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The volume of a lake is a crucial component in understanding environmental and

hydrologic processes. The State of Minnesota (USA) has tens of thousands of lakes,

but only a small fraction has readily available bathymetric information. In this paper

we develop and test methods for predicting water volume in the lake-rich region of

Central Minnesota. We used three different published regression models for predicting

lake volume using available data. The first model utilized lake surface area as the sole

independent variable. The second model utilized lake surface area but also included an

additional independent variable, the average change in land surface area in a designated

buffer area surrounding a lake. The third model also utilized lake surface area but

assumed the land surface to be a self-affine surface, thus allowing the surface area-

lake volume relationship to be governed by a scale defined by the Hurst coefficient.

These models all utilized bathymetric data available for 816 lakes across the region

of study. The models explained over 80% of the variation in lake volumes. The sum

difference between the total predicted lake volume and known volumes were <2%. We

applied these models to predicting lake volumes using available independent variables

for over 40,000 lakes within the study region. The total lake volumes for the methods

ranged from 1,180,000- and 1,200,000-hectare meters. We also investigated machine

learning models for estimating the individual lake volumes and found they achieved

comparable and slightly better predictive performance than from the three regression

analysis methods. A 15-year time series of satellite data for the study region was used to

develop a time series of lake surface areas and those were used, with the first regression

model, to calculate individual lake volumes and temporal variation in the total lake volume

of the study region. The time series of lake volumes quantified the effect on water volume

of a dry period that occurred from 2011 to 2012. These models are important both

for estimating lake volume, but also provide critical information for scaling up different

ecosystem processes that are sensitive to lake bathymetry.
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INTRODUCTION

Fresh water is a crucial resource to humans. With an ever-
changing environment, we need to be better prepared to protect
it. One of the most important freshwater bodies are lakes.
While the surface area of all lakes covers <4% of the global
landmass and the total volume of water is a small fraction of
total terrestrial freshwater, they are home to a wide range of
biodiverse ecosystems (McDonald et al., 2012). The ecosystem
functioning of lakes provides tangible ecologic and economic
value, yet key information such as lake datasets that contain
basic morphological and hydrologic characteristics needed to
determine these functions are missing (Hollister et al., 2011;
Crétaux et al., 2016). Lake volume and maximum lake depth are
vital components in many lake functions related to the physical,
biological, and chemical processes within a lake. For example, the
volume of a lake can affect the water residence time which in
turn can affect the nutrient dynamics and primary productivity
(Sobek et al., 2011) as well as the zooplankton dynamics of a lake
(Obertegger et al., 2007). With missing or inaccurate data, the
prediction of these functions is not as precise as they could be,
making it more difficult to quantify the changes that may occur
within these environments (Sobek et al., 2011; Crétaux et al.,
2016; Messager et al., 2016).

As two important parameters determining the nature of
circulation processes and biogeochemical processes in lakes, data
on lake volume and lake depth are scarce. Even the available
data in many parts of the world are merely present for only a
very small fraction of the total number of lakes. For instance,
in Minnesota, ‘the land of lakes,’ the number of lakes with
detailed bathymetric data is <2% of the total number of lakes
in the state. Given that current technology makes it impractical
to directly measure bathymetric information at large scales,
it becomes necessary to develop predictive models for these
parameters using the information that is available. At present,
a widely used approach is to estimate lake volume with lake
surface area data. Models for lake volume using lake surface area
were among the first models developed and include the work by
Håkanson and Karlsson (1984). Improvements in lake volume
models were made by including a second prediction variable
that involved some measure of the land surface topography in
the area surrounding a lake. The idea of this second variable
is that the topography of the surface surrounding a lake would
reflect the topography of the lake bottom. Studies that involved
a prediction variable representing the surrounding topography
include Håkanson and Peters (1995), Hollister et al. (2011), and
Sobek et al. (2011).

A modification of the lake buffer topography variable was
proposed by Heathcote et al. (2015). In this study, they used
the change in surface elevation in a buffer area surrounding the
lake, with the buffer area scaled according to lake surface area.
Heathcote et al. applied this model to the data for 433 lakes
located in different geographic regions in the southern part of the
Province of Quebec (Canada). In doing so, the model explained
95% of the variation in lake volume.

While the Heathcote et al. (2015) method predicted lake
volumes using self-similar scaling, the Cael et al. (2017) method

developed a model assuming that the land surface is self-affine.
The scaling of such surfaces has been shown theoretically to
be related to the Hurst coefficient. Since lake water fills in the
depressions of the land surface, a description of the surface as
being self-affine should provide a theoretical background for
predicting the volume of water in the depressions. According
to the theory of such self-affine surfaces, the volume of the
depression will be proportional to the depressional surface area
raised to some exponent. This exponent can be shown to be
calculated from the Hurst coefficient, which itself can be related
to the fractal dimension of the surface. For the earth surface, the
Hurst coefficient has been determined to be about 0.4 ± 0.1 for
the spatial scale relevant to lakes (see for example Renard et al.,
2013).

In their study, Cael et al. (2017) predicted lake volumes
on a global scale with vastly different regions and topographic
features. The model is meant to be used to predict the total
volume and mean depth of a collection of lakes. However, the
model can be used to estimate the volume for individual lakes,
but these are determined on a statistical basis. Their estimate of
the total volume of lakes globally was 199,000 km3, which is lower
than previous estimates of 210,000 km3.

Both Heathcote et al. (2015) and Cael et al. (2017)
methods estimate lake volume in a statistical regression model.
Statistical models are elegant in their solid theoretical foundation,
interpretability, and easy implementation. Nevertheless, their
ability to handle non-linearity and complex prediction problems
are also constrained by their simple model architecture. Recently,
machine learning (ML) methods have become a popular
approach to model complex non-linearities from scientific data
and their contributions to tackle water-related problems have
been previously acknowledged (Shen et al., 2018). Despite the
wide applicability of machine learning, their use in lake volume
prediction, to our knowledge, has not been explored. Thus,
we have additionally developed and applied machine learning
models to predict lake volume using limited lake bathymetric
data and compared this technique to the performance of the
regression models.

The ability of ML to solve predictive problems (Sejnowski,
2020) has already made its scientific applications span a diversity
of fields. Among them, ML applications in hydrology have also
experienced unprecedented progress (Shen et al., 2018). Kratzert
et al. (2018, 2019) built machine learning models to predict
catchment scale streamflow using weather forcing data and
achieves state-of-the-art performance, which also scientifically
advances the development in hydrologic regionalization. Jia et al.
(2020) coupled physical knowledge into machine learning and
builds knowledge-guided machine learning models to model
lake temperature. Shukla et al. (2022) applied machine learning
methods and Gaussian process modeling techniques to predict
discharge with hydrologic knowledge in complex stage-discharge
relationships. Additionally, machine learning has also been
applied to map lake spreading areas (Deoli et al., 2021) and
flooding regions (Avand et al., 2022).

For this paper, we tested the ability of several methods to
predict lake volumes in the central region of Minnesota (USA),
a region that has over 40,000 lakes (Delaney, 2019). The objective
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TABLE 1 | Averages of morphology traits from 816 surveyed lakes provided by Minnesota Department of Natural Resources (DNR).

Lake Volume

(m3)

Number of

lakes

Average size

(m2)

Average max

depth (m)

Average

depth (m)

Average

volume (m3)

Average surface

area (m2)

≤104 11 124,239 2.3 0.8 55,032 124,156

104-105 192 3,338,656 6.7 2.2 530,127 333,926

105-106 436 1,054,611 11.0 4.0 3,653,086 1,054,480

106-107 166 4,477,037 18.9 6.3 25,600,190 4,477,055

>107 11 25,148,785 31.2 7.9 190,669,424 25,148,967

of this study was to predict volumes of lakes to better understand
lake processes using readily available, remotely sensed data. The
methods included a model using just lake surface area, the model
of Heathcote et al. (2015) using lake surface area and near lake
topography, the model of Cael et al. (2017) using lake surface
area and assuming self-affine surfaces, and methods based on
conventional machine learning tools with lake surface area and
near lake topography as independent variables. In addition to
testing the ability of these models to predict lake volume for one
point in time, we also applied the lake surface area regression
model to determine the temporal variability in total lake water
volume for the entire region for the period 2002–2015.

METHODS

The database used for developing the regression models and
the machine learning models was derived from archived lake
data available from the Minnesota Department of Natural
Resources (Minnesota Department of Natural Resources, 2017).
The available data was for 816 lakes, with known volumes
and a shapefile of each lake with corresponding bathymetric
data. These 816 lakes ranged from volumes of 104 to greater
than 107 m3 with known maximum depths, average depths,
and surface areas for each lake. A summary of each lake size
category is given in Table 1. The developed regression models
were then applied to the other lakes in the study region.
The hydrography data for these other lakes, absent depth or
volumes, were also available from the MnDNR (Department
of Natural Resources Division of Fish Wildlife, 2014). The
distribution of these lakes, a total of 40,054, is illustrated in
Figure 1. The boundaries of the Hydrologic Unit Code (HUC)-
8 watersheds, 17 of them, in the region are shown in the
illustration. Lake Mille Lacs is noticeable in the northeastern
part of the study region by its large size. It contains nearly 25%
of the total lake water volume in the 17 HUC-8 watersheds.
To better illustrate the range and variability in predictions
of lake volume, and because the bathymetric data of large
lakes such as Lake Mille Lacs are usually well-defined due
to their large economic and recreational value, this lake was
excluded from the estimates of total regional lake water volume
that follow.

Data for the temporal variation of lake surface area was
acquired from satellite data provided by the Global SurfaceWater
(GSW) observations program (Pekel et al., 2016). These data were
acquired for the period 2002–2015.

FIGURE 1 | Map of 40,054 lakes contained within 17 HUC-8 watersheds of

central Minnesota used in lake volume prediction.

Method Using Surface Area Alone
The first model developed was one using lake surface area only,
with the equation being

V = aAb (1)

where a and b are empirical constants. A regression model
was developed by regressing log-transformed lake volume on
log-transformed lake surface area for the 816 lake dataset.

Heathcote Method
The original concept of using lake surface area and land surface
slope came from Håkanson and Peters (1995) who suggested
using an empirical model that calculated lake volume from lake
surface area and maximum slope of the catchment from 95 lakes
in Sweden. While the lake volume model was able to explain a
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high percentage of the variability in volume, the model requires
catchment area data which may not always be available in some
locations. Sobek et al. (2011) improved this concept by using
surface area and the maximum slope of the land surface within
a static buffer of 50m around each lake, for a total of 6,130
lakes, to calculate lake volume within Sweden resulting in the lake
volume model that explained 92% of the variability in volume.
Heathcote et al. (2015) further developed this method to predict
lake volume as well as maximum depth, by using the lake surface
area and the average change in land surface elevation within a
near-lake buffer with the buffer length dependent on the lake
surface area. This allowed the lake’s buffer area to be proportional
to the size of the lake rather than a static buffer distance as done
by Sobek et al. (2011).

Heathcote et al. (2015) found the average change in elevation
between the surrounding terrestrial landscape and the lake
surface to be the best predictor of bathymetric properties, lake
volume, and maximum depth (Heathcote et al., 2015). The
terrestrial buffer surrounding the lake was used because of the
assumption that the elevation change surrounding the lake was
formed by the same geomorphic process forming the elevation
change within the lake and that the slope of the surrounding
topography is near to that of the slope of the lake bottom
(Hollister et al., 2011). Due to not being able to calculate the
slope occurring under the water because that information is
not available, the method uses elevation change surrounding
the lake as an independent variable to predict the lake volume.
The concept is that by studying the relationship between the
morphology of a lake and the surrounding area, lake volumes can
be predicted without detailed bathymetric data. Based on their
empirical testing, Heathcote et al. (2015) found that the length of
buffer should be 25% of the equivalent diameter (D) of the lake

surface, where D = 2
√

A
π
and A is the lake surface area. In our

application of the Heathcote et al. (2015) method, the topography
for each buffer of Minnesota lakes was calculated using a 1/3 arc-
second Digital Elevation map (DEM) (∼10m) (U.S. Geological
Survey, 2017).

The prediction equation for lake volume based on the
Heathcote et al. (2015) approach is given by

V = AcDEd25 (2)

where DE25 corresponds to the average elevation
change within the buffer of length equal to 25% of the
equivalent lake surface diameter, and c and d are empirical
parameters. This regression equation, in log transformed form,
log10 V = c log10A + d log10D E25, was fit to the data for the 816
lakes. According to Heathcote et al., this log transformation helps
to prevent heteroscedasticty. Due to there being a bias introduced
when estimates are being back transformed from regressions,
corrections were conducted based on Ferguson (1986) to
prevent variables from being underestimated (Ferguson,
1986). The Pearson’s partial correlation coefficient and the
Akaike information criteria (AIC) (Akaike, 1974) test were
run to determine the strength in relationship and to assess the
predictive power of the regression model between variables
(surface area and elevation change). All statistical analysis was

conducted using the statistical software R (RStudio Team,
2016) and the “ppcor” package was used to calculate the partial
correlation coefficient (Kim, 2015).

Due to the size range and the variability of lake formation
within the region further testing was conducted to determine
whether or not pooling the lakes within the region into groups of
similarity might improve the accuracy of lake volume prediction
(Delaney, 2019). Two group selections were tested: grouping by
lake size and grouping by the HUC-8 watershed within which a
set of lakes are located.

Lakes were categorized by surface area size into the following
size ranges: <104, 104-105, 105-106, 106-107, and >107 m2. Due
to the lack of known volumes of lakes with a surface area <104

m2, those lakes were assigned a depth of 0.5m in order to
calculate volume by multiplying the depth and surface area. This
depth was chosen because known lake morphology within the
region for lakes within a surface area between 104 and 105 had an
average depth of 0.8m (Table 1) and we assumed that the average
depth of lakes with a surface area <104 m2 would be smaller
than that of lakes with a surface area between 104 and 105. Each
of the size groups had their own regression analysis conducted
following the Heathcote et al. (2015) method.

Lakes were also segregated by HUC-8 watersheds to examine
whether geographic location played a role in the lake volume
relation. Each watershed with its own lakes had a regression
analysis conducted following the protocol above.

With all individual lake volumes calculated, the volume of the
40,054 lakes with known surface area and elevation change was
calculated to find a sum total of water storage for each of the
different lake groupings.

Cael Method
Cael et al. (2017) proposed a volume-surface area scaling method
to estimate the cumulative volume of a collection of lakes.
They provided theoretical background on the relationship by
proposing that when scaling self-affine surfaces, the volume
and area of a lake existing on that surface has a relationship
through the use of the Hurst coefficient. Through this theoretical
approach, the lake volume is given by

VαA1+H
2 (3)

where H is the Hurst coefficient. For the surface of the earth, the
Hurst coefficient has been determined to be 0.4 ± 0.1. Rather
than accounting for the near-lake surface topography as done
in the Heathcote et al. (2015) approach, the Cael et al. method
already has the surface topography accounted for in the use of
the Hurst coefficient. This approach facilitated the prediction of
lake volumes across diverse regions and topography with limited
bathymetric data. Of course, the equation above is a theoretical
result and it requires empirical data to test whether the theory
applies. To test this, we fitted the empirical equation (Equation
4) to lake surface area and corresponding volume data for the
816 lakes in the data set for Central Minnesota, where ζ is the
volume-area scaling exponent, κ is a proportionality coefficient,
and ε is an error term.

V = 10κ+εAζ (4)
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The regression analysis was conducted using log transformed
surface area and volume to compare known volumes to predicted
volumes derived from the empirical formula. The ζ and κ

were determined by the regression analysis from the slope
and intercept. To consider the variability in lake volumes
within the study area, confidence intervals from bootstrapping
resampling procedures were calculated (Leschinski, 2019). These
two procedures were used to account for the different sources of
uncertainty within ζ and κ . The error (ε) within the equation
was determined from the root-mean-square error (RMSE) of the
residuals of the scaling relationship.

The equation was then applied to all the lakes within
the study area (40,054) and then summed to determine the
total lake volume. All statistical analyses were conducted
using the statistical software R (RStudio Team, 2016) and the
“pracma” package was used to calculate the Hurst coefficient
(Borchers, 2019).

Machine Learning Method
Although there is a large pool of ML model options to utilize,
we selected the artificial neural network (ANN) (Dreyfus, 1990)
as one important baseline approach to investigate. ANN became
one of the popular sub-families of ML in recent years because
of its internal function and architectural advantages in capturing
non-linearities in data. In particular, a few ANN variants
have already made tremendous improvements to address some
difficult computer science challenges, such as computer vision
(LeCun et al., 2015) and natural language processing (Hirschberg
and Manning, 2015). Details of ANN are explained in the
section below.

In addition to ANN, we also explored other traditional ML
alternatives which were once popular ML baseline options before
neural networks arose. Those other ML models we investigate
include support vector regression (SVR) (Cortes and Vapnik,
1995), random forests (RF) (Breiman, 2001), and Gradient
boosted regression tree (GT) (Chen and Guestrin, 2016). Because
we emphasize the application of ANN to represent ML in this
paper, we will not provide as much detail on these alternative
models, however, we wanted to highlight our consideration of
other ML candidate models.

By nature, ML models are data hungry (Adadi, 2021) and
a generalizable ML model requires training process involving
abundant data, which in reality often leads to a challenge for
data collection. In other words, the ML model using limited
data will learn behaviors in a way that is hard to generalize
to out of sample scenarios. For this reason, ML models should
not be trained and evaluated using the same dataset because
they can easily overfit the data during the training process but
achieve unsatisfactory performance for unseen testing data. Thus,
evaluatingMLmodels based on seen training data without testing
on unseen data gives a biased model assessment. To evaluate the
ML model on unseen testing data, we performed 5-fold cross-
validation to evaluate the ML models. The whole dataset was
split into five equal-sized chunks, each time one portion of it was
dropped as the testing data while the remaining four chunks were
used for training the MLmodel. For eachMLmodel, we will only

FIGURE 2 | Illustration of an artificial neural network. Each circle is a neuron,

basic computation unit, in the network. Each arrow represents a computation

connection from the neurons in last layer to the one in current layer.

assess its testing performance and report those statistics across
five different trainings as the model evaluation metrics.

In this paper the machine learning models were compared
only to the Heathcote et al. (2015) regression model. To provide
a fair comparison between the machine learning results and
regression results, the Heathcote method was also subjected to
the 5-fold cross validation.

Artificial Neural Networks
ANN maps input data (xi) into the output target variable (xo). It
is a computation architecture stackingmultiple layers of neurons.
Neurons are basic computation units in the ANN and store
numbers to proceed to the next step of computation. Layers are
a collection of neurons whose computation occurs at the same
stage. We use a simple three-layer artificial neural network for
illustration purposes (Figure 2), which consists of input layers,
intermediate layers, and output layers. The input data enters
the ANN via the input layer and is then transformed into
intermediate layer output (xm), the dimension of which has
been predefined. This transformation (Equation 5) firstly linearly
transforms xi and then often adapts a non-linear operator (σ )
that takes a non-linear function to introduce non-linearity into
the system. xm is then transformed to yield the final prediction
(xo) as the output in the output layer (Equation 6).

xm = σ (Wm
i xi + bi) (5)

xo = σ
(

WO
m xm + bm

)

(6)

L
(

Wm
i , W

O
m, bi, bm

)

=
1

N

∑

N

(

xo − y
)2

(7)

xi = [log10a, log10DE] (8)

The predicted output is compared against the given observed
data (y) and a loss value is calculated through a loss function L
(Equation 7) that often takes a form of root mean squared error
for numeric prediction problems, consistent withmost regression
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problems. N is the number of input data records. Note that the
loss L is a function of trainable parameters in an ANN. For this
illustration network, there are four trainable parameters—Wm

i ,
WO

m, bi, and bm. W
m
i and bi denotes the linear transformation

matrix and intercept term that maps xi to xm, respectively. W
O
m

and bi functionalize to map xm to xo, respectively. Training an
ANN will update those trainable parameters until the L reaches
a minimum, a process called optimization that adopts specific
algorithms to search for optimal trainable parameters.

For the lake volume prediction problem, xi is a 2-dimensional
vector of surface area and lake elevation change in a log
scale (Equation 8). xo is log10V̄, the predicted volume (log
scale), and y is the observed lake volume in log scale
(log10 V). Although the illustrated ANN architecture adopts
a three-layer ANN, in practice, the depth of ANN and the
number of neurons of intermediate layers can also vary and
is determined empirically. For details of the ANN architecture
we used, and other implementation details, please refer to
Appendix A1.

Note that compared to statistical models, the parameters
of ANN models are difficult to interpret mechanistically.
Regression coefficients quantify the relationship between
independent variables and target variables. In contrast, the
learned parameters in ANN functionalize collectively without an
explicit interpretation to understand the relationship between
input features to outputs. Although some research has attempted
to unveil its black-box mechanism (Montavon et al., 2018), its
internal functions are still not as transparent and understandable
as regression models and thus merits further research efforts to
advance its progress.

Temporal Variation of Total Lake Volume
Using the lake volume estimation model based on lake surface
area alone, the temporal variation in the total volume of water
in the region’s lakes was determined using data from the Global
Surface Water (GSW) observations program, which is based on
LANDSAT imagery at a 30-meter resolution. The first regression
formulation, Equation (1) was applied with surface areas derived
from the digitized lake maps taken from the GSW data set
for the period 2002 through 2015. An example of a digitized
map image for two lakes for two dates (one in 2012 and one
in 2015) is illustrated in Figure 3. The digital cells show the
locations where the satellite sensed the presence of water. The
blue colored cells show the presence of water in both 2012 and
2015, while the magenta colored cells show the presence of water
in 2015, but not in 2012. The surface areas for each lake in the
region was determined for each year (for the month of June),
the areas were substituted into the regression model (Equation
1) to estimate the volume for each lake, and the total of water
volume in the region was calculated by the sum of volumes for
all lakes.

RESULTS

Lake Surface Area Model
The bathymetric data for the 816 lakes were used to perform a
regression by fitting to the measured surface area and the lake

FIGURE 3 | The digital map for two lakes showing the presence of water in

the cells; the magenta cells are locations where water was present in 2015 but

not in 2012.

volume calculated from the bathymetric information. The model
fit yielded

V = 0.256A1.13 A ≥ 1.25 km2 (9)

V = 0.0328A1.236 A < 1.25 km2 (10)

This model explained 83% of the variability of the lake volume.
A plot of the predicted and observed lake volume using this
regression is presented in Figure 4.

Heathcote Method
All Lakes Pooled
Equation (2) represents the Heathcote et al. (2015) model
for lake volume. The independent variables in this equation
were determined as the best predictors based on the Pearson
partial correlation coefficient and AIC test (Tables 2, 3). When
comparing the known and predicted lake volumes, the model
explained 82% of the variation in lake volume [R2 = 0.82, F(1,812)
= 3,811, p < 2.2e−16] (Figure 5). The surface area and elevation
change accounted for 82% and 2% of the variation within the
model, respectively. The RSE for the model was 0.282 log10 m

3.
The coefficients for the all-lakes pooled data model were c = 1.17
and d = 0.07. The total lake volume predicted by the model for
the pooled lakes was 7.5% different from the known total volume
for the 816 lakes (Figure 5).

Lakes Grouped by Size
Splitting the lake regression analysis by surface area resulted in
an 83% explanation of the variation in lake volume [R2 = 0.83,
F(1,812) = 3,835, p < 2.2e−16] (Table 4). The RSE for the model
was 0.281 log10 m3. The coefficients c and d were different for
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FIGURE 4 | Plot of predicted lake volume vs. observed lake volume for the 816 lakes using the simple regression on lake surface area model.

TABLE 2 | Pearson partial correlation coefficient tested to determine correlation

strength of independent variables to lake volume.

Coefficient variables Lake volume

Surface area 0.90

Elevation change 0.15

TABLE 3 | Akaike information criteria (AIC) and 1AIC for the different predictive

models tested for determining lake volume.

Model variables AIC 1AIC

Surface area + elevation change 317.79 0.0

Surface area 334.89 17.1

each category of lake area, with c ranging from 0.78 to 1.26, and
d ranging from−0.04 to 0.75. The total lake volume predicted by
the size-segregated regression equations was 1.9% different from
the known total lake volume (Table 4).

Lakes Grouped by Watershed
Grouping the lakes by watershed resulted in themodel explaining
84% of the variation in lake volume [R2 = 0.84, F(1,814) = 4,342,
p < 2.2e−16] (Table 5). The RSE for the model was 0.269 log10
m3. The coefficients c and d were different for each category of
watershed, with c ranging from 0.91 to 1.67, and d ranging from
−0.30 to 0.78. The total lake volume predicted by the watershed-
segregated regression equations was 2.6% different from the
known total lake volume (Table 5).

Using the different groupings of lakes, the total volumes
were calculated for the 40,054 lakes within the region (Table 6).
When comparing the three lake groupings, surface size grouping

FIGURE 5 | Heathcote method of observed vs. predicted lake volumes for a

linear regression model [R2 = 0.82, F (1,812) = 3,811, p < 2.2e−16].

resulted in the highest lake volume with 1,236,436 hectare-meters
while the model with all the lakes pooled yielded the lowest lake
volume with 1,179,284 hectare-meters, a 4.7% difference (99%
confidence interval 1,152,266–1,247,112 hectare-meters).

Cael Method
The Cael et al. (2017) method uses surface area which is the
most significant variable to determine lake volume as seen in
the Pearson partial correlation coefficient (Table 2). The analysis
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TABLE 4 | Total predicted volume by each lake size in the study area based on Heathcote et al. (2015) model.

Size Known volume (m3) Predicted volume (m3) Percent difference Number of lakes (n) c Coefficient d Coefficient

104-105 4,761,038 4,272,646 10.3% 25 0.78 0.08

105-106 806,186,183 726,584,526 9.9% 438 1.12 0.05

106-107 4,538,884,627 4,478,136,636 1.3% 333 1.26 0.08

>107 2,692,298,510 2,677,799,591 0.5% 20 0.94 0.75

Total 8,042,130,358 7,886,793,399 1.9% 816 1.17 0.07

Regression analysis using surface area and elevation change in terrestrial buffer was conducted for each size [R2 = 0.83, n = 816, F(1,812) = 3,835, p < 2.2e−16).

TABLE 5 | Total predicted volume by each watershed in study area based on Heathcote et al. (2015) model.

Watersheds Known volume (m3) Predicted volume (m3) Percent differences Number of lakes (n) c Coefficient d Coefficient

Buffalo river 36,350,941 37,246,650 2.4% 19 1.13 0.19

Cannon river 220,456,231 242,749,474 9.6% 32 0.95 −0.04

Crow Wing river 1,359,708,747 1,278,342,131 6.2% 112 1.18 0.75

Long Prairie river 952,569,927 837,593,468 12.8% 51 1.21 0.10

Lower St. Croix river 203,413,119 165,149,343 20.7% 46 1.15 0.02

Mississippi River- Brainerd 624,888,496 676,090,233 7.9% 60 0.91 0.41

Mississippi river—Lake Pepin 13,431,687 14,608,058 8.4% 5 1.05 −0.04

Mississippi river—Sartell 121,815,236 127,774,030 4.8% 35 1.22 −0.17

Mississippi river—St. Cloud 284,449,132 266,029,558 6.7% 85 1.07 −0.08

Mississippi river—Twin Cities 332,693,906 317,921,490 4.5% 110 1.04 0.58

Ottertail river 2,509,976,730 2,597,468,051 3.4% 82 1,12 0.25

Pine river 902,738,899 822,873,334 9.3% 79 1.04 0.54

Redeye river 51,419,386 50,341,558 2.1% 8 1.67 0.18

Rum river 104,355,324 82,893,697 22.9% 25 1.35 0.78

Sauk river 147,591,348 157,164,850 6.3% 49 0.92 0.30

Snake river 61,919,196 55,757,269 10.5% 7 1.57 −0.10

Wild Rice river 114,352,053 104,835,498 8.7% 11 1.40 −0.30

Total 8,042,130,358 7,834,838,692 2.6% 816 1.17 0.07

Regression analysis using surface area and elevation change in terrestrial buffer was conducted for each watershed [n = 816, R2 = 0.84, F(1,814) = 4,342, p < 2.2e−16].

TABLE 6 | Comparison of total volume of the 40,054 lakes based on three

approaches of Heathcote et al. (2015) method (Mille Lacs Lake not included).

Distribution of lakes Total volume (m3)

Project area 11,792,840,000

Size 12,364,360,000

Watershed 11,833,470,000

of Cael et al. was for lakes sampled from the US, Canada, and
Sweden, and their analysis yielded a Hurst coefficient of 0.41. In
our study of the 816 lakes the Cael et al. model yielded

V = 10−0.498+εA1.17 (11)

For this model result, the Hurst coefficient is 0.34 which is within
the theoretical range (0.4± 0.1) for the earth’s surface.

When comparing the known and predicted lake volumes
based on Equation 11, the model explained 82% of the variation

in volume for individual lake volumes [R2 = 0.82, F(1,812)
= 3,697, p < 2.2e−16] (Figure 6). For this same regression
equation, the total observed volume to the predicted volumes of
the 816 lakes were compared. Our predictions were 1.4% different
than that of the observed volume total (Table 7). The RSE for
the model was 0.296 log10 m

3. After calculating the total volume
with the 40,054 lakes by bothmethods, the difference between the
Heathcote et al. (2015) and the Cael et al. (2017) methods for all
the lakes pooled was 3% (Table 8).

Machine Learning Method
All ML models were trained using the lake surface area and land
surface elevation change, both of which are used in the Heathcote
method while the Cael method uses only surface area. Therefore,
we benchmarked ML methods against the Heathcote method.
Without further grouping lake data based on the watershed
location or lake surface area size, we used the full dataset for
the purpose of investigating ML modeling ability in contrast
to statistical regression models. To allow a fair comparison
between machine learning methods and regression methods,
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FIGURE 6 | Cael method of observed vs. predicted lake volumes for a linear

regression model [R2 = 0.82, F (1,812) = 3,697, p < 2.2e−16].

TABLE 7 | Using Cael et al. (2017) method, percent difference between the 816

observed lake volumes and the predicted volumes.

Comparison Total volume (m3) Percent difference

Observed volume 8,042,130,358 -

Predicted volume 7,928,754,557 1.4%

TABLE 8 | Heathcote et al. (2015) vs. Cael et al. (2017) total volume comparison

for all lakes pooled.

Method Total volume (m3)

Heathcote, all lakes pooled 11,792,840,000

Cael, all lakes pooled 12,113,930,000

the Heathcote method is evaluated using the cross-validation
approach as well. Note that 5-fold cross-validation will evaluate
the models using five different portions of the testing data and
thus yield five different testing metrics. The less variant those
testing metrics are, the more stable the corresponding models
behave. As shown in Table 9, averages of the R2 and RMSE
values across 5-fold validations are reported. Meanwhile, the
standard deviation across 5-fold validations is also reported
to show the stability of the model performance. Among all
the ML models, although the ANN testing performance is less
stable during cross-validation than the Heathcote method, ANN
exhibits the best predictive performance with a RMSE of 0.286
and a R2 of 0.819 in contrast to the Heathcote method (0.296
RMSE and 0.811 R2). Besides, SVR (0.291 RMSE score and
0.819 R2) also achieves slightly better predictive performance
than the Heathcote method. Both RF and GT yield a predictive
performance slightly worse than, if not comparable to, the

TABLE 9 | ML methods comparison against the Heathcote method results in a

5-fold cross validation test.

Models R2 RMSE

Heathcote method 0.811 (0.11) 0.296 (0.009)

ANN 0.819 (0.041) 0.286 (0.035)

SVR 0.819 (0.026) 0.291 (0.017)

RF 0.789 (0.004) 0.311 (0.020)

GT 0.809 (0.024) 0.296 (0.017)

Both R2 and RMSE shows the average of testing performance. The number in the

parentheses is the standard deviation.

Heathcote method. The result is that the ANNmodel yielded the
best predictive performance.

Temporal Variation of Total Lake Volume in
Central Minnesota Region
The data acquired from the GSW observation program was used
to determine the surface areas of lakes on an annual basis for
the study region. Those surface areas for the over 40,000 lakes
were substituted into the regression model (Equation 1) and the
volumes summed for all lakes. The resulting temporal variation
of the total lake water stored (in equivalent mm) in the region
is illustrated in Figure 7. There is a clear drop in water stored in
the lakes in 2011–2012. Those years corresponded to a period of
rainfall deficit.

DISCUSSION

Regression Methods
All three regression models, the simple regression given by
Equation (1), the regression given by the Heathcote et al. (2015)
model (Equation 2), and the Cael et al. (2017) model (Equation
3), provided fairly accurate predictions of the lake volumes
for the 816 surveyed lakes. Among these, the Heathcote et al.
model provided the best representation of the known individual
lake volumes, while the Cael et al. model provided the best
representation of the total volume of lake water in the region.

When comparing our research to the Heathcote et al. (2015)
research, the lake surface area of lakes in Central Minnesota
has a larger correlation to lake volume than that of the buffer
elevation difference. This may be because of there being a smaller
range of elevation within the study area, being a relatively flat
region, resulting in the elevation difference in the buffer having a
weaker relationship. The Heathcote et al. (2015) study compared
433 lakes selected from five different regions, two of which
were situated in a mountainous region. When comparing the
five regions, the mountainous region models produced the most
accurate lake volumes as well as the highest R2 (R2 > 0.90).
The regions with less elevation change such as the Eastmain
region resulted in R2 similar to the results reported herein for
Central Minnesota’s R2 (R2 ≈ 0.80). This affirms the hypothesis
that when the elevation has a larger range, the estimate of lake
volume will have a stronger correlation to surface elevation
change (Heathcote et al., 2015).
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FIGURE 7 | The temporal variation in total water stored in the lakes of the region. Note the sharp drop in volume in the year 2011–2012, and the gradual recovery in

following 2 years.

Among the three groupings of lakes using the Heathcote
et al. (2015) procedure, determining lake volume by watershed
resulted in the best prediction. A reason why the watershed
grouping was the best prediction when compared to the known
volumes is most likely that the lakes within a given subregion
(or watershed) are almost all formed by the same geomorphic
process, resulting in the lakes’ formation being similar. Like
Heathcote et al. (2015), we assumed that similar processes formed
the lake and their landscape.

One issue with the analysis for all of the methods, regression
and machine learning is that no bathymetric data exist for lakes
smaller than 104 m2 surface area. To fill in this data, it was
assumed that a lake smaller than 104 m2 surface area had an
average depth of 0.5m. This, of course, imposes an error in the
data for a very large number of lakes that exist in the region.
The predominance of larger lakes in the bathymetric data set
is clear from Table 1, and it is clear from the estimates of total
lake volume for the region that most of the total volume, about
66%, is contained in the 816 recorded lakes. The remaining
39,000+ lakes for which estimates were made contained the
smaller fraction of the total volume. One improvement that could
be made for the development of the prediction models would be
to increase the amount of bathymetric data for the lakes in the
small size range.

Another source of error in the analysis for the Heathcote
et al. (2015) model was the use of a 1/3 arc-second DEM (U.S.
Geological Survey, 2017). This approach essentially eliminated
elevation data for lakes smaller than 104 m2 due to the lakes
being too small for the DEM to pick up the elevation difference.
For further research, DEM data with better resolution should be

used in order to predict volumes more accurately by obtaining
the buffer elevations from the smaller lakes.

It is not clear why the regression coefficient for the elevation
change was negative for some of the data sets involving watershed
groupings and lake area groupings. Theoretically, the coefficients
should be positive. Perhaps the resulting negative coefficients
occurred from less accurate elevation measurements resulting
from the coarse DEM resolution. Further analysis is needed to
determine the cause of the negative coefficients.

While this study is only limited to central Minnesota, an
independent study covering the full state was completed to
determine if the Heathcote et al. (2015) approach can accurately
predict the lake volume for lakes across the entire state of
Minnesota. For example, using the surface area and elevation
change for lakes >4,047 m2 across the entire state of Minnesota,
Griffin et al. (2018) and Finlay (2019) used the Heathcote et al.
(2015) method to estimate lake volumes for the purpose of
quantifying the regional variability of DOM pools in the water
column of the region’s lakes. Based on preliminary research, the
model explained 82% of the variation in the lake volume with
over 1,000 lakes of 4,047 m2 or larger. This research reaffirmed
that using the lake’s surface area and surrounding landscape can
be used to accurately predict a lake’s volume and can be used in
diverse geographic areas with little morphologic and bathymetric
data available.

The results for the Cael et al. (2017) model yielded a Hurst
coefficient of 0.34 for the lakes in the Central Minnesota region.
Cael et al. applied the method to four regions some of which
had topographic features more like the Central Minnesota
landscapes (Sweden, Wisconsin, some parts of Quebec), while
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others were more mountainous, for example the Adirondack
region of New York. The resulting Hurst coefficients derived for
these different regions reflected the topography of the individual
regions. The Hurst coefficients derived by Cael et al. were 0.24
for the Wisconsin region, 0.32 for Sweden, 0.33 for Quebec
(data included mountainous as well as more flat regions), and
0.48 for the Adirondack region. With all regions combined the
derived Hurst coefficient was 0.40. This demonstrated that the
Hurst coefficient picks up the topographic features through the
relationship formed between lake surface area and lake volume.

In order to see whether, like the Heathcote et al. (2015)
method, the Cael et al. (2017) method can have its lakes grouped
by size and watershed, the lakes were grouped by the same
categories. The significance of predicting total lake volumes
when comparing the total volume of known lakes within the
region was decreased when splitting into groups. Meaning that
grouping the lakes by surface area size and watershed did not
produce any significant results. Therefore, having a larger set of
lakes when comprising the Cael et al. (2017) model improves
the predictability of total lake volume. Even though the Cael
et al. (2017) method was unable to significantly predict total
lake volume when grouped by surface area and watershed, both
the Heathcote et al. (2015) and the Cael et al. (2017) method
were both able to significantly predict volumes when pooling all
lakes together.

While both methods predict lake volume, the Cael et al.
(2017) method, by design, is better suited to predict a group of
lakes rather than individual lakes. The Heathcote et al. (2015)
method is better at predicting volume and depth for individual
lakes and therefore can be used when calculating individual lake
processes. Consequently, onemethodmay bemore advantageous
than the other depending on what future research questions are
being asked.

Machine Learning Method
Although the popularity of ML seemingly makes it a strong
candidate approach for our lake volume predictions, a drastic
improvement of the lake volume prediction accuracy is not
observed in our case. Even though, among them, the ANN yields
the best performance and suggests that its modeling ability to
capture complex data patterns is more pronounced than the
other three alternative models.

RF yields the relatively worst performance, which is likely
caused by the low dimensions of input features (2-D data of
lake surface area and elevation change) and its data hungry
characteristics. Prediction tasks often benefit from the RF
modeling because RF automatically finds uniform input feature
subspace. However, given a 2-D input feature, the advantage of
subspace searching is not leveraged. Further, a collection of 816
lakes is not a rich dataset for RF and would easily make RF overfit
the training data and produce worse testing performance.

GT and SVR yielded comparable performance to the
regression method. ANN exhibited the best performance
among the selected ML methods and is slightly better than
regression approaches. The reason for such a negligible
performance improvement is possibly because the Heathcote
method has achieved a performance satisfactory enough

FIGURE 8 | The relationship between lake volume (log scale) and lake surface

area (log scale).

that the performance improvement room for ANN is too
small. As shown in Figure 8, the correlation between log10(A)
and log10(V) is as high as 0.90, which suggests a limited
non-linear complexity between input data and lake volume.
Such a limited non-linear data pattern constrained the ANN
predictive performance improvement in contrast to the
Heathcote method.

All ML models show relatively more variant testing
performance in contrast to the Heathcote method, which
suggests the randomness in machine learning models and
the uncertainty in its trainable parameters. On the contrary,
the regression style Heathcote method preserves consistent
testing performance (lower standard deviation of the testing
performance in the cross-validation evaluation), which implies
that linear regression models’ generalization performance is
more stable than ML for this problem.

Although ANN shows relatively better prediction accuracy,
it does not have well-understood mechanisms underlying its
explanatory power. For the Heathcote method, regression
coefficients can offer sufficient interpretation to understand
models. The positive regression coefficient of lake surface
area and its statistical significance indicates the significant
contribution of the surface area variable to lake volume
estimation. However, this insight is missing for the ANNmodel.

Additionally, ANN only takes a 2-dimension input,
which collectively groups all lakes together without any
distinguishment among individual lakes. The model lacks
distinct lake awareness information that might help more
accurately predict volumes. It is likely that lake surface area
and elevation change does not contain sufficient additional
information for the volume prediction that is not already
captured in the linear regression models. Therefore, it
would be necessary to provide more physical information
of lakes, such as, more lake geometry information, and
surrounding land surface features, to further improve lake
volume prediction accuracy.
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Although the benefit of applying a machine learning model
is not obvious for lake volume in our results, other bathymetric
characterization of lakes, such as, lake depth may gain more
from this approach. Heathcote et al. (2015) reported that
a statistical model for predicting maximum lake depth only
explains half of the system variance, which suggests that
the majority of lake depth variance is difficult for statistical
models to explain. Converse to the linear relationship between
lake area and lake volume, relationships among other lake
morphology features may be more complex. We hypothesize
that this complexity is also accompanied with hidden non-
linearities, which provides another research opportunity for
implementing machine learning models and exploring their
predictive capability in the future.

CONCLUSION

We predicted lake volume through Central Minnesota using
readily available morphologic data and a variety of previously
published and novel methods. Three regression-based analysis
methods and four machine learning methods were applied to
develop predictions of lake volumes for over 40,000 lakes located
in the central section of Minnesota. The methods were developed
using detailed lake bathymetric data for 816 lakes located in the
same region. The resulting prediction methods estimated the
total volume of lake water in the region to be in the range of about
12± 0.2 km3.

The regression models included a regression on lake surface
area, a model based on the Heathcote et al. (2015) model that
included lake surface area and mean elevation change in a
designated buffer area outside the lake area, and a model based
on the Cael et al. (2017) model that utilized the theory of self-
affine surfaces. Among the machine learning models, the ANN
performed the best, and it was found that the ANN performance
was slightly better than any of the regression models. The small
incremental benefit in performance of the ANN method over
the regression models is explained by the fact that the relation
between log-transformed lake surface area and log-transformed
lake volume is nearly linear. If the relation were more non-linear,

theMLmethodsmight have been able to provide a larger increase
in performance. This is the power of ML approaches, in that
they facilitate the development of data-driven models when the
relations between variables are complex and non-linear. One
immediate future need is to evaluate the ability of ML methods
for prediction of lake maximum depth.
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APPENDIX A1

Hyper-parameters of the applied ML models are listed below.
Those values were determined after hyper-parameter tuning.

Artificial Neural Network
Activation function for each layer: ReLu.
Model architecture: input (2d) -> 4d -> 16d -> 32d -> (output) 1d
Optimization algorithm: Adam optimizer (learning rate: 0.001).

Random Forest
Number of trees: 100
Maximum tree depth: 8.

Support Vector Machine
Radial basis function kernel.

Gradient Boosted Regression Tree
Number of trees: 80.

APPENDIX A2

Abbreviation Glossary
MnDNR, Minnesota Department of Natural Resources.
HUC-8, Hydrologic unit codes.
GSW, Global surface water.
DEM, Digital Elevation map.
AIC, Akaike information criteria.
RMSE, Root-mean-square error.
RSE, Relative standard error.
ML, Machine Learning.

ANN, Artificial neural network.
SVR, Support vector regression.
GT, Gradient boosted regression tree.
RF, Random forests.
CDOM, colored dissolved organic matter.
DOC, dissolved organic carbon.
LANDSAT, Satellite that studies and photographs the surface by
using remote-sensing techniques.

Variable Glossary
V, Volume.
a, b, c, d, empirical constants.
A, Lake surface area.
D, Buffer distance from the shoreline outward.
DE25, 25% of the average elevation changes within the buffer.
H, Hurst Coefficient.
ζ , volume-area scaling exponent.
κ , proportionality coefficient.
ε, error term.
xi, input data.
xo, output target variable.
xm, intermediate layer output.
σ , non-linear operator.
Wm

i ,W
o
m, trainable parameters (weight matrix in neural

network layers).
bm, bo, trainable parameters (bias terms in neural
network layers).
L, Loss Function.
N, Number of input data records.
y, observed data.
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