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With climate change, the amount of global water resources is decreasing

and crop growth patterns are changing. Global food security will face severe

challenges in future. Hence, it is of great significance to study the change in

grain production under climate change and the water resources constraint to

ensure national and regional food security. In this study, a complex system

coupled with the hydrological model, crop model, and optimal regulation

model of water resources has been constructed to explore the changes in

future grain yield in the Yellow River Basin (YRB) under climate change and

the water resources constraint, and further evaluate the future food security

of the basin. The models show good adaptability. The results show that the

precipitation and temperature in the YRB will be higher than the historical level

and show an upward trend in future. On the contrary, runo� and irrigation

water demand in the basin are lower than historical levels. Although the grain

yield would decrease in future, the food security of YRB would be well-

guaranteed. However, the level of food security in di�erent provinces would

be quite di�erent. And some provinces will face serious food security problems

without grain trade. This study will help relevant institutions in the YRB to deal

with possible food security problems in future, and can also provide a reference

for other countries and institutions in the world.

KEYWORDS

climate change,water resources constraint, grain yield (GY), food security, yellow river

basin

Introduction

Global climate change and population growth will seriously threaten food

security (Wheeler and von Braun, 2013). According to the IPCC report on climate

change and land in 2019, the global land temperature increased by an average

of 1.31–1.51◦C from 1880 to 2018. Climate change has changed the water cycle

process and increased the frequency and intensity of extreme climate events and

agricultural disasters, which has a serious impact on global food security (Smith

and Archer, 2020; Lam et al., 2021; Ndiritu and Muricho, 2021). So far, about

820 million people around the world are still malnourished, and more than 2

billion people do not have access to stable and adequate food (FAO, 2019).
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Although global food production has increased significantly in

the past half-century, with the growth of population and the

improvement of human material needs, food security under

climate change is still a common challenge facing all mankind

(Godfray et al., 2010).

Food security is a systematic problem, which will be

affected by social, economic, natural environment, and other

factors (Zhu et al., 2013; Gohar and Cashman, 2016). Climate

change is undoubtedly an important factor affecting crop

yield. Qualitative and quantitative analyses of the impact of

climate change in crop yield are the key to achieve sustainable

agricultural development and ensure national and global food

security (Xu et al., 2021). Many researchers use statistical

methods to estimate the impact of climate change in crop

yield based on historical measured data (Zhang et al., 2008;

Lobell et al., 2011; Zhou and Turvey, 2014). These studies are

qualitative analyses, which can clarify the changing trend of crop

yield in future. In contrast, it is more intuitive to use the crop

model to analyze the impact of climate changes in future crop

yield (Rosenzweig and Tubiello, 1996; Saddique et al., 2020; Xu

et al., 2021). Some key socio-economic factors other than climate

variables in crop production are typically out of consideration

(Challinor et al., 2009). To overcome the disadvantage, scholars

began to consider social and economic factors in the mode

(Challinor et al., 2010; Ye et al., 2013). Chou et al. combined

climate factors and economic factors to construct an economy

climate model (C-D-C), which can not only reveal the non-

linear relationship between economic factors and natural factors

but also quantitatively analyze the impact of climate change in

food production from the perspective of socio-economic change

(Chou and Ye, 2006).

Water resource is undoubtedly one of the important factors

affecting crop yield. Water resources are the basis of agricultural

production and important natural resources to ensure food

security (Harmel et al., 2020). Compared with dryland or rain-

fed agriculture, irrigation has the potential to increase the yield

of most crops by 100–400%, contributing 40% of the world’s

food production on only 20% of the cultivated land (WWA.,

2014). Agricultural production consumes about 70% of the

world’s freshwater resources, which is the industry with the

largest consumption of freshwater resources in the world. In

most developing countries, the proportion has reached 90%

(Wisser et al., 2008; Harmel et al., 2020). The impact of climate

change in the water cycle will affect the supply of irrigation

water. The same is true of the management mode of agricultural

water resources. These factors limit the irrigation water for

crops (Bossio et al., 2010; Smilovic et al., 2019). With climate

change and population growth, water scarcity will be a major

constraint on food growth (ICA, 2012). Hence, the research on

crop yield under climate change and water resources constraints

in future is crucial for national and global food security.

However, the current research is mostly statistical analysis. The

goal of the research is to reveal the correlation and evolution

trend between grain production and climate change. The lack

of mechanism-level research cannot accurately reflect the real

trend of future grain yield changes. The impact of water resource

allocation on grain yield is also not considered in the cropmodel.

In this study, a complex system coupled with the hydrological

model, crop model, and optimal regulation model of water

resources has been constructed considering the impact of water

resources allocation and climate change, which can better reflect

the change process of grain yield from the mechanism level.

In China, agricultural production is potentially threatened

by climate change and related extreme weather events, especially

in basins affected by water scarcity (Wang et al., 2009; Piao et al.,

2010). The impact of climate change on food production in water

shortage basins is often masked, as changes in national food

production are not significant (Zhang et al., 2008). The Yellow

River Basin (YRB) is an important food production area, which

is facing a serious shortage of water resources. The cultivated

area and population in the YRB account for ∼13.0% and 8.6%

of China, respectively, whereas the basin holds only 3% of the

country’s water resources (Cai and Rosegrant, 2004). The grain

output of the nine provinces along the Yellow River reached

234.38 million tons in 2019, accounting for 35.31% of China’s

grain output. With climate change, the water resources in the

YRB continue to decrease, and the share of agricultural water is

often occupied by other departments (Yang et al., 2010, 2012).

Climate change and water shortage are seriously threatening

food security in the YRB and even in China. Hence, it is of great

significance to explore the change in crop yield in the YRB under

climate change and water resources constraints to ensure the

future food security and water security of basin, and to promote

the ecological protection and high-quality development and

construction of the YRB.

Methodology

In this study, the hydrological and meteorological factors

of the YRB under different climate models (CanESM2,

GFDL_ESM2G, and MIROC_ESM_CHEM) and emission

scenarios (rcp2.6, rcp4.5, and rcp8.5) were simulated based on

the statistical down-scale model (SDSM) and ABCD model.

The AquaCrop-OS model was used to calculate the future

agricultural water demand of the YRB under climate change, and

a water resources’ optimization regulationmodel was established

to maximize grain yield. The research route of this study is

shown in Figure 1.

Statistical downscaling model

SDSM is a decision support tool for the assessment of

regional climate change impacts (Wilby et al., 1999, 2002). It

is one of the most widely used statistical downscaling methods

in the world (Tryhorn and DeGaetano, 2011; Hassan et al.,

2014; González-Rojí et al., 2019). The SDSM model mainly
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FIGURE 1

Sketch map of technical route.

consists of two parts. The first is the construction of the

statistical relationship between regional or site-scale predictors

(time series of site climate elements) and large-scale predictors

(atmospheric general circulation factors, NCEP reanalysis data).

Then, the future climate scenarios output by GCM are scaled

down to each meteorological station in the region by using

this statistical relationship, and the future climate variables

(temperature and precipitation) series of each station are

generated. The calculation method is as follows:

ωt = α0 +

n
∑

j=1

αjû
j
t + αt−1ωt−1 (1)

where ωt is the probability of precipitation at time t; α0 and

αj are the regression coefficient of the least squares estimation;

û
j
t is the predictor at time t; αt−1 and ωt−1 are the probability

of precipitation and the corresponding regression coefficient,

respectively, at time t-1.

Set a random function of uniform distribution γt , when

ωt ≤ γt , the precipitation occurs at time t. Precipitation can be

reflected by the Z − score(Zt):

Zt = β0 +

n
∑

j=1

βjû
j
t + βt−1Zt−1 + ε (2)

yt = F−1 [ϕ (Zt)] (3)

where β0 and βj are regression coefficients; βt−1 and Zt−1

are self-correlation coefficients of ωt−1 and αt−1; ϕ (Zt) is the

normal cumulative distribution function; yt is the precipitation.

AquaCrop-OS model

The AquaCrop-OSmodel was used to simulate crop yields in

the YRB under different climate models and emission scenarios

in this study. AquaCrop-OS is the open source version of FAO’s

crop water productivity model, which can be run in multiple

programming languages and operating systems. FAO developed

AquaCrop in 2009 and it is a distributed multi-crop model that

simulates the yield of herbaceous crop types under different

biophysical and management conditions (Raes et al., 2009;

Steduto et al., 2009). The model uses canopy coverage instead

of leaf area index and distinguishes soil evaporation from crop

transpiration, which can better evaluate the impact of water on

yield and crop growth (Vanuytrecht et al., 2014). Compared

with other crop simulation models that require highly detailed

input data and information about crop growth, AquaCrop

requires a relatively small number of parameters to be defined

(Foster et al., 2017). The AquaCrop model has been widely

used in various fields to improve farm irrigation management,

to assess the potential increase in production by a different

management, and assess the impact of climate change in crop

production (García-Vila and Fereres, 2012; Shrestha et al., 2013;

Frontiers inWater 03 frontiersin.org

https://doi.org/10.3389/frwa.2022.908945
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Niu et al. 10.3389/frwa.2022.908945

Vanuytrecht et al., 2014; Pirmoradian and Davatgar, 2019; Kim

et al., 2021). The response of crop yield to water is described by

the following equation:

1−
Yp

YX
= Ky

(

1−
ETp

ETX

)

(4)

where YX and Yp are potential yield and actual yield of

crops, respectively, kg/m2; ETX and ETp are the potential

evapotranspiration and actual evapotranspiration of crops, mm;

Ky is the coefficient of yield response to water. Penman–

Monteith formula recommended by FAO is selected to calculate

reference evaporation ET in this study:

The simulated final yield was represented by aboveground

biomass and harvest index:

Y = B •HI (5)

B = WP •
∑ Tr

ET0
(6)

where Y is the final crop yield, kg/m2; B is the biomass, kg/m2;

HI is the harvest index; WP is the biomass water production

efficiency, kg/(m2·mm); Tr is the crop transpiration, mm. ET0

is the evapotranspiration of reference crops, mm/d. Penman–

Monteith formula recommended by FAO is used to calculate

ET0 in this study.

ABCD model

The ABCD model proposed by Thomas in 1981 is a simple

and efficient conceptual hydrological model with only four

parameters (Thomas, 1981). The main input data of the model

are rainfall and potential evapotranspiration, and the output

data are runoff depth, soil water content, and groundwater

content. ABCD model has the characteristics of the clear

concept, few parameters, easy optimization, and high simulation

accuracy, so it has been widely used in the world (Martinez

and Gupta, 2010; Topalovic et al., 2020; Wang et al., 2020).

ABCD model consists of two water storage components: soil

aquifer and underground aquifer. Their water balance equation

is as follows:

For soil aquifer,

Pt − ETt − DRt − GRt = St − St−1 (7)

where Pt is the precipitation at time t;ETt is the actual

evaporation at time t; DRt is the surface runoff at time t; GRt

is the groundwater recharge at time t; St and St−1 are the soil

water content at time t and t-1, respectively.

For underground aquifer,

Gt + GDt = Gt−1 + GRt (8)

where GDt is the underground runoff at time t; Gt and GDt−1

are the groundwater storage at time t and t-1, respectively.

Optimal regulation model of water
resources

In this study, a two-layer optimal regulation model of water

resources was constructed to ensure the supply of irrigation

water. The outer model is the optimal operation model of

cascade reservoirs, which aims to realize the redistribution of

water resources in space and time. The inner model is the

optimal allocation model of water resources, which aims to

allocate water resources reasonably to different sectors, such as

industry and agriculture. Following the current water resources

allocation principles in the YRB, the water supply priorities

of different sectors are as follows: domestic, industry, ecology,

and agriculture (Cai and Rosegrant, 2004; Yang et al., 2012;

Wang et al., 2020). The inner model can be solved by the

linear optimization method. Different coefficients were set in

the process of linear optimization to reflect the water supply

priorities of different sectors.

Based on the optimal regulation model of water resources

and AquaCrop-OS model, taking the maximum grain yield

of the basin as the goal, the objective function, and main

constraints are as follows:

For the objective function,

W = maxY =

n
∑

i=1

f (xa,i,1, xa,i,2, . . . xa,i,t) (9)

whereW is the objective function of the outer layer optimization

model; Y is the total grain yields of all nodes in the basin; n is

the number of nodes with irrigation water demand; xa,i,t is the

irrigation water supply of node i at time t; f (xi,1, xi,2, . . . xi,t) is

the grain yield of node i. Input the irrigation water supply series

of node i into the AquaCrop-OS model to obtain the crop yield

f (xi,1, xi,2, . . . xi,t) in its production cycle.

As the main constraints,

Qout,t = Qin,t − Qwc,t + (

T
∑

t=1

VS,t −

T
∑

t=1

VE,t)/T (10)

where Qout,t and Qin,t are the outflow and inflow of the basin,

respectively; Qwc,t is the water consumption of water sector s in

the basin; and VS,t and VE,t are the initial and end capacity of

the cascade reservoirs at time t .

Zdi,t ≤ Zi,t ≤ Zui,t (11)

here, Zi,t is the water level of reservoir i at time t, and Zdi,t and

Zui,t are the lower and upper limit water levels of reservoir i at

Frontiers inWater 04 frontiersin.org

https://doi.org/10.3389/frwa.2022.908945
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Niu et al. 10.3389/frwa.2022.908945

time t, respectively.

Nmin i,t ≤ Ni,t ≤ Nmaxi,t (12)

here, Nmini and Nmaxi are the guaranteed output and installed

capacity of reservoir i, respectively; Ni,t is the generated output

of reservoir i at time t.

qmin i,t ≤ q
i,t

≤ qmax i,t (13)

Here, qmin i,t is the minimum discharge of reservoir i at time

t considering ecological base flow (Lu et al., 2021). qmax i,t is

the maximum discharge of reservoir i at time t considering

the maximum discharge capacity of reservoir and flood (ice)

prevention (Jin et al., 2019).

Take three nodes at the downstream of reservoir A as an

example. The water discharged from the reservoir flows through

nodes 1, 2, and 3 in turn. The objective function and constraint

conditions of the linear optimization model of water resources

(inner optimization model) are as follows:

Objective function

Max f
(

xk,i,t
)

=

3
∑

i=1

αk,i • xk,i,t (14)

Constraint conditions



















0 ≤ xk,1,t ≤ In1,t + RDt

0 ≤ xk,1,t + xk,2,t≤ In1,t + In2,t + RDt

0 ≤
∑3

i=1 xk,i,t ≤ In1,t + In2,t + In3,t + RDt

0 ≤ xk,i,t ≤ wdk,i,t

(15)

Here, i= 1, 2, and 3 represent three nodes, respectively. k=d, i, e,

or a represents domestic, industrial, ecological, and agricultural

water sectors, respectively. αk,i is the weight coefficient of sector

k of node i, αd,i > αi,i > αe,i > αa,i. xk,i,t is the water supply of

sector k of node i at time t. RDt is the discharge flow of Reservoir

A at time t. Ini,t is the self-produced water in the area where node

i is located at time t. wdk,i,t is the water demand of sector k of

node i at time t.

Study area and data

The Yellow River flows through the nine provinces of

Qinghai, Sichuan, Gansu, Ningxia, Inner Mongolia, Shaanxi,

Shanxi, Henan, and Shandong, and involves 68 municipalities

and 45 catchment areas (Figure 2). The YRB is divided into 264

nodes according to administrative divisions and natural sub-

basins. Among them, 183 nodes have water demand and 164 of

these nodes have irrigation water demand.

The meteorological data used in this study came from

China Meteorological Sharing Network, and the missing data

of some stations were interpolated and extended by the data

of neighboring stations. The regional soil geological data in

the basin are from the Institute of Geosciences and resources,

Chinese Academy of Sciences (http://www.igsnrr.ac.cn/). The

soil hydrological characteristics data are extracted from the soil–

water characteristics module of SPAW software according to the

soil texture.

The crop data mainly refer to China’s Major Crop

Water Requirement Isoline Map, China’s Major Crop Water

Requirement and Irrigation and China Water Saving and

Irrigation Network (http://www.jsgg.com.cn/Index/Index.asp).

Socio-economic data (population, grain yield, effective irrigated

area, grain sown area, total power of agricultural machinery, etc.)

come from the Yellow River Basin Agricultural Yearbook and

the statistical yearbook of provinces and prefecture-level cities

in the basin.

The data on water demand of the YRB in 2030 come from

the Comprehensive Planning of Water Resources in the Yellow

River Basin, and the data on historical water consumption

come from the Bulletin of Water Resources of the Yellow River

Basin. The runoff data are from the Third National Survey and

Evaluation of Water Resources and are provided by the Yellow

River Water Resources Commission (YRWRC).

Results and discussion

Validation and calibration of models

Validation of the SDSM model

In this study, the SDSM model was used to downscale

the future climate scenario data output by GCM to generate

the meteorological data series of each main station in the

YRB. On the basis of existing studies, we selected CanESM2,

GFDL_ESM2G, and MIROC_ESM_CHEM climate models. In

order to verify the adaptability of the three climate models in

the YRB, monthly precipitation, and maximum and minimum

temperature of each model from 1970 to 2005 in the YRB were

counted and compared with the measured meteorological data,

as shown in Figure 3.

It can be seen that the correlation coefficients between

the precipitation of the three climate models and measured

precipitation in the YRB are all above 0.74, and the correlation

coefficients between maximum and minimum temperature of

the three climatemodels andmeasured temperature are all above

0.9. There is a high consistency between the data of the three

climate models and measured data. The downscaling data of

CanESM2, GFDL_ESM2G, and MIROC_ESM_CHEM models

can well-characterize the climatic characteristics of the YRB.

Calibration and validation of the AquaCrop-OS
model

Wheat, corn, and rice are the most important grain crops

in China, accounting for 80–90% of China’s grain output. The
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FIGURE 2

The map of YRB.

same is true in the YRB. Hence, this study takes wheat, corn, and

rice as the research objects to predict the future grain yield of

the YRB under climate change and water resources constraint.

Wheat is divided into spring wheat and winter wheat according

to its variety and planting period. Similarly, corn is divided into

summer corn and spring corn. The AquaCrop-OS model was

used to simulate the yields of these five crops under different

climate models and emission scenarios in the YRB.

OAT (One factor at one time) method was used to analyze

the sensitivity of various parameters of the model (Pujol,

2009; Saltelli and Annoni, 2010). Adjusting the more sensitive

parameters can increase the efficiency of parameter adjustment.

RS =

∣

∣

∣

∣

∣

∣

[y(x+x)−y(x)]
y(x)
x
x

∣

∣

∣

∣

∣

∣

(16)

Here, RS is the relative sensitivity of parameters; x is the value

of a parameter; x is the variation of the parameter, x = 0.1x;

y (x+ x) and y (x) are the simulation values of the model before

and after the parameter change, respectively.

Through parameter sensitivity analysis, 13 more sensitive

parameters were selected, including duration from sowing

to seedling emergence (Emergence), duration from sowing to

senescence (Senescence), duration from sowing to maturity

(Maturity), duration from sowing to yield formation (HIstart),

duration of flowering (Flowering), crop coefficient from crop

canopy formation to senescence (Kcb), maximum canopy

coverage (CCx), maximum effective root depth (Zmax), number

of crops per hectare (PlantPop), canopy growth coefficient

(CGC), canopy damping coefficient (CDC), normalized water

productivity (WP), and reference harvest index (HI0).

The above model parameters are calibrated by the manual

trial and error method. Precipitation is one of the main factors

affecting crop growth. The accuracy of the model was tested

by comparing the simulated crop yield and statistical crop

yield of YRB (68 Prefecture-level cities) under two precipitation

frequencies (50% and 75% level years) and the same irrigation.

The coefficient of determination (R2), standardized root mean

square error (NRMSE), and synergy index (d) were used to

evaluate the adaptability of the model to wheat, corn, and rice

in the YRB. As shown in Table 1, only under 50% precipitation

frequency, the determination coefficient R2 of simulated and

measured spring maize yield is <0.9. Under 50% and 75%

precipitation frequency, the standardized root mean square

error NRMSE simulated and measured yield values of five crops

are<20% and synergy index d of them is more than 0.9, which is

considered to be a good fitting effect. The AquaCrop-OS model

has good adaptability to wheat, corn, and rice in the YRB.
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FIGURE 3

Comparison of measured and estimated values in the YRB from 1970 to 2005 in di�erent models (A) monthly precipitation; (B) monthly

maximum temperature; (C) monthly minimum temperature.

TABLE 1 The adaptability evaluation of the AquaCrop-OS model.

Winter wheat Spring wheat Summer corn Spring corn Rice

50% 75% 50% 75% 50% 75% 50% 75% 50% 75%

R2 0.97 0.98 0.97 0.98 0.92 0.96 0.84 0.91 0.92 0.91

NRMSE (%) 9.14 8.31 8.64 8.79 8.03 5.18 16.12 13.63 5.66 5.95

d 0.99 0.99 0.99 0.99 0.96 0.98 0.90 0.95 0.95 0.94

Calibration and validation of the ABCD model

The period from 1975 to 1990 is selected as the periodic

rate and the period from 1991 to 2000 as the validation

period to evaluate the adaptability of the ABCD model in the

YRB. The Nash–Sutcliffe efficiency (NSE) and coefficient of

determination (R2) of Tangnaihai, Lanzhou, Toudaoguai, and

Lijin sections are shown in Table 2. The NSE of four sections

is >0.6 and R2 is >0.75. It can be seen that the simulation

accuracy of the calibration period is better than that of the

validation period, which may be attributed to the fact that the

ABCD model constructed in this study is a conceptual lumped

hydrological model. With the in-depth influence of climate and

underlying surface changes, the model performance changes,

but better simulation accuracy can be obtained. In general,

the ABCD model constructed in this study can better simulate

the hydrological process of the basin. Because the influence of

human activities on the underlying surface is not considered, the

simulation accuracy is limited, but it can be used to simulate

Frontiers inWater 07 frontiersin.org

https://doi.org/10.3389/frwa.2022.908945
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Niu et al. 10.3389/frwa.2022.908945

TABLE 2 The adaptability evaluation of the AquaCrop-OS model.

Calibration periods Validation periods

(1975–1990) (1991–2000)

NSE R
2 NSE R

2

Tangnaihai 0.71 0.87 0.65 0.85

Lanzhou 0.79 0.89 0.72 0.88

Toudaoguai 0.62 0.8 0.61 0.87

Lijin 0.61 0.75 0.56 0.75

the hydrological process of the basin and scientifically and

reasonably assess the amount of water resources in the basin.

Evolution of climate and irrigation water
demand under climate change

The change in precipitation and temperature
under climate change

Considering the uncertainty of climate change, we selected

three emission scenarios (RCP2.6, RCP4.5, and RCP8.5) to

characterize the evolution of precipitation and temperature in

the YRB in future. RCP2.6, RCP4.5, and RCP8.5 represent

low, medium, and high emission scenarios, respectively. Under

different emission scenarios of the three climate models, the

annual precipitation and annual average temperature in the YRB

from 2020 to 2050 are shown in Figure 4 and Table 3. Under

different climate models and emission scenarios, the multi-year

average annual precipitation and temperature in the YRB from

2020 to 2050 are higher than the reference period. The CV of

annual precipitation and annual average temperature deviation

coefficient is less than that of the reference period. It shows that

the future precipitation and temperature will rise and become

more stable. The annual precipitation and annual temperature

under different climate models and emission scenarios all

showed an increasing trend.

The change in runo� and irrigation demand
under climate change

The ABCD model is used to predict the runoff of the

YRB from 2020 to 2050. The annual runoff process is shown

in Figure 5. The runoff of the YRB in future will be the

largest under the MIROC_ESM_CHEM mode and the smallest

under GFDL_ESM2G mode. The runoff of the YRB under

the MIROC_ESM_CHEM mode shows an obvious upward

trend, and the variation trend of runoff under other modes is

not obvious. With strong consistency, the runoff of the YRB

is significantly lower than the historical level under different

climate models and emission scenarios. The reduction of runoff

will undoubtedly aggravate the conflict of water resources in the

basin. Agriculture with lower water supply priority will be more

affected than the rest of the water sector. This will directly affect

the future food security of the basin.

The irrigation mode of the AquaCrop-OS model was set

as net irrigation to simulate the future agricultural irrigation

water demand of the YRB. It should be noted that the irrigation

water demand in the paper is the water demand of surface

water after deducting the recoverable amount of groundwater.

Under different emission scenarios of the three climate models,

the irrigation water demand inside the YRB from 2020 to 2050

is shown in Figure 5 and Table 4. Irrigation water demand of

the CanESM2 model is the smallest, mainly due to the highest

precipitation of the CanESM2 model in the three climatic

models. The greater the precipitation, the greater the effective

precipitation, the smaller the irrigation water demand. The

multi-year average irrigation water demand under the three

climate models is less than the historical measured value of

25.71 billion cubic meters (1990–2016). The main reasons are

as follows: referring to the Comprehensive Planning of Water

Resources in the Yellow River Basin, the coefficient of utilization

of irrigation water in the model is 0.61, which is higher than

the historical value; precipitation increased in 2020–2050 under

the three climatic models; with the increase of temperature,

crop growth period and irrigation date will advance, and the

number of days requiring irrigation will shorten, thus reducing

irrigation water demand. And irrigation water demand showed a

downward trend under different climatic patterns and discharge

scenarios for the same reason from 2020 to 2050.

Evaluation of future food security in the
YRB under climate change and water
resources constraint

In order to ensure food security as much as possible,

this study constructed the optimal regulation model of water

resources with the goal of maximum grain yield in the YRB.

LYX, LJX, GX, and XLD on the mainstream of the Yellow

River were selected to participate in the outer layer optimization

model. The principles of optimal allocation of water resources

are as follows: priority should be given to meeting the domestic,

industrial, and ecological water demands of each node, and

then irrigation and other agricultural water demands; when

the high priority water demand of downstream node is not

satisfied, water resources will not be used to meet the low

priority water demand of upstream node. There is a time-

scale mismatch between the optimal regulation model of water

resources (monthly scale) and the AquaCrop-OS model (daily

scale). Constrained by the monthly irrigation water supply, the

irrigation water supply on each day of the month was optimized

and the grain yield was calculated by the nested AquaCrop-

OS model.
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FIGURE 4

The annual precipitation and annual average temperature in the YRB for 2020–2050.

TABLE 3 The characteristic values of precipitation and temperature in the YRB for 2020–2050.

CanESM2 GFDL_ESM2G MIROC_ESM_CHEM Base period 1970∼2005

RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5

Precipitation Ex (mm) 480.6 475.3 469.2 467.9 477.9 477.9 470.1 501.4 480.3 465.9

CV 0.06 0.07 0.06 0.06 0.07 0.05 0.08 0.08 0.06 0.11

Temperature Ex (◦C) 8.95 8.99 9.18 8.22 8.41 8.49 8.87 8.56 8.95 8.04

CV 0.04 0.04 0.06 0.03 0.04 0.04 0.04 0.05 0.06 0.07

Optimal allocation of irrigation water

The year 2030 was selected as the representative year for

the case study. The multi-year average proportion of irrigation

water demand in agricultural water demandwas used to estimate

the agricultural water demand of each province. The data on

domestic, industrial, and ecological water demand are derived
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FIGURE 5

The annual runo� and annual irrigation water demand in the YRB for 2020–2050.

TABLE 4 The multi-year average irrigation water demand in YRB from 2020 to 2050 (108 m3).

Province CanESM2 GFDL_ESM2G MIROC_ESM_CHEM

RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5

Qinghai 0.72 0.68 0.74 0.75 0.83 1.08 1.17 1.22 1.00

Sichuan 0.01 0.01 0.03 0.02 0.02 0.01 0.02 0.01 0.03

Gansu 12.24 12 15.86 16.07 16.54 14.93 15.88 15.99 16.04

Ningxia 25.11 24.65 27.88 27.83 27.74 26.1 27.44 27.85 26.85

Inner Mongolia 57.28 57.18 59.64 60.91 58.34 60 63.53 63.58 62.05

Shaanxi 27.41 28.64 31.74 30.79 29.68 29.85 32.75 32.39 32.38

Shanxi 39.64 40.26 45.85 46.9 45.8 45.2 46.17 46.57 46.35

Henan 30.58 30.9 31.34 30.16 30.24 32.32 34.33 34.48 31.74

Shandong 17.56 17.24 16.43 18.79 18.91 19.54 18.4 17.17 16.57

Total 210.55 211.56 229.51 232.22 228.10 229.03 239.69 239.26 233.01
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TABLE 5 The agricultural water supply in the YRB.

Province CanESM2 GFDL_ESM2G MIROC_ESM_CHEM

RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5

Qinghai 0.43 0.52 0.92 0.83 0.75 1.07 1.48 0.46 0.50

Sichuan 0.02 0.00 0.02 0.02 0.05 0.00 0.02 0.02 0.04

Gansu 6.94 6.89 9.12 12.32 11.75 9.22 8.75 8.13 11.36

Ningxia 7.09 6.08 8.28 8.26 8.68 7.53 7.82 7.46 7.58

Inner Mongolia 32.81 36.71 35.81 35.47 39.71 34.17 35.03 35.72 37.61

Shaanxi 19.91 19.06 18.08 27.63 24.33 22.85 26.18 19.37 24.42

Shanxi 27.25 26.82 28.67 29.45 33.81 30.89 32.06 28.18 28.33

Henan 35.89 30.06 25.72 31.81 28.66 32.45 34.09 28.85 30.64

Shandong 56.15 45.84 41.43 56.52 49.44 51.91 48.53 42.42 39.31

Hebei-Tianjin 6.06 5.17 4.55 6.24 5.67 5.79 5.34 4.79 4.18

Total 192.55 177.15 172.60 208.55 202.85 195.88 199.30 175.40 183.97

from the Comprehensive Planning of Water Resources in the

Yellow River Basin. The agricultural water supply of the YRB

is shown in Table 5. It can be seen that under different climate

models and emission scenarios, the agricultural water supply

in Sichuan Province is the smallest, all below 5 million m3;

Shandong Province has the largest agricultural supply, exceeding

3.9 billion m3, mainly due to large amount of water supply

outside the YRB. Due to the high irrigation demand index of

Inner Mongolia, its agricultural water supply is second only

to Shandong Province. The decrease in irrigation water will

seriously affect grain production in InnerMongolia and threaten

food security; Hebei and Tianjin are located outside the river

basin. The water supply to Hebei and Tianjin belongs to the

water supply outside the basin.

Evaluation of future grain yield and grain
security

According to the Comprehensive Planning of Water

Resources in the Yellow River Basin, by 2030, the effective

irrigation area of farmland in the YRB will reach 5.798 million

hectares. The population of the YRB in 2030 is calculated by

using the average annual population growth rate of 0.25% (Guo

et al., 2021;Meng et al., 2021). It is assumed that the grain sowing

area and planting structure in 2030 are the same as those in 2017,

and the cultivated land planted with other crops (such as potato,

pea, etc.) is changed to corn. The standards of food security level

are shown in Table 6 (Yao et al., 2015). The standard has good

universality in China and is based on the research on national

conditions. Table 7 shows the grain yield and food security level

under different scenarios of three climate models of YRB in

2030. It can be seen that the grain yield under GFDL_ESM2G

mode is the largest, while that under the MIROC_ESM_CHEM

mode is the smallest. The grain yield under the RCP2.6 scenario

was the highest, followed by the RCP8.5 scenario. Grain yield

TABLE 6 The grading of food security.

Per capita share of grain (kg/p) Food security level

<350 Insecurity

350∼400 Basic meet

400∼450 Security

450∼500 Well-off

≥500 Affluent

in 2030 is lower than historically. There are many factors

affecting grain yield. Global warming will further worsen the

soil environment and reduce grain yield. Climate change has a

complex impact on grain yield. Increased CO2 concentration

will inhibit crop respiration consumption, thus accumulating

more photosynthates and increasing crop yield. However, higher

temperature will shorten the growth period and vegetative

growth period of crops, reduce the accumulation of dry matter,

and reduce grain yield. On the whole, climate change has a more

negative impact on grain yield than a positive impact. Although

the future grain production will decrease due to climate change,

for the YRB, the per capita share of grain under all climate

models and emission scenarios is >400 kg/p, and the food

security level reaches a security or well-off level.

Food security evaluation of provinces

There are huge differences in natural endowments and

socio-economic development among the provinces in the YRB.

Although in the case of YRB, the food security level is reached

at security and above in future, the situation in some provinces

within YRB is not optimistic. As shown in Table 8, under

different climate models and emission scenarios, the per capita

grain occupancy in Qinghai, Sichuan, and Shaanxi is <350
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TABLE 7 The grain yield and food security evaluation of YRB.

Climate model Emission

scenario

Agricultural water

Supply (108m3)

Water

deficient Ratio

(%)

Grain yield

(106 ton)

Per

capita share of

grain (kg/p)

Food security level

CanESM2 RCP2.6 192.55 35.33 101.17 459.76 Well-off

RCP4.5 177.16 38.81 98.89 449.41 Security

RCP8.5 172.6 43.39 99.33 451.39 Well-off

GFDL_ESM2G RCP2.6 208.56 35.34 104.84 476.43 Well-off

RCP4.5 202.87 33.79 98.4 447.18 Security

RCP8.5 195.89 37.86 99.69 453.05 Well-off

MIROC_ESM_CHEM RCP2.6 199.31 37.62 93.01 422.7 Security

RCP4.5 175.4 45.10 88.53 402.31 Security

RCP8.5 183.97 37.89 92.30 419.48 Security

kg/ person in 2030, indicating that the food security level is

insecurity. The food security level in Shanxi Province also just

reached the Basic meet. On the contrary, the food security level

in Ningxia, Inner Mongolian, Shandong, and Henan Provinces

is maintained at security and above.

Water resources are more abundant in the upstream YRB,

but from Figure 6, the future food security level in provinces

located upstream is insecure. Upstream provinces, although

vast, have very little cultivated land in the province due to

ecological conservation and so on. As shown in Figure 7, the

proportion of the population in Qinghai Province, Sichuan

Province, and Gansu Province is higher than that of cultivated

land. This is the main reason for the low level of food security.

The situation is the same in Shaanxi and Shanxi Provinces. On

the contrary, Ningxia and Inner Mongolia are vast and sparsely

populated, the proportion of cultivated land is greater than that

of population, and the food security of the two provinces will

remain at a high level in future.

Water resources are also the main factor affecting grain

production. Although Qinghai and Gansu Provinces are rich in

water resources, due to the high terrain and the lack of necessary

water diversion projects, these have caused great difficulties for

irrigation. In contrast, Inner Mongolia and Ningxia Provinces

are short of water resources, with an annual average runoff

of <200 million cubic meters. However, there are many water

diversion projects in Inner Mongolia and Ningxia Provinces.

Although the irrigation water requirement is very large, it can

be well-guaranteed, thus the food security of the two provinces

is also well-guaranteed. Of course, there are many factors that

affect food production. For example, Henan Province has a

higher proportion of the population than cultivated land, but its

productivity is developed and it is an important grain-producing

province in China. Therefore, its food security level is high. The

mismatch of water resources population and cultivated land is

also a key problem in the YRB. The rational development of

the upstream cultivated land resources and the construction of

water diversion projects are the key to solving the problem of

food security in the YRB.

Conclusion

Food security has always been a hot topic in the world, which

has a great impact on social stability and development. In this

study, a complex system coupled with the hydrological model,

crop model, and optimal regulation model of water resources

has been constructed to explore the changes in future grain

yield in the YRB under climate change and the water resources

constraint, and further evaluate the future food security of the

basin. Compared with the traditional statistical analysis, this

study considers the impact of water resources allocation and

climate change in grain yield, which can better reflect the change

process of grain yield from the mechanism level, rather than

simply statistical correlation. The main conclusions of the study

are as follows:

(1) The results show that each model shows good

adaptability. The temperature and precipitation in the YRB show

an upward trend in future under different climate models and

emission scenarios. However, the runoff in the basin, that is, the

amount of surface water resources, will decline in future and

show a downward trend.

(2) Affected by climate change, the irrigation water demand

in the basin shows a downward trend and is lower than the

historical level. In addition to climate change, the progress

of water-saving irrigation technology and the improvement of

irrigation water utilization coefficient may be the main reasons

for the reduction of irrigation water demand.

(3) Despite the reduction of food production, the future food

security of the YRB can be basically guaranteed, and the food

security level is at or above the Security level under different

climate models and emission scenarios. But it does not mean

we can rest easy. Due to the mismatch of water resources
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TABLE 8 The per capita share of the grain of provinces in YRB.

Province CanESM2 GFDL_ESM2G MIROC_ESM_CHEM

RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5 RCP2.6 RCP4.5 RCP8.5

Qinghai 277.89 273.62 282.27 260.64 221.83 263.43 268.35 260.99 248.11

Sichuan 126.99 128.51 129.32 108.15 117.36 110.86 107.17 115.25 105.02

Gansu 350.05 318.74 335.07 365.92 354.37 339.62 341.49 330.62 366.66

Ningxia 503.38 502.73 450.68 499.97 452.29 508.77 487.11 504.22 481.91

Inner Mongolia 451.79 410.61 402.71 438.41 449.04 431.42 462.06 425.75 403.71

Shaanxi 319.62 316.10 317.28 323.60 326.77 316.02 324.76 321.34 319.96

Shanxi 377.61 373.86 361.44 392.06 387.25 361.27 377.85 370.26 373.88

Henan 500.54 477.30 477.56 543.93 513.02 494.36 483.67 483.70 498.24

Shandong 630.32 634.58 649.83 648.70 571.40 632.09 500.32 439.62 488.72

FIGURE 6

The spatial food security level in the YRB in 2030.

population and cultivated land and the difference in production

capacity, some provinces in the basin will still face serious food

security problems in future. This problem can be solved through

grain trade between provinces, but it undoubtedly needs to pay

additional costs, such as transportation costs. And there are

many uncertainties and human impacts in the grain trade.

This study will help relevant institutions in the YRB to

deal with possible food security problems in future, and can

also provide a reference for other countries and institutions in

the world. However, some limitations of this study need to be

addressed. We chose nine scenarios to simulate future climate

change, which cannot fully characterize the possibility of future

climate change. It is assumed that the grain sowing area and

planting structure in 2030 are the same as those in 2017, and

the cultivated land planted with other crops is changed to corn.

Different models have differences in time scales, which we have

simply dealt with. Grain trade is not taken into account in this

study. These deficiencies will be improved in further research.
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FIGURE 7

Proportion of population and cultivated land area of provinces in the YRB.
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