activities can be done as
a class, in small groups, or individually—providing flexibility
under circumstances when the classroommay transition between
virtual, in-person, or hybrid modes.

Two-Stage Exams
As introduced by Zipp (2007), two-stage exams emphasize
cooperative learning for testing, turning exams into not only an
assessment, but an opportunity for learning. In coding courses,
we recommend the use of two-stage exams. In this approach,
students complete their exam, and the exam is returned to them
by the next time the class meets. During that next class meeting,
students are given time in class to work in teams to correct
everything that is wrong. This allows students who understood
the material to learn it better by teaching it to others and allows
those students who didn’t perform as well to re-engage with the
material and learn from their peers. There are many examples in
the educational literature documenting the successes of two-stage
exams and providing recommendations for how to incorporate
this practice into various types of classrooms (Knierim et al.,
2015; Bruno et al., 2017).

BMP 9: Learn Evidence-Based Effective
Teaching Best Practices
While none of us consider ourselves experts when it comes to
evidence-based teaching practices, we have all found immense
value in engaging with this literature to improve our awareness
of these techniques and to test these techniques in our
classrooms. There are numerous well researched and well-
developed strategies for effective teaching. Though the literature
on the topic continues to expand our understanding of how
individuals learn, there are also many commonly accepted best
practices. From our experience, one of the best ways to learn
about these best practices, both what they are and how they work,
is to read books that summarize them. Diving into the literature
can be overwhelming and difficult to translate into classroom
actions. Instead, we recommend instructors find a book. Small
Teaching (Lang), Teaching at Its Best (Nilson), The Chicago Guide
to College Science Teaching (McGlynn), and many others offer
neatly summarized best practices, examples, and explanations
based on the literature. Likewise, instructors should familiarize
themselves with Universal Design for Learning (UDL). UDL
features an evolving set of guidelines that are aimed at helping
instructors meet student needs (Courey et al., 2013; CAST, 2018).
Many of the recommendations contained in this article are
inspired by UDL principles in the context of coding education.
UDL is ever-evolving, thus revisiting UDL resources year after
year is likely to be a good use of time.

Another resource available to build awareness of effective
teaching best practices are teaching workshops offered by college
and university teaching centers or professional organizations. In
addition to being engaging ways to learnmore about teaching and
get new ideas for your classroom, they can be a great way to meet
others at your institution or in professional organizations who
share your interest in the subject. From our experiences, we found
that engaging with multiple books and workshops was the best
way to identify best practices for our classrooms. Additionally,
it helps to update or annotate your course notes, class schedule,
or other material immediately after you engage with these new
materials, lest they be lost to the thousand other demands on
your time.

Though we include a discussion of student self-efficacy earlier
in this piece, we note in this section that educator self-efficacy
is equally important to supporting student self-efficacy. Thus,

Frontiers in Water | www.frontiersin.org 11 June 2022 | Volume 4 | Article 875732

https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles

Kelleher et al. Hydrology Coding BMPs

an awareness of and practice with evidence-based teaching
strategies will not only improve an educators’ experience in
the classroom, but will also support their students’ self-efficacy,
motivation, and learning (Woolfolk Hoy, 2004). In this frame,
we encourage educators teaching coding to experiment with
educational activities in the classroom: try a new approach,
or strategy, and reflect on what went well (or what didn’t go
well). While not every strategy that we have used in classrooms
has always worked, or achieved the intended outcome, such
experiments are useful information for improving approaches
through time.

BMP 10: Grow Your Knowledge Every Year
Best practices for teaching are ever evolving. In this vein, we have
all found it incredibly useful to engage in training on teaching
each year, whether that is reading a book, attending a seminar,
or reading a few articles in the peer-reviewed literature. We
feel it helps keep us current and gives us new ideas to bring
into the classroom, which improves our teaching and helps keep
teaching interesting and exciting for us. As core practices in
science education are constantly evolving, this also helps us to
keep practicing and learning new skills.

CONCLUSIONS

Teaching is challenging. However, it is not a magical mystery
show. Just as we don’t expect our students to be automatically
good at coding, we cannot expect to be automatically good
at teaching. Teaching is a skill that can be improved through
practice and training. As we highlight in this article, there
are many resources available to aid instructors on our
journey, including the recommendations presented here. These
recommendations are aimed to help any instructor consider how
to approach teaching students to code, whether under virtual
environments or otherwise. We caution that this is not an
exhaustive list and represents a set of core practices that we expect

to evolve over time, both within our classrooms and within the
hydrology community.

Providing instruction during the pandemic has been
(and continues to be) challenging for so many reasons.
However, this experience was crucial for us to identify
how we could improve our teaching around coding,
given all the changes and circumstances that virtual
teaching and learning presented. Above all, we believe
this experience, as reflected by these recommendations,
will lead to more effective and inclusive teaching in
the future.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

CK, JG, and CJ contributed to the conception of the manuscript.
All authors contributed to various sections of the manuscript,
read, and approved the submitted version.

FUNDING

Funding was provided by Lafayette College and a Syracuse
University CUSE Grant to CK.

ACKNOWLEDGMENTS

The authors wish to thank the students in their courses who
made this article possible and who helped form our experiences
teaching coding in the classroom. We also appreciate the
thoughtful feedback we received from the three reviewers listed
on this article.

REFERENCES

Anghileri, J. (2006). Scaffolding practices that enhance mathematics learning. J.
Math. Teach. Educ. 9, 33–52. doi: 10.1007/s10857-006-9005-9

Artino, A. R. (2008). Motivational beliefs and perceptions of instructional quality:
predicting satisfaction with online training. J. Comput. Assist. Learn. 24,
260–270. doi: 10.1111/j.1365-2729.2007.00258.x

Ballen, C. J., Wieman, C., Salehi, S., Searle, J. B., and Zamudio, K. R.
(2017). Enhancing diversity in undergraduate science: self-efficacy drives
performance gains with active learning. CBE Life Sci. Educ. 16, ar56.
doi: 10.1187/cbe.16-12-0344

Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change.
Psychol. Rev. 84, 191–215. doi: 10.1037/0033-295X.84.2.191

Brown, N. C. C., andWilson, G. (2018). Ten quick tips for teaching programming.
PLOS Comput. Biol. 14, e1006023. doi: 10.1371/journal.pcbi.1006023

Bruno, B. C., Engels, J., Ito, G., Gillis-Davis, J., Dulai, H., Carter, G., et al.
(2017). Two-stage exams: a powerful tool for reducing the achievement gap in
undergraduate oceanography and geology classes. Oceanography 30, 198–208.
doi: 10.5670/oceanog.2017.241

Carnevale, A. P., Smith, N., and Melton, M. (2011). Science, Technology,

Engineering, and Mathematics. Georgetown University Center on Education

and the Workforce. Available online at: https://cew.georgetown.edu/cew-
reports/stem/#resources (accessed January 7, 2022).

Carter, L. (2006). Why students with an apparent aptitude for computer science
don’t choose to major in computer science. ACM SIGCSE Bull. 38, 27–31.
doi: 10.1145/1124706.1121352

Carver, S., and Risinger, S. (1987). “Improving children’s debugging skills,” in
Empirical Studies of Programmers: SecondWorkshop, eds G. Olson, S. Sheppard,
and E. Soloway (Norwood, NJ: Ablex) 147–171.

CAST (2018).Universal Design for Learning Guidelines version 2.2. Available online
at: https://udlguidelines.cast.org/ (accessed January 31, 2022).

Chmiel, R., and Loui, M. C. (2004). Debugging: from novice to expert. ACM
SIGCSE Bull. 36, 17–21. doi: 10.1145/1028174.971310

Corradini, I., Lodi, M., and Nardelli, E. (2018). “An investigation of
Italian primary school teachers’ view on coding and programming,”
in 11th International Conference on Informatics in Schools: Situation,

Evolution, and Perspectives, ISSEP 2018 (St. Petersburg), 228–243.
doi: 10.1007/978-3-030-02750-6_18.hal-01913059

Courey, S. J., Tappe, P., Siker, J., and LePage, P. (2013). Improved
lesson planning with universal design for learning (UDL).
Teach. Educ. Spec. Educ. 36, 7–27. doi: 10.1177/0888406412446
178

Frontiers in Water | www.frontiersin.org 12 June 2022 | Volume 4 | Article 875732

https://doi.org/10.1007/s10857-006-9005-9
https://doi.org/10.1111/j.1365-2729.2007.00258.x
https://doi.org/10.1187/cbe.16-12-0344
https://doi.org/10.1037/0033-295X.84.2.191
https://doi.org/10.1371/journal.pcbi.1006023
https://doi.org/10.5670/oceanog.2017.241
https://cew.georgetown.edu/cew-reports/stem/#resources
https://cew.georgetown.edu/cew-reports/stem/#resources
https://doi.org/10.1145/1124706.1121352
https://udlguidelines.cast.org/
https://doi.org/10.1145/1028174.971310
https://doi.org/10.1007/978-3-030-02750-6_18.hal-01913059
https://doi.org/10.1177/0888406412446178
https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles

Kelleher et al. Hydrology Coding BMPs

De Cicco, L. A., Hirsch, R. M., Lorenz, D., Watkins, W. D., and Johnson, M.
(2021). dataRetrieval: R Packages for Discovering and Retrieving Water Data

Available from Federal Hydrologic Web Services. Reston, VA: U.S. Geological
Survey. Available online at: https://code.usgs.gov/water/dataRetrieval (accessed
January 17, 2022).

Dirzyte, A., Sederevičiute-Pačiauskiene, Ž., Šliogeriene, J., Vijaikis, A., and
Perminas, A., Kaminskis, L., et al. (2021). Peer-to-peer confirmation, positive
automatic thoughts, and flourishing of computer programming e-learners.
Sustainability 13, 11832. doi: 10.3390/su132111832

Fencl, H. S., and Scheel, K. R. (2005). Research and teaching: engaging students -
an examination of the effects of teaching strategies on self-efficacy and course
climate in a nonmajors physics course. J. Coll. Sci. Teach. 35, 20–24

Finley, A. (2021).HowCollege Contributes toWorkforce Success: Employer Views on

What Matters Most. Washington, DC: Association of American Colleges and
Universities. Available online at: https://www.aacu.org/research/how-college-
contributes-to-workforce-success (accessed January 18, 2022).

Govender, I., Govender, D. W., Havemga, M., Mentz, E., Breed, B., Dignum, F.,
et al. (2014). Increasing self-efficacy in learning to program : exploring the
benefits of explicit instruction for problem solving. J. Transdiscipl. Res. South
Afr. 10, 187–200. doi: 10.10520/EJC154539

Hanks, B., Fitzgerald, S., McCauley, R., Murphy, L., and Zander, C. (2011). Pair
programming in education: a literature review. Comput. Sci. Educ. 21, 135–173.
doi: 10.1080/08993408.2011.579808

Harland, T. (2003). Vygotsky’s zone of proximal development and problem-based
learning: linking a theoretical concept with practice through action research.
Teach. High. Educ. 8, 263–272. doi: 10.1080/1356251032000052483

Honicke, T., and Broadbent, J. (2016). The influence of academic self-efficacy
on academic performance: a systematic review. Educ. Res. Rev. 17, 63–84.
doi: 10.1016/j.edurev.2015.11.002

Jacobs, C. T., Gorman, G. J., Rees, H. E., and Craig, L. E. (2016). Experiences with
efficient methodologies for teaching computer programming to geoscientists. J.
Geosci. Educ. 64, 183–198. doi: 10.5408/15-101.1

Kessler, C., and Anderson, J. (1986). “A model of novice debugging in LISP,” in
Empirical Studies of Programmers, eds E. Soloway and S. Iyengar, (Norwood,
NJ: Ablex) 198–212.

Killpack, T. L., and Melón, L. C. (2016). Toward inclusive STEM classrooms:
what personal role do faculty play? CBE Life Sci. Educ. 15, es3.
doi: 10.1187/cbe.16-01-0020

Kirschner, P. A., and Hendrick, C. (2020). How Learning Happens: Seminal Works

in Educational Psychology andWhat TheyMean in Practice. London: Routledge.
doi: 10.4324/9780429061523

Knierim, K., Turner, H., andDavis, R. K. (2015). Two-stage exams improve student
learning in an introductory geology course: logistics, attendance, and grades. J.
Geosci. Educ. 63, 157–164. doi: 10.5408/14-051.1

Lewis, F., Edmonds, J., and Fogg-Rogers, L. (2021). Engineering science education:
the impact of a paired peer approach on subject knowledge confidence
and self-efficacy levels of student teachers. Int. J. Sci. Educ. 43, 793–822.
doi: 10.1080/09500693.2021.1887544

Lin, Y.-T., Wang, M.-T., and Wu, C.-C. (2019). Design and implementation of
interdisciplinary STEM instruction: teaching programming by computational
physics. Asia Pac. Educ. Res. 28, 77–91. doi: 10.1007/s40299-018-0415-0

Loo, C. W., and Choy, J. L. F. (2017). Sources of self-efficacy influencing
academic performance of engineering students. Am. J. Educ. Res. 1, 86–92.
doi: 10.12691/education-1-3-4

Lyle, K. B., and Crawford, N. A. (2011). Retrieving essential material at the end of
lectures improves performance on statistics exams. Teach. Psychol. 38, 94–97.
doi: 10.1177/0098628311401587

Lyon, J. A., and Magana, A. J. (2020). Computational thinking in higher
education: a review of the literature. Comput. Appl. Eng. Educ. 28, 1174–1189.
doi: 10.1002/cae.22295

McBride, E., Oswald, W. W., Beck, L. A., and Vashlishan Murray, A. (2020). “I’m
just not that great at science”: Science self-efficacy in arts and communication
students. J. Res. Sci. Teach. 57, 597–622. doi: 10.1002/tea.21603

McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy, L., Simon, B., Thomas,
L., et al. (2008). Debugging: a review of the literature from an educational
perspective. Comput. Sci. Educ. 18, 67–92. doi: 10.1080/08993400802114581

McDowell, C., Hanks, B., and Werner, L. (2003). “Experimenting with
pair programming in the classroom,” in Proceedings of the 8th Annual

Conference on Innovation and Technology in Computer Science Education

ITiCSE’03 (New York, NY: Association for Computing Machinery), 60–64.
doi: 10.1145/961511.961531

McGlynn, T. (2020). The Chicago Guide to College Science Teaching. Chicago, IL:
University of Chicago Press. doi: 10.7208/9780226542539

Medeiros, R. P., Ramalho, G. L., and Falcão, T. P. (2019). A systematic
literature review on teaching and learning introductory programming in higher
education. IEEE Trans. Educ. 62, 77–90. doi: 10.1109/TE.2018.2864133

Meral, M., Colak, E., and Zereyak, E. (2012). The relationship between self-
efficacy and academic performance. Proc. Soc. Behav. Sci. 46, 1143–1146.
doi: 10.1016/j.sbspro.2012.05.264

Narloch, R., Garbin, C. P., and Turnage, K. D. (2006). Benefits of prelecture
quizzes. Teach. Psychol. 33, 109–112. doi: 10.1207/s15328023top3302_6

National Academies of Sciences, Engineering, and Medicine (2016). Developing
a National STEM Workforce Strategy: A Workshop Summary. National
Academies Press.

National Academies of Sciences, Engineering, and Medicine (2018). How People

Learn II: Learners, Contexts, and Cultures. National Academies Press.
National Research Council (2000).How People Learn: Brain, Mind, Experience, and

School: Expanded Edition. National Academies Press.
Nesen, Y., Fowler, B., and Vegas, E. (2021). How Italy Implemented Its Computer

Science Education Program. Center for Universal Education at Brookings.
Available online at: https://www.brookings.edu/wp-content/uploads/2021/
10/How-Italy-implemented-its-CS-education-program_FINAL.pdf (accessed
April 8, 2022).

Pajares, F. (1996). Self-efficacy beliefs and mathematical problem-solving of gifted
students. Contemp. Educ. Psychol. 21, 325–344. doi: 10.1006/ceps.1996.0025

Raj, A. G. S., Gu, P., Zhang, E., Annie R, A. X., Williams, J., Halverson,
R., et al. (2020). “Live-coding vs static code examples: which is better
with respect to student learning and cognitive load?” in Proceedings

of the Twenty-Second Australasian Computing Education Conference

ACE’20 (New York, NY: Association for Computing Machinery), 152–159.
doi: 10.1145/3373165.3373182

Raj, A. G. S., Patel, J. M., Halverson, R., and Halverson, E. R. (2018). “Role
of live-coding in learning introductory programming,” in Proceedings of the

18th Koli Calling International Conference on Computing Education Research

Koli Calling’18 (New York, NY: Association for Computing Machinery), 1–8.
doi: 10.1145/3279720.3279725

Rubin, M. J. (2013). “The effectiveness of live-coding to teach introductory
programming,” in Proceeding of the 44th ACM Technical Symposium

on Computer Science Education SIGCSE’13 (New York, NY: Association
for Computing Machinery), 651–656. doi: 10.1145/2445196.2445
388

Ryan, R. M., and Deci, E. L. (2020). Intrinsic and extrinsic motivation
from a self-determination theory perspective: definitions, theory,
practices, and future directions. Contemp. Educ. Psychol. 61, 101860.
doi: 10.1016/j.cedpsych.2020.101860

Salleh, N., Mendes, E., and Grundy, J. (2011). Empirical studies of pair
programming for CS/SE teaching in higher education: a systematic literature
review. IEEE Trans. Softw. Eng. 37, 509–525. doi: 10.1109/TSE.2010.59

Samiullah, M. (1995). Effect of in-class student–student interaction on the
learning of physics in a college physics course. Am. J. Phys. 63, 944–950.
doi: 10.1119/1.18038

Schunk, D. H., and Pajares, F. (2002). “The development of academic self-efficacy,”
in Development of Achievement Motivation (San Diego, CA: Academic Press),
15–31. doi: 10.1016/B978-012750053-9/50003-6

Selvaraj, A., Zhang, E., Porter, L., and Soosai Raj, A. G. (2021). “Live coding:
a review of the literature,” in Proceedings of the 26th ACM Conference on

Innovation and Technology in Computer Science Education (New York, NY:
Association for Computing Machinery), 164–170.

Shannon, A., and Summet, V. (2015). Live coding in introductory computer
science courses. J. Comput. Sci. Coll. 31, 158–164. Available online at: https://
dl.acm.org/doi/10.5555/2831432.2831457 (accessed January 16, 2022).

Sharma, P., and Hannafin, M. J. (2007). Scaffolding in technology-
enhanced learning environments. Interact. Learn. Environ. 15, 27–46.
doi: 10.1080/10494820600996972

Sidelinger, R. J., and Booth-Butterfield, M. (2010). Co-constructing student
involvement: an examination of teacher confirmation and student-to-student

Frontiers in Water | www.frontiersin.org 13 June 2022 | Volume 4 | Article 875732

https://code.usgs.gov/water/dataRetrieval
https://doi.org/10.3390/su132111832
https://www.aacu.org/research/how-college-contributes-to-workforce-success
https://www.aacu.org/research/how-college-contributes-to-workforce-success
https://doi.org/10.10520/EJC154539
https://doi.org/10.1080/08993408.2011.579808
https://doi.org/10.1080/1356251032000052483
https://doi.org/10.1016/j.edurev.2015.11.002
https://doi.org/10.5408/15-101.1
https://doi.org/10.1187/cbe.16-01-0020
https://doi.org/10.4324/9780429061523
https://doi.org/10.5408/14-051.1
https://doi.org/10.1080/09500693.2021.1887544
https://doi.org/10.1007/s40299-018-0415-0
https://doi.org/10.12691/education-1-3-4
https://doi.org/10.1177/0098628311401587
https://doi.org/10.1002/cae.22295
https://doi.org/10.1002/tea.21603
https://doi.org/10.1080/08993400802114581
https://doi.org/10.1145/961511.961531
https://doi.org/10.7208/9780226542539
https://doi.org/10.1109/TE.2018.2864133
https://doi.org/10.1016/j.sbspro.2012.05.264
https://doi.org/10.1207/s15328023top3302_6
https://www.brookings.edu/wp-content/uploads/2021/10/How-Italy-implemented-its-CS-education-program_FINAL.pdf
https://www.brookings.edu/wp-content/uploads/2021/10/How-Italy-implemented-its-CS-education-program_FINAL.pdf
https://doi.org/10.1006/ceps.1996.0025
https://doi.org/10.1145/3373165.3373182
https://doi.org/10.1145/3279720.3279725
https://doi.org/10.1145/2445196.2445388
https://doi.org/10.1016/j.cedpsych.2020.101860
https://doi.org/10.1109/TSE.2010.59
https://doi.org/10.1119/1.18038
https://doi.org/10.1016/B978-012750053-9/50003-6
https://dl.acm.org/doi/10.5555/2831432.2831457
https://dl.acm.org/doi/10.5555/2831432.2831457
https://doi.org/10.1080/10494820600996972
https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles

Kelleher et al. Hydrology Coding BMPs

connectedness in the college classroom. Commun. Educ. 59, 165–184.
doi: 10.1080/03634520903390867

Sollitto, M., Johnson, Z. D., and Myers, S. A. (2013). Students’ perceptions
of college classroom connectedness, assimilation, and peer relationships.
Commun. Educ. 62, 318–331. doi: 10.1080/03634523.2013.788726

Steele, C. M., Spencer, S. J., and Aronson, J. (2002). “Contending with group
image: the psychology of stereotype and social identity threat,” in Advances

in Experimental Social Psychology, ed. M. P. Zanna (Waltham, MA: Academic
Press), 379–440. doi: 10.1016/S0065-2601(02)80009-0

Stoeckel, M. R., and Roehrig, G. H. (2021). Gender differences in classroom
experiences impacting self-efficacy in an AP Physics 1 classroom. Phys. Rev.
Phys. Educ. Res. 17, 020102. doi: 10.1103/PhysRevPhysEducRes.17.020102

The Carpentries (2022). Instructor Training. Available online at: https://
carpentries.github.io/instructor-training/ (accessed February 1, 2022).

The Royal Society (2017). After the Reboot: Computing Education in UK Schools.

London. Available online at: https://royalsociety.org/-/media/policy/projects/
computing-education/computing-education-report.pdf (accessed April 8,
2022).

Valente, J. A., and de Almeida, M. E. B. (2020). Políticas de tecnologia na educação
no Brasil: Visão histórica e lições aprendidas. Educ. Policy Anal. Arch. 28, 94.
doi: 10.14507/epaa.28.4295

Van Merrienboer, J. J. G., and Krammer, H. P. M. (1987). Instructional
strategies and tactics for the design of introductory computer programming
courses in high school. Instr. Sci. 16, 251–285. doi: 10.1007/BF00120
253

Wang, C., Cavanagh, A. J., Bauer, M., Reeves, P. M., Gill, J. C., Chen, X., et al.
(2021). A framework of college student buy-in to evidence-based teaching
practices in STEM: the roles of trust and growth mindset. CBE Life Sci. Educ.

20, ar54. doi: 10.1187/cbe.20-08-0185

Wing, J. M. (2006). Computational thinking. Commun. ACM 49, 33–35.
doi: 10.1145/1118178.1118215

Woolfolk Hoy, A. (2004). Self-Efficacy in College Teaching. Available online
at: https://cft.vanderbilt.edu/wp-content/uploads/sites/59/vol15no7_self_
efficacy.htm (accessed April 3, 2022).

Yan, Y. (2017). Teaching programming skills to finance students: how to design
and teach a great course. Financ. Innov. 3, 32. doi: 10.1186/s40854-017-0081-x

Zipp, J. F. (2007). Learning by exams: the impact of two-stage cooperative tests.
Teach. Sociol. 35, 62–76. doi: 10.1177/0092055X0703500105

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Kelleher, Gannon, Jones and Aksoy. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Water | www.frontiersin.org 14 June 2022 | Volume 4 | Article 875732

https://doi.org/10.1080/03634520903390867
https://doi.org/10.1080/03634523.2013.788726
https://doi.org/10.1016/S0065-2601(02)80009-0
https://doi.org/10.1103/PhysRevPhysEducRes.17.020102
https://carpentries.github.io/instructor-training/
https://carpentries.github.io/instructor-training/
https://royalsociety.org/-/media/policy/projects/computing-education/computing-education-report.pdf
https://royalsociety.org/-/media/policy/projects/computing-education/computing-education-report.pdf
https://doi.org/10.14507/epaa.28.4295
https://doi.org/10.1007/BF00120253
https://doi.org/10.1187/cbe.20-08-0185
https://doi.org/10.1145/1118178.1118215
https://cft.vanderbilt.edu/wp-content/uploads/sites/59/vol15no7_self_efficacy.htm
https://cft.vanderbilt.edu/wp-content/uploads/sites/59/vol15no7_self_efficacy.htm
https://doi.org/10.1186/s40854-017-0081-x
https://doi.org/10.1177/0092055X0703500105
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles

	Best Management Practices for Teaching Hydrologic Coding in Physical, Hybrid, and Virtual Classrooms
	Introduction
	What Do We Mean by ``Coding''?
	Courses
	Course 1—Physical Hydrology
	Course 2—Hydroinformatics
	Course 3—Ecohydrology

	Discussion
	BMP 1: Motivate the Importance and Benefits of Learning to Code Early in the Semester
	BMP 2: Start Slow, and Remember Not Everyone Is Beginning With the Same Knowledge and Technological Ability
	BMP 3: Center Equity and Inclusion From the Beginning
	Internet Access and Quality
	Functioning Computers
	Imposter Syndrome, Stereotype Threat, and Self-efficacy

	BMP 4: Do Live Coding
	BMP 5: Teach Students How to Help Themselves and Learn From Their Errors
	BMP 6: Know What Resources Are Available to You
	BMP 7: Align Hydrologic Content With Coding Principles
	BMP 8: Assess Student Learning Often and With Low Stakes Interactions
	Low Stakes and No Stakes Assessments
	Retrieval Practice
	Two-Stage Exams

	BMP 9: Learn Evidence-Based Effective Teaching Best Practices
	BMP 10: Grow Your Knowledge Every Year

	Conclusions
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

