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High Daily and Year-Round Variability
in Denitrification and Nitrogen
Fixation in a Northern Temperate
River
Kevin C. Nevorski and Amy M. Marcarelli*

Department of Biological Sciences, Michigan Technological University, Houghton, MI, United States

Rates of nitrogen (N) cycling processes like denitrification and dinitrogen (N2) fixation,

which together are the primary contributors to N2 flux rates from surface waters, may

change at different time scales from seasons to weeks to days. Yet, we know little

about the magnitude, mechanisms or drivers of these temporal changes, especially at

shorter daily and weekly timescales. Quantifying variation in rates and drivers across

temporal scales is essential to understand how nutrient cycling processes operate in

aquatic ecosystems and predict how they may respond to shifting seasonal dynamics

caused by global change (i.e., earlier snowmelt and extreme weather events). This study

quantified denitrification and N2 fixation rates seasonally and daily in a northern temperate

river, and explored how environmental conditions such as discharge, light, and N and

phosphorus (P) concentrations were related to that variation at different time scales. We

measured denitrification and N2 fixation rates on biweekly and daily intervals at a single

20-m long sampling reach in the Pilgrim River in Michigan’s Upper Peninsula from May

2017 through May 2019. We found high rates of daily change (difference in rate from

one day to the next) for both processes in all seasons (maximum daily change 5,690 µg

N/m2/h for denitrification and 38 µg N/m2/h for N2 fixation). No detectable differences

in rates among seasons were detected using Multiple Response Permutation Procedure

(MRPP). Day-to-day variation did not change before and after elevated discharge events,

including a 1,000-year flood that occurred in June 2018. Partial least squares (PLS)

regression identified total dissolved N, dissolved organic N, and ammonium as important

predictors of denitrification and N2 fixation, but explained only 15–28% of the variation in

all measured rates. The unexpectedly high daily variation and lack of seasonal difference

in rates found in this study demonstrate the need to use caution when studying these

processes and/or extrapolating rates across time scales, as discrete and infrequent

measurements may be misleading.

Keywords: nitrogen fixation, denitrification, river, nitrogen cycle, temporal variability

INTRODUCTION

Denitrification and N2 fixation are N transformation processes which can both control and be
controlled by environmental factors (Vitousek et al., 2002; Seitzinger et al., 2006). Together with
anammox, N2 fixation and denitrification are the primary biological processes that control N2

flux from ecosystems (Fox et al., 2014; Nifong et al., 2020). Denitrification is a form of anaerobic
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respiration in which microbes break down organic carbon (C)
for energy and use nitrate (NO−

3 ) in the place of oxygen (O2)
as an electron acceptor, so supply of organic C and NO−

3 are
important limitations on denitrification rates (Wall et al., 2005).
Along with the required reactant availability, environmental
factors including oxygen concentration and temperature can alter
denitrification rates. Biological N2 fixation is the microbially-
mediated conversion of N2 gas into ammonium (NH+

4 ); it is
an energetically expensive process so high availability of NH+

4
and/or other forms of dissolved inorganic N (DIN) may cause
microbes to reduce the process rate to conserve energy (Burris
and Roberts, 1993; Bandyopadhyay et al., 2013). Light may be
especially important for controlling N2 fixation rates in shallow
aquatic ecosystems like streams, where it is often carried out
by cyanobacteria who obtain their energy via photosynthesis
(Burris and Roberts, 1993; Scott and Marcarelli, 2012). Light
intensity along with these other factors vary through time, and
therefore they may lead to temporal variation in rates of both
of these N transformation processes in aquatic ecosystems. Yet,
the mechanisms by which environmental factors affect rates of
denitrification and N2 fixation may differ depending on the
time scale.

In streams and rivers in temperate climate zones, seasonal
changes in denitrification and N2 fixation rates in response
to changes in environmental conditions may be gradual over
the course of days to weeks, caused by the abundance and/or
activity of microbes increasing or decreasing, or the identity of
the microbes within the community changing. Environmental
characteristics that show strong seasonal changes in temperate
streams and rivers include nutrient availability, temperature,
and light availability (Coble et al., 2019). Low biotic uptake
rates in winter can lead to increased inorganic N concentrations
in temperate forested streams (Stottlemyer and Toczydlowski,
1999a,b) which could provide reactants for denitrification and
reduce rates of N2 fixation. Temperate forests have large inputs
of allochthonous organic matter during the fall and high
dissolved organic C (DOC) flux during snowmelt (Stottlemyer
and Toczydlowski, 1999a), either of which could provide a
C source for denitrifying bacteria. Discharge varies seasonally
corresponding to rainy seasons or snowmelt, which leads to
predictable patterns of disturbance that can move, scour and
mobilize riverbed substrates, disturbing microbial communities,
and the microenvironments of these communities, which control
nutrient cycling processes (O’Connor et al., 2012). Seasonal
changes in discharge can also alter nutrient concentrations
both by altering patterns of nutrient delivery and via dilution
(Meyer and Likens, 1979; Horner et al., 1990; Stottlemyer and
Toczydlowski, 1999a). Denitrification and N2 fixing microbial
communities can both be sensitive to seasonal temperature
changes, with N2-fixing microbes often preferring warmer
temperatures (Scott and Marcarelli, 2012), and denitrification
activity decreasing during periods with colder temperatures such
as in the winter (Christensen et al., 1990; Kim et al., 2006). Light
also varies seasonally, especially in forested streamswhere canopy
cover will shade streams differently depending on the season and
vegetation type (Roberts and Mulholland, 2007; Bowes et al.,
2012). Increased light availability in spring and fall due to low

canopy cover can lead to higher rates of in-stream nutrient
uptake due to increases in primary productivity (Roberts and
Mulholland, 2007).

Environmental factors in temperate streams can also shift
much more rapidly over hours to days, which could instead affect
rates through enzymatic regulation (Grimm, 1987; Marcarelli
and Wurtsbaugh, 2006; Marcarelli et al., 2008). N cycling rates
can both increase and decrease over the course of hours with
factors such as temperature or substrate availability affecting
enzyme activity (Grimm, 1987; Marcarelli and Wurtsbaugh,
2006). Temperature variation can occur on an hourly scale, and
the enzymes and microbes facilitating N cycling processes may
have reduced activity at cold temperatures (Yvon-Durocher et al.,
2010; Boulêtreau et al., 2012). Also, changes in light can alter
N2 fixation rates by cyanobacteria in some ecosystems on a diel
cycle because it is tightly coupled with photosynthesis (Howarth
et al., 1988; Grimm and Petrone, 1997). Nutrient concentrations
can rapidly change due to storm runoff, which could also alter N
process rates. Because N2 fixation is so energy intensive, enzymes
can be rapidly deregulated to save energy following an influx of
DIN (Howarth et al., 1988; Grimm and Fisher, 1989; Grimm
and Petrone, 1997). But, the distinction between community or
enzymatic shifts can be complicated because some environmental
factors such as temperature and light vary at multiple time scales.
For example, hydrological disturbances such as flooding caused
by storms are overlain on seasonal patterns created by snowmelt
and rainfall, and may therefore alter biogeochemical process
rates through a mix of shorter-term enzymatic changes and
longer-term community shifts (Grimm and Fisher, 1989). Storm-
driven surface runoff can carry nutrients (Meyer and Likens,
1979; Horner et al., 1990; Stottlemyer and Toczydlowski, 1999a),
change water temperature, and create short-term increases in
water velocity and benthic disturbance (O’Connor et al., 2012), all
of whichmay act independently and in concert to create variation
in process rates.

Understanding relationships between N cycling rates and
different environmental drivers that vary across time scales
may provide insight into how climate change will affect
these processes in the future. Climate change can lead to
temperature, stream flow, and growing season changes (Barnett
et al., 2005; Backlund et al., 2008; Christiansen et al., 2011),
all environmental characteristics which may be influential to
denitrification and N2 fixation rates. Storms are becoming
separated by longer periods of drought, but overall higher rainfall
can occur driven by more intense storm events (Mathbout
et al., 2018). It is also not well-understood how resistant
and resilient rates of N transformations are to hydrologic
disturbances, which is important in the face of ongoing climate
change. Resistance and recovery (or resilience) are concepts used
throughout ecological studies, including studies on the impact
of hydrological disturbances, anthropogenic disturbances, and
climate change (Holling, 1973; Bahadur et al., 2013; Pope et al.,
2014; Reisinger et al., 2017). Resistance describes how much the
structure and processes of an ecosystem change in response to
disturbances of different magnitudes, while recovery describes
how quickly the ecosystem returns to the same structure and/or
function after a disturbance event (Hershkovitz and Gasith, 2013;
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FIGURE 1 | The 20-m long study reach (location indicated by triangle) was located on the Pilgrim River on the Upper Peninsula of Michigan, USA. The inset shows the

location of the study area within the state of Michigan. Map of Pilgrim River derived from Hydrography Lines_(v17a) shapefile from State of Michigan GIS Open data

(https://gis-michigan.opendata.arcgis.com/).

Reisinger et al., 2017). Initial declines in process rates following
a hydrologic disturbance may be rapid; however, recovery may
be slower if the microbial community was altered or reduced in
biomass rather than enzymatic downregulation. Understanding
how large hydrological disturbances affect denitrification and N2

fixation can provide insight into how they will be affected by
changing climactic conditions.

The complexity of seasonal vs. shorter-term environmental
changes coupled with different mechanisms of microbial
responses that lead to changes in rates makes it difficult to
decipher how and why N cycle processes vary. The objectives
of this study were to characterize how denitrification and N2

fixation rates vary over seasonal, weekly, and daily time scales
in a temperate forested river in Michigan’s Upper Peninsula.
This study was designed to address the following questions: (1)
How do denitrification and N2 fixation rates vary seasonally?
We hypothesized that rates would differ among seasons due
to changes in the environmental conditions that directly and
indirectly control process rates. (2) How do denitrification and
N2 fixation rates vary daily and in their response to hydrological
disturbances? We hypothesized low day to day variation in
process rates; however, after large hydrological events (i.e.,
flooding caused by storms or snowmelt), rates would decline

due to disturbance and changes in environmental conditions
with prolonged recovery periods as the microbial communities
recover after disturbance. (3) Which environmental factors
are related to variations in denitrification and N2 fixation
rates? We hypothesized seasonal drivers including light and
temperature would also be drivers of these rates as we expected
large differences in rates between seasons. We addressed these
questions by quantifying these processes in relation to changes
in environmental conditions at daily and seasonal time intervals
over 2 years.

MATERIALS AND METHODS

Study Site and Sampling Design
Sampling occurred in a single 20 m-long reach on the main
branch of the Pilgrim River (47.10138◦ north, 88.51750◦ west;
Figure 1). The Pilgrim River and its 4 tributaries stretch 34.9 km,
draining a 52 km2 watershed located in Houghton County in
the Upper Peninsula of Michigan. The Pilgrim River watershed
is 58% forested, 25% open space, 12% wetland, 4% developed,
and 1% lakes/ponds and has a base discharge between 0.5 and
0.8 m3/s (DEQ, 2012). At the study reach, the river is ∼8m wide
with a maximum depth of ∼2m. Ice ∼0.5m thick covers the
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FIGURE 2 | Continuous discharge (thick black line, bottom pane), water temperature (light gray shading, bottom pane) and photosynthetically active radiation (PAR;

thin black line, top pane) over course of sampling period. Discharge measurements do not span entire sampling period because the USGS-installed gauge was

washed away during a 1,000-year flood on 18–19 June 2018.

river from December to April, with high discharge from snow
melt occurring in late April or early May (Figure 2). The river
substrate in the study reach consisted of∼2/3 sand cover and 1/3
patches of large cobbles.

Sampling occurred every 2–6 weeks year-round between
May 2017 and May 2019 except for N2 fixation, which was
not sampled from November 2017 to April 2018. Additionally,
once per season sampling occurred every day over a 1 to 2-
week period. This nested design allowed us to measure both
seasonal and daily variation in rates, as well as calculate recovery
when disturbances occurred. During certain time periods, some
sampling dates were skipped (Table 1) due to unsafe conditions
such as extreme cold, storms, and high discharge. For this study,
seasonality was determined using a combination of canopy cover,
temperature, and discharge rather than calendar date, as the
Upper Peninsula of Michigan experiences an extended winter
period with substantial snowpack and short, rapidly changing
spring and fall seasons (Coble et al., 2019; Meingast et al., 2020).
Spring was determined to start when the river surface was no
longer covered by ice and discharge was high due to snow
melt, around late April or early May. Spring continued until
water temperature stopped consistently rising and there was a
full riparian tree canopy, usually early June. Summer continued
while water temperature remained constant, and leaves were
green. Fall started when water temperature began to decrease and
leaves began to change color, usually early September. Winter
started when the river was fully covered by ice, usually in late
December. This classification scheme was applied based on each
year of observational data, such that the season start or end dates

could vary among the years of our study based on conditions in
that year.

Sampling Methods
Denitrification and N2 fixation rates were measured in sediment
and on rock substrates using acetylene block and acetylene
reduction assay techniques as described by Dodds et al. (2017)
and Eberhard et al. (2018). Sediment and rock were measured
because these were the predominant substrates found in the
river. To measure denitrification and N2 fixation on each date,
200mL sediment cores or enough rocks to cover ∼0.0045 m2

surface area were collected from <1m deep water and placed
in chambers (pint glass mason jars with lids drilled to fit 13 ×

20mm septa, but 2-L polycarbonate food storage containers were
used for rock incubations prior to September 2017). Chambers
were filled with stream water to remove all air and sealed. Blank
chambers for sediment were filled with stream water while blanks
for rocks contained rocks from outside the stream and stream
water. This allowed us to account for chamber effects such as
gas leakage or processes occurring in the water column. Blank
chambers also confirmed that there was minimal denitrification
or nitrogen fixation activity in the water column of this river,
which justifies the focus on benthic substrate as the main
locations for these processes.

Acetylene reduction assays were used to quantify rates of N2

fixation by introducing acetylene gas to a chamber. Nitrogenase,
the enzyme that fixes N2, will also convert acetylene to ethylene if
it is present. We measured the change in ethylene concentration
to estimate the amount of N that could have been fixed (Capone,
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TABLE 1 | Sampling frequency and study site characteristics (mean ± standard deviation) for all variables measured during each season throughout the sampling period.

Fall Spring Summer Winter

# Sample days N2 fixation—rock 11 23 31 5

# Sample days N2 fixation—sediment 12 25 32 7

# Sample days denitrification—rock 14 21 31 5

# Sample days denitrification—sediment 14 27 31 15

Rock AFDM (g) 0.0568 ±0.1158 0.1239 ±0.1506 0.0360 ±0.0563 0.0366 ±0.0042

Sediment AFDM (g) 1.9 ±0.9 2.5 ±1.4 1.5 ±0.6 1.6 ±0.8

Chlorophyll a (mg/m2 ) 0.0281 ±0.0311 0.0278 ±0.0313 0.0117 ±0.0120 0.0406 ±0.0374

Temperature (◦C) 5.2 ±3.8 8.5 ±2.2 15.1 ±2.1 0.5 ±0.6

Canopy cover (%) 17 ±9 23 ±9 25 ±9 8 ±3

PAR (W/m2) 327 ±208 1,177 ±662 978 ±444 353 ±246

Discharge (L/s) 1,161 ±549 2,184 ±2548 973 ±601 Ice

DOC (mg C/L) 6.2357 ±2.3783 6.2737 ±0.8997 7.5097 ±2.7486 5.7153 ±1.9237

TDN (mg N/L) 0.3376 ±0.0585 0.2860 ±0.0344 0.3891 ±0.1126 0.3569 ±0.1108

NO−

3 + NO−

2 (mg N/L) 0.1323 ±0.0351 0.0916 ±0.0387 0.1267 ±0.0611 0.1856 ±0.0798

NH+

4 (mg N/L) 0.0044 ±0.0021 0.0063 ±0.0032 0.0117 ±0.0067 0.0049 ±0.0043

DON (mg N/L) 0.2091 ±0.0780 0.1902 ±0.0285 0.2682 ±0.1021 0.1756 ±0.0895

SRP (mg P/L) 0.0067 ±0.0031 0.0056 ±0.0024 0.0080 ±0.0070 0.0103 ±0.0105

TDP (mg P/L) 0.0097 ±0.0044 0.0104 ±0.0048 0.0130 ±0.0048 0.0111 ±0.0116

N2 fixation rate—rock (µg N/m2/h) 2.30 ±3.49 5.17 ±11.24 2.47 ±4.39 1.83 ±1.25

N2 fixation rate—sediment (µg N/m2/h) 1.03 ±1.76 1.66 ±3.00 3.60 ±7.05 2.33 ±4.18

Denitrification rate—rock (µg N/m2/h) 1264.8 ±2515.3 48.7 ±95.9 355.4 ±957.5 228.1 ±361.5

Denitrification rate—sediment (µg N/m2/h) 815.7 ±1322.1 1049.3 ±1917.2 1351.3 ±1840.2 268.3 ±410.9

Discharge was not measured in winter due to ice coverage over the river. AFDM, ash free dry mass; PAR, photosynthetically active radiation; DOC, dissolved organic carbon; TDN, total

dissolved nitrogen; NO−

3 + NO−

2 , nitrate and nitrite, NH
+

4 , ammonium; DON, dissolved organic nitrogen; SRP, soluble reactive phosphorous; TDP, total dissolved phosphorous.

1993). Water temperature was measured and a 20% headspace
(v/v) of acetylene gas was introduced to each filled and sealed
chamber. A 9mL gas sample was removed from each chamber
before incubating in the stream for 1–3 h, after which a final
9mL gas sample was collected to terminate the assay. Upon
termination, water temperature, water volume, substrate volume,
and substrate surface area for each chamber was measured.
The gas samples were analyzed for ethylene concentration using
an SRI 8610C Gas Chromatograph with Hayesep T column
with hydrogen carrier gas, a flame ionization detector, and
column oven set at 40◦C ramping to 110◦C after 2.5min. A
100 ppm ethylene standard was used to convert peak height
to concentration of ethylene in the gas sample. The amount
of ethylene in the headspace (initial and final) was determined
using water volume, the solubility constant for ethylene, and
equations from Dodds et al. (2017). We estimated the amount
of N fixed by assuming 3mol of acetylene converted to ethylene
is equal to 1mol of N2 being fixed (Capone, 1993; Kim et al.,
2006).

Acetylene block assays were used to quantify rates of
denitrification. Acetylene prevents the complete transformation
of NO−

3 to atmospheric N, causingN2O to accumulate, which can
be measured to estimate denitrification rate (Smith and Tiedje,
1979). C, N, and chloramphenicol (to prevent bottle effects)
were added to each chamber to a final concentration of 34
mg/L sucrose and sodiumnitrate and 114mg/L chloramphenicol.

Acetylene was introduced into the chambers and initial and
final samples were collected the same as described above for N2

fixation assays. The gas samples were analyzed for N2O using
the SRI 8610C Gas Chromatograph with Hayesep D column
and helium or ultra-high purity N2 (for samples analyzed after
February 2019) carrier gas, electron capture detector, and column
oven set to 80◦C ramping to 180◦C after 5min. A 1,000 ppmN2O
standard was used to convert peak height to N2O concentration
following Dodds et al. (2017).

All rates were scaled to surface area. For sediment, the
surface area of the corer was used. Rock area was estimated by
tracing each rock onto paper, then cutting those tracings out and
weighing them, and comparing those weights to a standard curve
created by weighing squares of paper with known areas (Bergey
and Getty, 2006).

Water volume in each chamber was measured, and all rocks
were scrubbed in that water to remove algae. Subsamples of
the scrub water were filtered through pre-ashed GF/F filters
(0.7µm) and frozen. To measure chlorophyll a concentration,
filters were later extracted in 95% ethanol for 8–24 h. Using
a spectrophotometer, absorbances were measured at 664, 665,
and 750 nm. The samples were acidified with 0.1N HCl and
absorbance was measured again (Nusch, 1980; APHA, 2005).
Filters with remaining extract and sediment from the chambers
were dried in a 60◦C oven for 48 h, then combusted at 500◦C
for 4 h to measure ash free dry mass (AFDM). AFDM and
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chlorophyll concentrations were scaled up from subsample
to total water volume, then normalized by dividing by rock
surface area.

Water chemistry was analyzed for each sampling date
according to APHA (2005). Water was filtered through 0.45µm
membrane filters and stored on ice until return to the lab
where the samples were frozen. Analysis included soluble reactive
P (SRP), total dissolved P (TDP), NO−

3 + nitrite (NO−

3 +

NO−

2 ), NH+

4 , total dissolved N (TDN) and DOC. NO−

3 +

NO−

2 and SRP were analyzed using a SEAL AQ2 discrete
water analyzer. NO−

3 + NO−

2 used AQ2 method EPA-127-
A Rev. 9, and SRP used AQ2 method EPA-155-A Rev. 0.
Filtered water samples were acidified to pH < 2 and sent
to Michigan Tech’s Laboratory for Environmental Analysis of
Forests (LEAF) core facility which used a Shimadzu TOC-VCSN
with a total N module TNM-1 (Shimadzu Scientific Instruments,
Columbia, Maryland) for DOC and TDN analysis. Dissolved
Organic N (DON) was calculated by subtracting NO−

3 +

NO−

2 and NH+

4 concentrations from TDN concentrations. TDP
concentration was analyzed using the molybdenum—antimony
method following an ammonium persulfate digestion (APHA,
2005).

Discharge was determined using a USGS installed gauge
(USGS 04043016 PilgrimRiver at Paradise RoadNear Dodgeville,
MI: May 2017–June 2018) and by measuring directly using a
Marsh McBirney Flo-mate (May 2017–May 2019). The Flo-mate
was attached to a wading rod to measure velocity (m s−1) at
0.6 ∗ stream depth (m) at 10 equidistant points on a transect
of the stream perpendicular to shore. The area of each segment
was determined by multiplying segment width by segment depth.
Discharge in each segment was determined by multiplying
velocity by segment area, then added together across all segments
to get total discharge (m3/s). Canopy cover was measured using
a spherical densitometer (Lemmon, 1956). Photosynthetically
active radiation (PAR) was retrieved from the Upper Great
Lakes Observing System station located at Michigan Tech’s Great
Lakes Research Center (station name GLRCMET; http://uglos.
mtu.edu/), which is ≈3 km from the study site. A MiniDO2T
logger from PME was deployed to continuously measure O2

and temperature at the site, and open water metabolism,
which includes gross primary production (GPP) and ecosystem
metabolism (ER), was modeled using the StreamMetabolizer
software package (Appling et al., 2018; github.com/USGS-
R/streamMetabolizer).

Calculations and Statistical Analyses
Differences in rates between seasons were assessed using Multi
Response Permutation Procedure (MRPP) with the Vegan
package in R (Oksanen et al., 2019). This non-parametric
approach allowed us to determine if points grouped to our
specified categories based on a set of variables provided (Warton
et al., 2012). Based on a Euclidean distance measure, MRPP
determined if the distance of points among groups was different
from the distance of points within groups, which is reported as
the parameter A (significance determined as p < 0.05). First, to
ensure the selected seasonal ranges were distinct we used aMRPP
to determine if there was grouping in sampling dates by season

based on environmental variables. Because MRPP requires no
gaps in datasets, the environmental variables were selected based
on how important they are in representing seasonality and how
complete the dataset was, and included PAR, water temperature,
DOC, TDN, NO−

3 +NO−

2 , SRP, and TDP. Principle components
analysis (PCA) was used to describe the environmental variables
that were driving the separation between groups by observing
the loadings in the first component. PCA was run using the
stats package in R (R Core Team, 2020). Following the seasonal
categorization, we then performed 4 additional MRPP for
denitrification rates on rocks, denitrification rates in sediment,
N2 fixation rates on rocks, and N2 fixation rates in sediment to
see if they also grouped by season.

To address question 2 about how denitrification and N2

fixation rates vary daily and in their response to hydrological
disturbances, we calculated daily change and used MRPP to
assess whether it was different among seasons. Daily change was
calculated as:

daily change = abs(Xi
− Xi+ 1)

Where abs is the absolute value, Xi is the rate at day i and Xi+1

is the rate one day later. MRPP was performed for daily change
in denitrification rates on rock, denitrification rates in sediment,
N2 fixation rates on rock and N2 fixation rates in sediment to
determine if daily change differed between spring, summer, and
fall. Due to less frequent sampling dates in winter (Table 1), daily
change was not calculated for this season.

Resistance, or themeasure of howmuch a process rate changes
in response to a disturbance, and recovery, or the measure of
how quickly rates return to what they were pre-disturbance,
were calculated for all processes using sampling data collected
daily before and after two large hydrological events that occurred
during the sampling period. In the context of this study, we
predicted that N2 fixation and denitrification processes would be
resistant if the rates did not change before and after a hydrological
disturbance. Resistance was calculated as:

R = 1−
Xbefore − Xafter

Xbefore

Where R is resistance, Xbefore is the rate before a disturbance, and
Xafter is the rate after a disturbance. Values closer to 1 indicate
high resistance, while those closer to 0 indicate low resistance
(Hershkovitz and Gasith, 2013). Recovery or resilience is how
quickly the rates post-disturbance return to pre-disturbance
levels if they decreased because of the disturbance. Recovery for
each rate was calculated as the linear slope of the relationship
between rate and day in the time period directly following the
disturbance (Reisinger et al., 2017).

Environmental factors related to N2 fixation and
denitrification rates on rock and in sediment were explored
using partial least squares (PLS) regression with the pls package
in R (Mevik et al., 2020). All environmental variables were
standardized to mean = 0 and standard deviation = 1. The
PLS used those environmental variables to create components
which described the most variation in relation to rate. We
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FIGURE 3 | Rates ± standard deviation for denitrification (top) and N2 fixation (bottom) on rocks (left) and in sediment (right). Sampling occurred every 2–6 weeks

year-round between May 2017 and May 2019. Additionally, once per season sampling occurred every day over a 1–2-week period.

selected the components which described the most variation
in rate and looked at which environmental variables had the
largest loadings for those components to determine which
environmental variables were most related to rate. We chose
this method because we had a large amount of co-linear
independent variables, and PLS is robust to these collinearities
(Carrascal et al., 2009).

RESULTS

Throughout the year, both rates and environmental variables
ranged greatly (Table 1, Figures 3, 4). Denitrification in sediment
averaged 984.65 ± 1032.46 µg N/m2/h (mean ± standard
deviation; Figure 3) for the entire sampling period, while
N2 fixation on rocks averaged 3.29 ± 7.23 µg N/m2/h.
Discharge measured during sampling averaged 1.18 ± 1.04
m3/s, although this did not encompass high discharge events

as manual measurements were taken only during sampling
events, which could not happen safely during high flow. The
highest discharge recorded by the USGS gauge upstream of
the study reach occurred on 19 Jun 2018, during a 1,000-
year flood event with an estimated maximum discharge of 208
m3/s (T. Weaver, USGS, personal communication; Figure 2).
Additionally, discharge could not be measured during winter or
early spring as the river was ice-covered, although denitrification
rates and other environmental variables were measured in
all seasons.

Seasonal Patterns in N2 Fixation and
Denitrification Rates
MRPP showed significant separation in environmental
conditions between seasons (A = 0.3024, p = 0.001, spring
n = 16, summer n = 19, fall n = 12, winter n = 2) based on
PAR, water temperature, DOC, TDN, NO−

3 + NO−

2 , SRP, TDP
(Figure 5). The 1st principal component explained 35% of the
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FIGURE 4 | Nutrient concentrations during each sampling throughout the sampling period. Y-axis range for each plot matches the range of the data to demonstrate

variation across the study period.

variation (Supplementary Table S1) and was primarily driven by
PAR (0.27), DOC (−0.26), TDN (−0.55), NO−

3 + NO−

2 (−0.33),
SRP (−0.44), and TDP (−0.51). Principal component 2 explained
an additional 27% of the variation and was driven by temperature
(−0.62). However, MRPP showed no seasonal separation for
any of the rates: N2 fixation on rock (A = −0.004098, p = 0.54,
spring n = 24, summer n = 30, fall n = 11, winter n = 4); N2

fixation in sediment (A = −0.002548, p = 0.46, spring n = 26,
summer n = 31, fall n = 12, winter n = 7), denitrification on
rock (A= 0.03522, p= 0.063, spring n= 21, summer n= 31, fall

n= 14, winter n= 5), or denitrification in sediment (A= 0.0225,
p = 0.099, spring n = 27, summer n = 31, fall n = 14,
winter n= 15).

Daily Variation in N2 Fixation and
Denitrification Rates and Their Response
to Hydrological Disturbances
Day-to-day differences in denitrification and N2 fixation could
be both large or small for both rocks and sediment in spring,
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FIGURE 5 | Biplot of environmental characteristics with principal component 1

(PC1) on the x-axis and principle component 2 (PC2) on the y-axis. Points

represent each sampling date and the vectors reflect the loading of each

environmental variable on the PCA axes. Loadings for each PCA component

are reported in Supplementary Table S1.

summer, and fall. For the entire study period the highest daily
change (difference in rates between one day and the next) in
denitrification rates on rock was 5,690µg N/m2/h, denitrification
in sediment was 5,202 µg N/m2/h, N2 fixation on rocks was 38
µg N/m2/h, and N2 fixation in sediment was 27 µg N/m2/h. The
lowest daily changes were 0 µg N/m2/h for both rates on both
substrates (Figure 6). Daily change in denitrification on rocks
was significantly different between the three seasons (A= 0.1369,
p = 0.004, spring n = 18, summer n = 23, fall n = 5), but
not for denitrification in sediment (A = 0.003394, p = 0.41,
spring n = 21, summer n = 19, fall n = 5), N2 fixation on rocks
(A= 0.01658, p= 0.23, spring n= 19, summer n= 20, fall n= 4),
or N2 fixation in sediment (A= 0.01067, p= 0.274, spring n= 20,
summer n= n= 19, fall n= 4).

Two storm events occurred during daily sampling events, on
18 June 2018 and 28 August 2018, for which we could calculate
resistance and recovery. For the 18 June 2018 storm, rates were
measured on 13 June 2018 before the storm, and on 19 June
2018 after the storm, continuing daily for 3 weeks (Figure 7).
However, during that time additional, less severe rain events
occurred. In the 3 weeks following the storm, daily change for
denitrification in sediment (336.5 ± 352.2 µg N/m2/h mean ±

SE) and N2 fixation on rocks (1.5 ± 1.9 µg N/m2/h mean ±

SE) were frequently high, with rates appearing similar to before
the storm (Figure 7). For denitrification in sediment, resistance
was calculated to be 0, with a rate of 415 µg N/m2/h measured
before the storm and 0µg N/m2/h measured after the storm. The
before-storm rate was one order of magnitude lower than the
highest denitrification rate measured over the 3-week recovery
period (3,525 µg N/m2/h; average = 697 µg N/m2/h). Recovery
was 185 N/m2/h/day, with rates increasing from 0 to 970 µg

N/m2/h in 3 days. For N2 fixation on rocks and in sediment
as well as denitrification on rocks, resistance and recovery were
not applicable because rates increased after the storm event.
Similarly, no decline in any of the rates on either substrate was
observed after the 28 August 2018 storm (results not shown).

Environmental Factors Related to Variation
in Denitrification and N2 Fixation Rates
Inorganic N availability and DOC appeared to be the important
driver for denitrification rates, and to a lesser degree for N2

fixation rates. Partial least squares regression showed that 27.52%
of the variation in rates of denitrification in sediment was
explained by Component 1, (n = 88, Supplementary Table S2).
Component 1 was driven by DOC, TDN, and DON with
loadings > 0.4. Component 2 explained an additional 8.74%
with ecosystem respiration and chlorophyll concentration having
loadings > 0.4. For denitrification on rocks, 22.64% of the
variation in rates was explained with the first component (n= 71,
Supplementary Table S3) which was driven by DOC, TDN, and
DON with loadings > 0.4. Component 2 explained an additional
29.56% and was driven by ER and DOC. For N2 fixation on
rocks, 25.87% of the variation in rates was explained with the first
component (n= 71, Supplementary Table S4) which was driven
by TDN, DON, DOC, and ER with loadings > 0.4. Component
2 explained an additional 10.36% and was driven by TDN and
NH+

4 with loadings > 0.4. For N2 fixation in sediment, 15.09%
of the variation in rates was explained with the first component
(n = 90, Supplementary Table S5) which was driven by DOC,
TDN, and NH+

4 with loadings > 0.4. Component 2 explained an
additional 20.54% and was driven by PAR.

DISCUSSION

We found that N cycling processes in the Pilgrim River were
temporally dynamic and resilient to hydrologic disturbances.
Unexpectedly, rates were not significantly different among
seasons; rather, within-season variation and daily changes in rates
were as large as variation among seasons. Day-to-day variation
was high throughout the year, with no discernible difference
between seasons and in response to hydrologic events. Because
rates were so dynamic, traditional methods for calculating
resistance and recovery were not effective and/or potentially
didn’t apply because there was no consistent rate pre-hydrologic
event to compare to post-event. The primary environmental
drivers of this variation appeared to be dissolved inorganic and
organic N concentrations and DOC, although they explained
relatively small amounts of the overall variation in process rates.

Seasonal Patterns in N2 Fixation and
Denitrification Rates
Contrary to the findings of other studies, rates and variation
in N2 fixation and denitrification did not differ seasonally,
although environmental conditions were significantly different
between seasons. Other studies which have examined seasonal
changes found denitrification rates were related to seasonal
shifts in NO−

3 concentration, dissolved O2, and organic C
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FIGURE 6 | Daily change in denitrification and N2 fixation in different seasons. Daily change was significantly different between seasons for denitrification on rocks but

not for the other rate/substrate combinations.

(Christensen et al., 1990; Cabrita and Brotas, 2000; Clément et al.,
2002; Inwood et al., 2005). This relationship was found in many
ecosystems including estuaries and riparian wetlands; however,
seasonal studies are often performed in streams with higher N
concentrations than our study river. The lowNO−

3 concentrations
which were consistent among seasons in the Pilgrim River sets it
apart from these other studies and may explain the lack seasonal
variation in denitrification rates.

Studies of N2 fixation in streams have detected seasonal rate
shifts associated with light, temperature, and N flux. Perhaps the
most complete understanding of N cycling in a single stream
exists for Sycamore Creek in the Sonoran Desert, where seasonal
variation in N2 fixation was detected and correlated with light
and temperature (Grimm and Petrone, 1997). Sycamore Creek is

a desert stream that experiences seasonal drought and year-round
warmer temperatures than the Pilgrim River. The Pilgrim River
also experiences seasonal light and temperature fluctuations;
however, it is located in a temperate forested ecoregion, in general
does not support the growth of large cyanobacterial mats, has
much lower rates of N2 fixation, and has different temperature
ranges and nutrient ratios than Sycamore Creek. Streams in the
subalpine, coniferous forested Sawtooth Mountains of central
Idaho exhibited N2 fixation rates more comparable (10–610
µg N/m2/h) to those measured in the Pilgrim River (0–50 µg
N/m2/h), and in those streams seasonal changes in N2 fixation
rates were related to seasonal changes in N flux (Marcarelli
and Wurtsbaugh, 2009). Comparatively, the Pilgrim River had
higher overall N concentrations than the Sawtooth Mountain
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FIGURE 7 | N2 fixation rate on rock and denitrification rate in sediment before

and after the 1,000-year flood on 18 June 2018 (indicated by vertical dashed

line).

streams, with no apparent seasonal variation. Additionally, for
both denitrification and N2 fixation, the sampling frequency
in most seasonal studies is lower in than in our study of the
Pilgrim River, so that those studies might not encompass the
full variability within a season. This, along with the overall low
rates of N2 fixation and different environmental conditions in
the Pilgrim River, could explain why no seasonal variation in N2

fixation or denitrification was observed in this study.

Daily Variation in N2 Fixation and
Denitrification Rates and in Their
Response to Hydrological Disturbances
Resistance and recovery of lotic systems are difficult to
characterize due to frequent hydrological shifts (Friberg, 2014;
Jaiswal and Pandey, 2021). Large shifts in process rates occurred
day to day; however, unlike we predicted, these shifts did not
result from high discharge events. After the 18 June 2018 storm
event, which was estimated to be a> 1,000-year flood (T.Weaver,
USGS, personal communication) denitrification in sediment did
decrease, but returned to pre-flood rates in 3 days, indicating
a fast recovery. However, the pre-flood rate was also very low
relative to other rates measured over the course of this study,

and the denitrification rates stayed low for almost 2 weeks after
the event. Therefore, simply based on recovery calculations,
the flood appeared to have minimal impact on this process at
this location in this river. N2 fixation showed similar trends to
denitrification in which variation pre and post-flood were similar
and recovery was difficult to decipher. Interestingly, immediately
after the flood N2 fixation rates increased, although we are unable
to tell if that was due to the disturbance or due to normal
daily variation.

As this study was only performed in a single location,
we are unable to draw conclusions about the responses of
these processes to disturbances in the river as a whole, nor
how they may vary among different locations on the river.
Assessing resistance and recovery becomes more complicated
when looking at landscapes because one part of a landscape may
be resistant to a disturbance while another part may not be.
Yet, this broader spatial understanding is necessary for proper
management, and methods are being developed to characterize
the recovery of an entire landscape (Cushman and McGarigal,
2019). For purposes of this study, we do know from other
studies on the Pilgrim River that biogeochemical processes
vary both within and among stream reaches. Schipper (2021)
measured gross primary production, ecosystem respiration and
decomposition at 4 reaches along the Pilgrim River, finding
the rates differed significantly among the different sites due
to changes in water temperature and canopy cover. Eberhard
(2022) measured denitrification and N2 fixation rates in different
substrate patches within a 657m2 reach that included the location
used in the current study and found that rates of N2 fixation
varied relatively little, but rates of denitrification varied 4 orders
of magnitude among patches on a single day. These additional
studies on the same stream show that the variation of rates
for biogeochemical cycles are highly variable both temporally
and spatially.

Environmental Factors Are Related to
Variations in Denitrification and N2 Fixation
Rates
N concentrations and DOCwere the most important explanatory
factors of rate variation using PLS regression, although the
variability explained by a single component was low (15–28%).
As denitrification requires both organic C and N as reactants
(Wall et al., 2005), our findings of DOC, DIN, and DON
are logical to be implicated in the variability of denitrification
and fits with findings of other studies. Sediment AFDM was
not an important variable implicated by PLS, which was
surprising as denitrification requires C. However, we did not
measure DOM, N or P concentrations in the sediment or in
sediment pore water, which may have been more important
indicators than the water column nutrient concentrations that
we did measure. For N2 fixation, both DON and TDN were
implicated in variation of rates. It was interesting that N:P
was not selected as a predictor of N2 fixation, as substantial
prior research suggests that N:P could be a more important
predictor of N2 fixation that N concentration alone (Smith,
1990; Paerl et al., 2016). However, the 1st component of the
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PLS had many variables with high loadings including TDP,
suggesting that variability in N2 fixation rate may coincide with
many different environmental variables. Yet, it is important
to note that this 1st component only explained 23% of the
overall variation.

These results have important consequences for considering
how N cycling processes in northern temperate rivers may
respond to climate change. Two likely environmental shifts that
are expected with climate change in this region are shifts in the
timing and duration of seasons, especially spring and fall (Creed
et al., 2015; Contosta et al., 2016), and increasing frequency
and magnitude of summer storms (Hayden and Hayden, 2003;
Marcarelli et al., 2019). Both of these were inconsequential for
variation in denitrification and N2 fixation rates in this river.
However, climate change could affect these two processes by
alterations to the environmental factors that were related to
variation in process rates through time through direct and
indirect pathways. For example, changing growing seasons could
alter rates of primary production (Barnett et al., 2005; Backlund
et al., 2008; Christiansen et al., 2011), which can in turn alter N
availability (Roberts and Mulholland, 2007), which our analyses
identified as an important explanatory variable for denitrification
and N2 fixation rate. DOC concentrations, which was also related
to denitrification and N2 fixation in our analyses, are increasing
in northern temperate streams globally due to decreases in sulfur
deposition, increased temperatures, and increased precipitation
(Roulet and Moore, 2006; de Wit et al., 2016); however, long-
term changes in DOC concentrations in streams in the Upper
Peninsula ofMichigan, where this study was located, are less clear
(Marcarelli et al., 2019; Meingast et al., 2020). Yet, each of these
environmental drivers explained a relatively small proportion
of the variation in process rates, which poses a challenge for
predicting the responses of N cycling processes that could result
from these changes.

Our results suggest that caution is needed when studying
biogeochemical processes in rivers because the processes
may vary to a greater extent than previously recognized.
Assumptions of predictable seasonal variation are not always
true, and estimating rates based on sampling a single day
may provide gross misestimates based on the magnitude and
frequency of variation in both N2 fixation and denitrification
rates observed in this study. Additionally, the environmental
conditions commonly assumed to control denitrification and
N2 fixation rates such as nutrient concentration, although
relevant, may not be sufficient for evaluating the occurrence
or changes in processes within a single stream. It is likely

these relationships are much more complicated, involving
many predictor variables interacting in ways we do not
yet understand.
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