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The Himalaya plays a vital role in regulating the freshwater availability for nearly a

billion people living in the Indus, Ganga, and Brahmaputra River basins. Due to

climate change and constantly evolving human-hydrosphere interactions, including

land use/cover changes, groundwater extraction, reservoir or dam construction, water

availability has undergone significant change, and is expected to change further in the

future. Therefore, understanding the spatiotemporal evolution of the hydrological cycle

over the Himalaya and its river basins has been one of the most critical exercises

toward ensuring regional water security. However, due to the lack of extensive in-situ

measurements, complex hydro-climatic environment, and limited collaborative efforts,

large gaps in our understanding exist. Moreover, there are several significant issues

with available studies, such as lack of consistent hydro-meteorological datasets, very

few attempts at integrating different data types, limited spatiotemporal sampling of

hydro-meteorological measurements, lack of open access to in-situ datasets, poorly

accounted anthropogenic climate feedbacks, and limited understanding of the hydro-

meteorological drivers over the region. These factors result in large uncertainties in our

estimates of current and future water availability over the Himalaya, which constraints

the development of sustainable water management strategies for its river catchments

hampering our preparedness for the current and future changes in hydro-climate.
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To address these issues, a partnership development workshop entitled “Water sEcurity

assessment in rIvers oriGinating from Himalaya (WEIGH),” was conducted between the

07th and 11th September 2020. Based on the intense discussions and deliberations

among the participants, the most important and urgent research questions were

identified. This white paper synthesizes the current understanding, highlights, and the

most significant research gaps and research priorities for studying water availability in

the Himalaya.

Keywords: himalayan glaciology, himalayan hydroclimate, glacier mass balance, climate–change, third pole

environment

WATER IN THE HIMALAYA ALONG
DIFFERENT DIMENSIONS

The Himalaya consists of the highest mountains in the world,
its orogeny leading to unique geomorphology has given rise to
many complex processes such as river meandering, snow-glacier-
permafrost interactions, Indian winter and summer monsoons
(c.f. Figure 1; Bookhagen and Burbank, 2006; Dimri et al.,
2015). The Himalaya is also known as the Third Pole as they
contain a large amount of frozen water outside the polar region,
which together with the Indian summer and winter monsoons
(Dimri et al., 2016; Maharana et al., 2019), ensures that the
rivers originating from the Himalaya plausibly never run dry
(c.f. Figure 1; Bolch et al., 2019a; Immerzeel et al., 2020).
Therefore, these river systems are crucial for supporting the
agrarian societies and hydro-power needs of the downstream
nations (Dame and Nüsser, 2011; Nüsser et al., 2012; Azam et al.,
2021). Precipitation and temperature gradients across and along
the Himalaya in conjunction with ridge-valley floor interactions
lead to complex manifestation and physical orographic forcings
(Bookhagen and Burbank, 2010; Thayyen and Dimri, 2018;
Banerjee et al., 2020, 2021). The occurrence and frequency of
snowfall replenishes the water storage over the Himalaya (Daloz
et al., 2020). Downstream into the Indian subcontinent, the
Indian summer monsoon precipitation becomes the dominant
driver for water mass transport on and below the surface. It
stays for a short time in surface water bodies and longer in sub-
surface water bodies. However, groundwater exploitation over
the northwest Indian region in recent decades is changing the
residence time of groundwater and affecting water availability
(Bookhagen and Burbank, 2010; Singh et al., 2019).

The availability of water also varies both spatially and
temporally. Water leaves the Himalayan river basins in the
form of water vapor (driven by evapotranspiration) and
river discharge. The majority of these river systems, such as
the Indus, Ganga, and Brahmaputra, feed multiple nations
(Figure 1), and thus the sharing of river discharge data is a
politically sensitive issue (Molden et al., 2017). In addition,
accurate evapotranspiration modeling requires an extensive
network of weather stations, while only a limited number of
weather stations are operational, especially near the glacierised
regions where topographical challenges are inherent (Azam
et al., 2018). Hence, remote sensing and gridded/reanalysis
datasets becomes one of the preferred tools for estimating

hydro-meteorological observables such as, air temperature,
precipitation, evapotranspiration, but they come with their own
challenges. For example, they may have a relatively coarse spatial
resolution: the Tropical Rainfall Measuring Mission (TRMM;
refer to Table A1 for abbreviations) precipitation products are
at ∼30 km grid (Hofmann-Wellenhof et al., 2007), and the
fifth generation European Center for Medium-Range Weather
Forecasts (ECMWF) atmospheric reanalysis ERA5/ERA5-Land
data at ∼30/∼10 km grid (Hersbach et al., 2020). Also, several
satellite observations are an indirect measure of a physical
process and they often require calibration and validation against
in-situ observations that are at times not available (Karimi and
Bastiaanssen, 2015; Zhang et al., 2016). Further, the length
of satellite era is relatively short, and time-series from many
of the satellite missions cannot be considered as climate data
(Vishwakarma et al., 2021). Satellite products require substantial
post-processing to remove atmospheric effects and improve the
signal to noise ratio. Due to these challenges, model simulated
outputs at high spatiotemporal resolution and longer temporal
coverage are also being employed to understand the past, the
present, and the future of water availability in the Himalaya
(Khanal et al., 2021). For example, the drivers of variability in
precipitation have been investigated with the help of global and
regional climate model outputs, but no conclusive pattern or
trend can be identified (Immerzeel et al., 2010, 2020; Kaser et al.,
2010; Lutz et al., 2016; Maharana and Dimri, 2016; Dimri et al.,
2018; Huss and Hock, 2018; Maharana et al., 2019). Over the
Hindu-Kush Karakoram Himalayan range, Palazzi et al. (2013)
have shown decreased summer precipitation, whereas Kulkarni
et al. (2013) and Javed et al. (2022) have shown increased
winter precipitation. Dimri et al. (2022) explained the elevation
dependent warming over the Karakoram region.

Modeling framework-based studies over the Himalaya show
different impacts on different river basin systems (Ghimire et al.,
2018; Nengker et al., 2018). Atmospheric changes associated
with global warming can lead to alteration of the mountain
hydrological cycle, in turn the streamflow patterns of the
Himalayan rivers (Archer et al., 2010; Lutz et al., 2016; Armstrong
et al., 2018). Available basin-wide studies show that glacier melt
contributes the largest to total water discharge in the upper Indus
basin (41%), whereas rainfall-runoff in the upper Ganga (66%)
and Brahmaputra (59%) basins (Lutz et al., 2014). Glacier melt
contribution is relatively lower in the upper Ganga (12%) and
Bramhaputra (16%) basins. Snowmelt contribution is also lower
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FIGURE 1 | Map of the Himalayan River Basins—Indus, Ganga and Brahmaputra—feeding from the glaciers. The glacier cover (blue patches) is based on Randolph

Glacier Inventory 6.0 (RGI Consortium, 2017). The background is the Stamen terrain map, the Himalayan region subdivision from Bolch et al. (2019a), river basin

boundaries are based on the International Center for Integrated Mountain Development (ICIMOD, 2021), and river central lines are from the Global High-Resolution

River Centerlines (USGS). RGI’s first order regions 14 (South Asia West) and 15 (South Asia East) are also shown (red outlines).

in the upper Ganga (9%) and Bramhaputra (9%) basins, whereas
22% in the upper Indus basin (Lutz et al., 2014). Snowmelt
contribution to the total discharge is significantly higher (or
highest) in the headwaters of small/medium sub-basins in the
Himalayan region, for example, in the Liddar Basin, western
Himalaya (60%; Jeelani et al., 2017), Bhagirathi, upper Ganga
Basin (60%; Rai et al., 2019), Chandra, a sub-basin of Chenab
River (60%; Singh A. T. et al., 2021) etc. Groundwater also
contributes significantly to the river discharge, but only noted in
the Chandra basin (Singh A. T. et al., 2021). Nevertheless, the
contribution from snow and glacier melt are expected to change
in the future due to ongoing climate change (Prasch et al., 2013;
Ragettli et al., 2016; Khadka et al., 2020). This is evident in the
Baspa basin, a sub-basin of Satluj river, where Singh V. et al.
(2021) applied a physical glacio-hydrological model model and
noted an increase in snowmelt contribution by 6% between 2000
and 2018.

Lutz et al. (2016) concluded that hydrological extremes
would be frequent and stronger in a warmer climate, but the
uncertainties are large. Based on stable isotope measurements of
hydrogen and oxygen together with historical runoff records in
the Indus River Basin, Karim and Veizer (2002) have shown a
major loss of water to evapotranspiration, which is in line with
the predictions in a warming climate (Banerjee and Azam, 2016;
Kraaijenbrink et al., 2017). There are observational andmodeling
challenges over the Himalaya due to the paucity of observations
(You et al., 2017).

In general, Himalayan glaciers have been retreating and losing
mass during the last decades at a significant rate (Brun et al.,
2017; Azam et al., 2018; Bolch et al., 2019a; King et al., 2019;
Maurer et al., 2019; Bhattacharya et al., 2021). It is projected
that river runoff in the larger catchments will increase up to
2050s but then decrease sharply outside the monsoon season
owing to the decimated Himalayan glacier area and volume (Lutz
et al., 2014; Rounce et al., 2020; Azam et al., 2021; Chandel and
Ghosh, 2021). Therefore, we can expect to see an increase in
extremes of water availability resulting in disasters such as glacial
lake outburst flood (GLOF), avalanches, and droughts (Eckstein
et al., 2017; Furian et al., 2021; Majeed et al., 2021; Shugar et al.,
2021). GLOF is a sudden release of water or flash flood from a
moraine- or ice-dammed glacial lake due to dam failure (Shugar
et al., 2020; Veh et al., 2020; Sattar et al., 2021). GLOF could be
triggered by a number of processes, including ice/debris/rock fall,
avalanches, earthquakes, internal piping, etc. (Veh et al., 2020).
GLOF mechanisms can be understood by simulating the GLOF
chain sequences and flood routing modeling. Understanding
these processes is critical for risk management and developing
mitigation strategies for the downstream communities (Sattar
et al., 2021).

A majority of the hydrometeorological and glacier-related
processes (c.f. Figure 2), e.g., glacier mass balance, runoff, GLOF
modeling studies rely on outputs from regional climate models,
land surface models, and remote sensing datasets which suffer
from high uncertainties over the Himalaya (Lutz et al., 2016;
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FIGURE 2 | An illustration of simplified hydrological cycle showing the important cryospheric and atmospheric processes, variables and features. The figure is inspired

from Azam et al. (2021). Background illustration credit: Nouri Atchabao/Vecteezy.

Hock et al., 2019; Gusain et al., 2020; Azam et al., 2021; Nepal
et al., 2021). Furthermore, recent studies indicate that human
activities, both agricultural and land use change, that are missing
from models have significantly impacted the regional water
budget (Budakoti et al., 2021; Chandel et al., 2021). Therefore,
studies based on models can only provide a limited insight.
Many attempts have been made to quantify the amount of
water entering and leaving these river catchments and factors
influencing their variability, but still our knowledge is limited
(Lutz et al., 2016; Pritchard, 2019). Therefore, we need to obtain
more data-driven inferences by including as many types of
observations as possible.

In the following sections, various techniques, observations,
and methods that are being or can be employed to understand
the water cycle in the Himalaya are discussed.

ESTIMATING GLACIER MASS BALANCE

An accurate assessment of glacier mass balance is vital for
understanding the vulnerability of glaciers due to climate change
and the rates of glacier denudation (Rabatel et al., 2011). The
mass balance of Himalayan glaciers has been measured with
different methods, from conventional (Østrem and Stanley,
1969), to glaciological, to remote sensing and geodetic (Brun
et al., 2017), to various modeling techniques (Bolch et al., 2012;
Shea et al., 2015; Azam et al., 2018).

In-situ Measurements
Glaciers respond to even small changes in temperature and
precipitation (Oerlemans, 2001). Therefore, field observations
of glacier mass balance at annual and seasonal scales are
excellent climate records (Zemp et al., 2009; Trewin et al., 2021).
Unfortunately, the high altitudes and harsh weather conditions
hinder glaciological measurements in the Himalaya; therefore,
existing in-situ studies mostly consider the easily accessible, small
sized, and less debris-covered glaciers (Azam et al., 2018; Bolch
et al., 2019a).

Glacier mass balance is the sum of all ablation (melt,
sublimation, snowdrift, calving, etc.) and accumulation
(snowfall, snowdrift, avalanches, etc.) processes (illustrated in
Figure 2). These processes are glacier-wide and continuous
in time, however, for practical reasons they are observed at
point scale. Ablation is measured by installing an ablation stake
network over the ablation area of the glaciers and assuming
an ice density of 900 kg/m3 (Kaser et al., 2003; Huss, 2013). In
contrast, snow accumulation is measured with the help of snow
pits/cores and probing in the accumulation zone and measuring
the density of snow along with the depth to the previous year’s
surface (Wagnon et al., 2007, 2013; Azam et al., 2016; Mandal
et al., 2020; Soheb et al., 2020). These point-scale observations are
integrated to estimate the glacier-wide mass balance using glacier
hypsometry data obtained from satellite imagery or terrestrial
sources (Cuffey and Paterson, 2010). Glacier hypsometry is
generally obtained from a Digital Elevation Model (DEM) and
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the glacier outline (preferably from the recent ablation-season
optical satellite images). Since the in-situ observations are
important but limited in number to provide a comprehensive
overview over the Himalaya, researchers rely on other proxies to
estimate snowmelt and glacier runoff.

Due to the difficulties in field measurements in the
Himalaya, only about 36 glaciers have glaciological mass balance
measurements conducted for 1 year or more (Table 1). The
majority of the measured glaciers are of small to medium size.
Of all the 36 measured glaciers, most are located in the western
Himalaya (n = 18), followed by the central Himalaya (n = 14),
eastern Himalaya (n = 3), and Karakoram (n = 1). About ten
glaciers have a series of measurements equal to or longer than
10 years (Table 1). The longest continuous series spans 17 years
for the Chhota Shigri Glacier in the western Himalaya (−0.46
± 0.40m w.e. a−1 over 2002–2019; Mandal et al., 2020). The
Naimona Nyi Glacier in the northern slope of central Himalaya
has the longest record of annual mass balance but discontinuous
(Yao et al., 2022).

By averaging all available in-situ mass balance records for 36
glaciers (240 annual mass balance data points), the mean mass
balance for the period 1975–2020 becomes −0.60m w.e. a−1

(standard deviation; SD: 0.56m w.e.). This region-wide average
is not much different from the previous estimate of −0.49 m
w.e. a−1 (based on mass balance records from 24 glaciers) for the
period 1975–2015 (Azam et al., 2018). This increased number of
glacier measurements certainly improves the representativeness
of the region-wide mass balance for the Himalaya. However,
considering the topo-climatic heterogeneity across the Himalaya,
36 glaciers is a small sample size of roughly 95,000 total number
of glaciers in the region.

Remote Sensing Based Estimates
Various remote sensing-based methods are available to estimate
glacier mass balance at different spatiotemporal scale (Table 2).
Among the available methods, the geodetic method is the most
widely used, which uses multiple DEMs, from at least two
different epochs, to obtain a volume change estimate (Bamber
and Rivera, 2007; Gardelle et al., 2012, 2013; Brun et al., 2017;
Hugonnet et al., 2021). These DEMs can be obtained from
various remote sensing products like (a) satellite-based optical
stereo images, (b) satellite-based radar interferometry, (c) aerial
photogrammetry, images from drones, or laser scanning, and (d)
Uncrewed Aerial Vehicles (UAV) based data through Structure
from Motion techniques (SfM).

The DEMs obtained from different techniques have different
accuracy, spatial coverage, spatial resolution and procurement
cost. Considering the higher vertical errors in publicly available
satellite-based DEMs, they are, in general, most useful for
decadal-scale glacier mass balance estimations and less for the
annual mass balance (Vijay and Braun, 2016, 2018). With
the availability of new generation satellites that have better
instruments, very high-resolution DEM data can be generated
with reasonable accuracy but only for the past few years.
It is to be noted that these products are only available
on demand at a price, that too at irregular intervals. A
few prominent remote sensing missions that have been used

widely for geodetic mass balance studies in the Himalaya
are: Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) mission (Brun et al., 2017; Bisset et al.,
2020; Hugonnet et al., 2021), Satellite Pour l’Observation de la
Terre (SPOT) (Berthier et al., 2007), Pléiades (Berthier et al.,
2014; Wagnon et al., 2021), WorldView/GeoEye (Shean et al.,
2020), etc.

A higher temporal resolution of mass balance estimates has
been generated by using the laser altimetry-based Ice, Cloud,
and Land Elevation Satellite (ICESat), ICESat-2 mission data
(Kääb et al., 2012, 2015; Wang et al., 2021) and CryoSat-2 swath
altimetry data (Jakob et al., 2021). However, ICESat based mass
balance estimates have been shown to suffer from a bias due to
the short satellite time span (Neckel et al., 2014; Brun et al., 2017;
Wang et al., 2021).

Another widely used method is a simple empirical approach
called Accumulation Area Ratio (AAR) and Equilibrium Line
Altitude (ELA) method proposed by Kulkarni (1992). AAR
is the ratio of the area of the accumulation zone to the
area of the glacier (Cogley et al., 2011), whereas ELA is the
line that divides the glacier into ablation and accumulation
areas where accumulation equals ablation over a balance year
(Braithwaite and Raper, 2009). This method has considerable
uncertainty (Pratap et al., 2016; Tawde et al., 2016). This
was first applied on the Gara Glacier (from 1977–1978 to
1982–1983) and the Gor-Garang Glacier (from 1976-77 to
1983-84), and then has been used to estimate the surface
mass balance of Himalayan glaciers (e.g., Kulkarni et al.,
2004; Mir et al., 2014 and Tak and Keshari, 2020). Tawde
et al. (2016) developed an improved AAR method in which
they used satellite data and a temperature-index model. They
implemented a regression between the modeled AAR and field-
based mass balance to estimate glacier-wide mass balance. This
improved AAR method was first demonstrated over the Chhota
Shigri Glacier and 12 other glaciers in the Chandra basin
(from 2000 to 2009). Following the same methodology, Tawde
et al. (2017) estimated the mass balance of 146 glaciers in
the Chandra basin (from 1984 to 2012), however these had
higher uncertainties.

In another development, Rabatel et al. (2005) estimated
annual mass balance using variation between ELA at steady state
of a glacier and satellite-derived ELA along with mass balance
gradient across the ELA. They demonstrated this method over
French alpine glaciers and showed that the mass balance of
individual glaciers in a basin can be estimated reliably by using
field-based observation of at least one representative glacier in
the same basin. In the Himalaya, Chandrasekharan et al. (2018)
and Garg et al. (2021) have used this method for estimating mass
balance over some glaciers. This approach seems to have good
potential for annual mass balance estimation. However, it needs
to be tested rigorously for wider application.

Dumont et al. (2012) reported that the annual minimum
albedo average on the whole glacier at the end of the ablation
season is strongly correlated (r2 > 0.95) with the field-based
annual mass balance of the Saint Sorlin Glacier in Saint
Sorlin Glacier in France. Based on this correlation, the annual
mass balance series of the glacier was reconstructed from
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TABLE 1 | Glaciological (in-situ) mass balance of Himalayan glaciers (only Siachen Glacier mass balance is based on hydrological method).

GlacierReference Himalayan

region (Country)

RGI ID Area (km2) Debris cover (%) Obs. Period Mean glacio.

Ba(m w.e. a−1)

Karakoram

Siachen1 KK (IN) RGI60-14.07524 1,220 10 1987–1991 −0.23

Western Himalaya

Kolahoi2 WH (IN) RGI60-14.19607 10.49 11 1984 −0.26

Shishram2 WH (IN) RGI60-14.19561 9.91 Debris-Free 1984 −0.29

Nehnar3 WH (IN) RGI60-14.19544 1.25 48 1976–1984 −0.50

Pensilungpa4 WH (IN) RGI60-14.18909 8 16 2017–2018 −0.40

Stok5 WH (IN) RGI60-14.14383 0.74 5 2015–2019 −0.39

Rulung6,7 WH (IN) RGI60-14.15167 0.95 Debris-Free 1980–1981 −0.11

Patsio8 WH (IN) RGI60-14.14311 2.25 10 2001–2017 −0.34

Gepang Gath9 WH (IN) RGI60-14.15623 13.5 17 2017–2019 −0.77

Samudra Tapu9 WH (IN) RGI60-14.15613 95.1 12 2017–2019 −0.97

Hamtah10 WH (IN) RGI60–14.15536 3.2 77 2001–2016 −1.45

Chhota Shigri11 WH (IN) RGI60-14.15990 15.7 11 2003–2019 −0.46

Bara Shigri9 WH (IN) RGI60-14.15447 136.8 17 2017–2019 −0.33

Batal9 WH (IN) RGI60-14.16042 4.9 26 2017–2019 −0.30

Sutri Dhaka9 WH (IN) RGI60-14.16041 25.2 9 2017–2019 −0.67

Gara6,12 WH (IN) RGI60-14.12386 5.2 13 1975–1983 −0.26

Gor Garang6 WH (IN) RGI60-14.12388 2.02 Debris-Free 1977–1985 −0.20

Shaune Garang6,13 WH (IN) RGI60-14.12323 4.94 21 1982–1991 −0.42

Naradu14 WH (IN) RGI60-14.11566 4.56 7 2001–2003

2012–2018

−0.72

Central Himalaya

Dokriani15 CH (IN) RGI60-15.07605 7 12 1993–1995

1998–2000

2016

−0.31

Chorabari16 CH (IN) RGI60-15.07143 6.6 53 2004–2012

2015–2016

−0.72

Satopanth17 CH (IN) RGI60-15.07122 19 58 2015 −2.00

Tipra Bamak18 CH (IN) RGI60-15.06557 7 56 1982–1989 −0.23

Dunagiri19 CH (IN) RGI60-15.06777 2.5 82 1985–1990 −1.04

Naimona Nyi20 CH (CH) RGI60-15.09026 7.8 Debris-Free 1976–1984 −0.40

Rikha Samba21 CH (NP) RGI60-15.04847 5.37 7 2016–2019 −0.36

Yala22 CH (NP) RGI60-15.03954 1.7 31 2016–2019 −0.91

Kangwure23 CH (CH) RGI60-15.10263 1.96 6 1992–1993

2009–2010

−0.57

Trakarding-Trambau24 CH (NP) RGI60-15.03448 31.7 14 2017–2018 −0.74

AX01025 CH (NP) RGI60-15.03507 0.6 7 1996–1999 −0.69

West Changri Nup26 CH (NP) RGI60-15.03734 0.9 3 2011–2019 −1.48

Pokalde26 CH (NP) RGI60-15.03875 0.1 Debris-Free 2010–2019 −0.79

Mera26 CH (NP) RGI60-15.03586 5.1 Debris-Free 2008–2018 −0.23

Eastern Himalaya

Changme Khangpu27 EH (IN) RGI60-15.02942 5.6 34 1980–1986 −0.22

Gangju La28 EH (BH) RGI60-15.02291 0.29 Debris-Free 2004

2013–2014

−1.38

Thana29 EH (BT) RGI60-15.02578 5 3 2019–2020 −1.38

Mass balance data sources are given at the bottom. Debris covers are collected from respective publications and Scherler et al. (2018). KK, WH, CH, and EH refer to the Karakoram,

western, central, and eastern Himalaya. Countries: India (IN), China (CH), Nepal (NP), and Bhutan (BH). Ba refers to the annual glacier-wide mass balance.

1, Bhutiyani (1999) + corrected by Zaman and Liu (2015); 2, Kaul (1986); 3, Geological Survey of India (2001); 4, WIHG (submitted to WGMS); 5, Soheb et al. (2020); 6, Sangewar and

Sangewar (2007); 7, Shrivastava et al. (2001); 8, Angchuk et al. (2021); 9, NCPOR (submitted to WGMS); 10, Geological Survey of India Report (2017); 11, This study; 12, Raina et al.

(1977); 13, Geological Survey of India (1992); 14, Koul and Ganjoo (2010) + Kumar et al. (2021); 15, Dobhal et al. (2008) + WIHG (submitted to WGMS); 16, Dobhal et al. (2013a) +

Dobhal et al. (2021) + WIHG (submitted to WGMS); 17, Laha et al. (2017); 18, Gautam and Mukherjee (1992); 19, Geological Survey of India (1991); 20, Yao et al. (2012); 21, Gurung

et al. (2016); 22, Baral et al. (2014); 23, Liu et al. (1996) + Yao et al. (2012); 24, Sunako et al. (2019); 25, Fujita and Ageta (2001); 26, Wagnon et al. (2013) + Sherpa et al. (2017); 27,

Raina (2009); 28, Tshering and Fujita (2016); 29, Royal Govt. of Bhutan (submitted to WGMS).
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TABLE 2 | Comparison of different remote sensing-based methods for mass balance estimation.

Method Temporal scale Spatial scale Major input Advantage Disadvantage

Geodetic method Mass balance can be

estimated from annual

to decadal or longer

time scale depending

on the accuracy of the

DEMs

Suitable for a single

glacier to the entire

HMA

DEM Without field-based

data, mass balance

can be generated for a

large region

Due to poor vertical

accuracy of the

currently available

public domain DEMs,

annual mass balance

estimation is not

possible

Satellite Gravimetry Monthly to decadal

mass balance series

can be estimated

Coarse resolution

(∼300 km)

Gravitational

potential anomaly

Is sensitive to mass

change only, no need

to account for firn

compaction, changes

in snow/ice density

Due to poor spatial

resolution cannot apply

to a single glacier

Satellite Altimetry Mass can be estimated

from annual to decadal

scale

Suitable for glacier to

regional scale

Altimetry elevation

data

points/footprints

over glacierised

areas

Very good accuracy of

elevation

measurements

Coverage is generally

sparse in the Himalaya

(e.g., ICESat-1).

Requires correction for

changes in density of

ice and snow, which is

poorly known

Albedo based

approach

Time series of annual

and seasonal mass

balance can be

generated

It is applicable for

single glacier

Glacier-wise

average albedo

and long-term field

mass balance data

Albedo measurements

are long enough and it

can provide us relatively

long time-series

This method is

unsuitable for winter

accumulation type

glaciers and has cloud

contamination problem

in albedo estimation

Equilibrium Line of

Altitude (ELA) and

Mass Balance

gradient-based method

This method generates

the annual mass

balance

It is applicable for

individual glaciers at

basin scale

Satellite

data-based ELA,

mass balance

gradient of a

representative

glacier in region,

long term average

mass balance

Annual mass balance

of glaciers can be

estimated where few or

no field-based

measurements are

available in the same

climatic zone

Results mainly depend

on the acquisition date

of satellite images for

estimating ELA

Accumulation Area

Ratio (AAR) based

regression approach

This method generates

the annual mass

balance

It is applicable for a

single glacier

AAR and

long-term field

mass balance data

Simple, in-direct

approach

Cannot be extended to

other glaciers without

losing the accuracy

the Moderate Resolution Imaging Spectroradiometer (MODIS)-
derived albedo (from 2000 to 2009). Following this, Brun et al.
(2015) have successfully tested this method for the Chhota
Shigri Glacier in the western Himalaya. However, its efficacy
was low when applied over the Mera Glacier in the central
Himalaya due to the presence of cloud cover, short field-
based mass balance data, and availability of fewer pixels for
average albedo estimation. A similar approach was attempted
by Sirguey et al. (2016) to estimate the annual as well as
the seasonal mass balance of the Brewster Glacier in New
Zealand, where they observed a strong correlation (r2 = 0.93)
between the average of annual minimum albedo over the whole
glacier and annual mass balance, as well as a good correlation
(r2 = 0.86) between cumulative winter albedo and winter
mass balance.

Of the techniques discussed above, the geodetic mass balance
method based on DEM differencing has been the most widely
used over Himalayan glaciers. One initial study for deriving
geodetic mass balance in the Himalaya is by Berthier et al. (2007).
The authors used SRTM v2 and SPOT5 DEMs for estimating

mass balance of glaciers around the Chhota Shigri Glacier located
in Lahaul-Spiti region from 1999 to 2004 and obtained mass loss
rates of −0.7 to −0.85m w.e. a−1. The authors present a method
to co-register the two DEMs but did not consider properly the
SRTM radar penetration into ice. The authors simply assumed
the SRTM DEM which was acquired in February 2000 to be the
representative for end of the ablation season in 1999 due to some
penetration into snow. However, subsequent studies found that
the penetration of the SRTM-C band radar beam can be up to
few meters (Gardelle et al., 2012, 2013; Kääb et al., 2012). Vincent
et al. (2013), therefore, revisited the results but found only a
difference of less than 0.1 mw.e. a−1 with respect to Berthier et al.
(2007).

In the last two decades several studies have been published
investigating the glacier mass balance starting from 2000 to
recent years based on DEM differencing in various regions
of the Himalaya. One of the earliest studies is Gardelle et al.
(2013) who investigated eight different regions from the Pamir,
to the Himalaya, to Hengduan Shan for the period 1999 to
2011. The authors considered the penetration based on the
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TABLE 3 | Geodetic approach-based glacier mass balance estimates (m w.e. a−1) covering all of the Himalaya by various studies.

Period Lahaul-Spiti West Nepal East Nepal Bhutan References

1975-2000 −0.04 ± 0.1 −0.23 ± 0.18 −0.28 ± 0.11 −0.30 ± 0.12 Zhou et al., 2018

1975-2000 −0.15 ± 0.15 −0.28 ± 0.13 −0.22 ± 0.12 −0.25 ± 0.12 Maurer et al., 2019

∼1975-2000 −0.21 ± 0.08 −0.24 ± 0.08 −0.29 ± 0.10 −0.20 ± 0.08 King et al., 2019

2000-2016 −0.45 ± 0.15 −0.38 ± 0.14 −0.41 ± 0.12 −0.51 ± 0.20 Maurer et al., 2019

2000- ∼2015 −0.40 ± 0.06 −0.41 ± 0.10 −0.37 ± 0.11 −0.43 ± 0.12 King et al., 2019

2000-2016 −0.37 ± 0.09 −0.34 ± 0.09 −0.33 ± 0.20 −0.42 ± 0.20 Brun et al., 2017

2000-2018 −0.31 ± 0.08 −0.37 ± 0.09 −0.36± 0.09 −0.55 ± 0.17 Shean et al., 2020

2000-2019 −0.36 ± 0.11 −0.53 ± 0.12 −0.59 ± 0.09 −0.49 ± 0.10 Hugonnet et al., 2021

comparison of the SRTM-C band to the SRTM-X band. They
found the highest mass loss in the western Himalaya and slightly
(although non-significant) positive values in the Karakoram.
The glacier mass balance for the whole of High Mountain
Asia (HMA) between 2000 and 2016 was investigated by Brun
et al. (2017) while relying on stereo ASTER data only (and
thus circumvent the radar penetration issue). They reported
a moderate mass balance in the Himalayan region, with the
Bhutan region having the highest negative mass balance and
lowest in East Nepal (Table 3). The mass balance estimates for
HMA were further refined by Shean et al. (2020) who used
DEMs derived from ASTER and very high-resolution stereo
images such as Worldview-2/3. They report a higher mass loss
in the Himalayan region during 2000–2018 as compared to
the previous studies, with the highest rates over the eastern
Himalayan region (Table 3). Recently Hugonnet et al. (2021),
further improved the processing of ASTER DEM and related
mass balance estimates and provided not only an estimate for
the period 2000 to 2019 for all glaciers on Earth but also for
four subperiods therein. They found an increasingmass loss since
2000 with higher overall mass loss as compared to the previous
studies (Table 3).

In order to better understand the long-term response of
glaciers to climate change, longer and better data coverage is
required. Declassified US spy stereo satellite images from the
1960s and 1970s provide an excellent opportunity in this regard.
1960s and 1970s high resolution (7–2m) Corona KH-4 and
KH-4B data were first used by Bolch et al. (2008, 2011) along
with ASTER and Cartosat-1 data to investigate the mass balance
evolution of the Mt Everest region in the Himalaya. 1970s
Hexagon KH-9metric camera data (8m), first employed in HMA
in the Tien Shan by Surazakov and Aizen (2010) and Pieczonka
et al. (2013), was later used to improve the knowledge about
glacier mass loss in the Himalaya and other regions of HMA
as well. Zhou et al. (2018) applied these images along with the
SRTM DEM for estimating the mass balance in some regions
of the Tibetan Plateau and the Himalaya from 1975 to 2000.
They reported a strong negative mass balance in most of the
regions but only small negative values for Lahaul-Spiti (Table 3).
This is in line with Mukherjee et al. (2018) who found similar
insignificantly negative values for the region using 1971 Corona
KH-4B and the SRTM DEM. Maurer et al. (2019) applied ∼1975
Hexagon KH-9 and ASTER DEMs, while King et al. (2019)

generated Hexagon KH-9 DEMs along with the 2000 SRTM
and the ∼2015 HMA DEM (Shean, 2017) to estimate the mass
balance before and after 2000. Both studies found significant
increase in mass loss after 2000 (Table 3).

King et al. (2020) used declassified imagery along with aerial
images and Cartosat-1 data for up to 7 subperiods during 1962–
2018 and reported increasing mass loss from−0.23± 0.13m w.e.
a−1 for 1962–1969 to −0.38 ± 0.13m w.e. a−1 for 2009–2018.
Bhattacharya et al. (2021) used various available stereo satellite
data (in particular Corona, Hexagon and Pleiades data) to report
mass changes for up to six subperiods within 1964 to 2019. The
highest increase in mass loss was found for the Langtang region
with −0.20 ± 0.09m w.e. a−1 for 1964–1977 to −0.59 ± 0.14m
w.e. a−1 for 2017–2018.

Along with the aforementioned studies, there are several other
studies were carried out in the Himalaya at individual glacier-
or sub-region wise scale (e.g., Bhattacharya et al., 2016; Agarwal
et al., 2017; Bhushan et al., 2017; King et al., 2017; Vijay and
Braun, 2018; Gaddam et al., 2020). For a comprehensive review
until 2017/18 we encourage readers to refer Azam et al. (2018)
and Bolch et al. (2019a).

Glacier Melt and Mass Balance Modeling
Glacier surface mass balance and melt modeling has gained
considerable attention in recent years, in part because of
the availability of high-resolution gridded climate datasets
(e.g., ERA5, ERA5-Land, HAR v2, CORDEX, etc.), and high-
resolution satellite and DEM datasets (Azam et al., 2018). Also,
the theoretical and physical understanding of various complex
snow and glacier processes, such as influence of debris cover,
long-term dynamic change, has improved significantly (Reid and
Brock, 2010; Shea et al., 2015; Carenzo et al., 2016). Various
surface melt and mass balance models have been implemented in
the Himalayan region, such as hydrological models (Bhutiyani,
1999; Immerzeel et al., 2012), temperature-index model (Azam
et al., 2014a), enhanced temperature-index model (Litt et al.,
2019), albedo model (Brun et al., 2015), surface energy balance
(SEB) model (Azam et al., 2014b), distributed SEB model (Arndt
et al., 2021; Steiner et al., 2021; Srivastava and Azam, 2022),
glacier dynamics model [Open Global Glacier Model (OGGM);
Maussion et al., 2019], glacier evolution model [Python Glacier
Evolution Model (PyGEM); Rounce et al., 2020]. However,
the majority of the modeling studies use temperature-index
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models (Azam et al., 2021), with some modification for better
representation (e.g., Pellicciotti et al., 2005). The temperature-
index model is also known as the degree day model (DDM),
because in them daily melt depth is computed by multiplying the
number of positive degree days (often called cumulative positive
degree days; CPDD) by the melt factor (Hock, 2003)This model
is simple and can be applied over large areas/basins with limited
data input requirements (Lutz et al., 2014; Azam et al., 2021).
SEB models account directly for many of the physical processes
that affect melt (e.g., surface melt, sublimation), but they require
observations of several variables such as air/surface temperature,
air pressure, short-wave and long-wave radiations, wind speed
and humidity, etc. (Wagnon et al., 1999; Favier et al., 2004; Litt
et al., 2019). Due to the scarcity of input data needed for SEB
model, they are generally not suitable for modeling glacier mass
balance over the Himalaya (Azam et al., 2014b).

Glacier mass balance models have been developed for a single
glacier, for the entire basin as well as for the entire Himalayan
region depending on the forcing and calibration data availability.
For example, recently, Srivastava and Azam (2022) modeled
the mass balance of Chhota Shigri (western Himalaya) and
Dokriani Bamak glaciers (central Himalaya) for the past seven
decades (1950–2020) using a temperature-index model forced
with bias-corrected ERA5 data. Khadka et al. (2020) applied
OGGM by integrating Glacio-hydrological Degree-day Model
(GDM; Gupta et al., 2019) in the Koshi River basin (∼3,000 km2

glacierised area) in the central Himalaya to estimate the glacier
mass balance and the runoff. The model was forced with in-
situ hydro-meteorological data and historical gridded data from
the Climatic Research Unit (CRU). The model performance was
good in simulating runoff (r > 0.8) and partitioning various
runoff components. Rounce et al. (2020) applied the PyGEM
model, forced with geodetic mass balance observations over the
entire HMA region. Based on the model projection, they showed
that by the end of the century, glaciers in HMA might lose
between 29 ± 12% (RCP 2.6) and 67 ± 10% (RCP 8.5) of their
total mass relative to 2015.

Glacier mass balance and melt models are extremely helpful
to understand the glacier-scale to region-scale glacier mass
balance behavior. However, in general, model outputs have large
uncertainties because they are sensitive to the meteorological
input variables and model parameters (Lutz et al., 2016; Rounce
et al., 2020). Despite large uncertainty they have considerably
improved our overall understanding of spatiotemporal variability
in the Himalayan water resources.

Satellite Gravimetry
The Gravity Recovery and Climate Experiment (GRACE)
mission and its successor GRACE Follow On (GRACE-FO,
launched in 2018 after the end of GRACE in 2017) are a pair of
identical satellites co-orbiting in the same plane (Tapley et al.,
2019). The two satellites measure the change in the distance
between them via a microwave link, which is a function of the
gravity field of the Earth. The GRACE mission provided changes
in the gravity field of the Earth at monthly and sub-monthly scale,
which can be related to the surface mass changes (Tapley et al.,
2019).

The gravity field can be recovered from the satellite mission
either as blocks of masses (also called mascons) or as spherical
harmonic coefficients (Tapley et al., 2019). The unconstrained
spherical harmonic coefficients are noisy and require filtering
prior to using GRACE data (Swenson and Wahr, 2006), but
filtering introduces leakage and diminishes the signal amplitude
(Vishwakarma et al., 2016, 2017). Metrics have been designed to
understand the efficacy of filtering (Devaraju and Sneeuw, 2016),
andmethods have also been developed to account for leakage and
the amplitude loss (Vishwakarma et al., 2018). It must be noted
here that the mascon solutions are also filtered versions of the
GRACE data, where filtering is performed with a regularization
scheme that aims to minimize signal leakage with the help of
prior information.

One of the most contentious issues with the use of GRACE-
FO is its spatial resolution. A wide range of numbers have
been advocated for indicating the spatial resolution, for example,
Longuevergne et al. (2010) proposed a value of 200,000 km2

and Vishwakarma et al. (2018) indicated 63,000 km2 if the
application can tolerate an error of 2 cm. It was also shown
that the spatial resolution depends on the method used for
filtering and leakage correction (Vishwakarma et al., 2018). For
the spherical harmonic solutions Devaraju and Sneeuw (2016)
devised the method of modulation transfer functions to identify
the spatial resolution. However, for the case of mascons, the
spatial resolution is believed to be at a spatial scale of 300 km.
Despite these issues, it is known that GRACE-FO can observe
variations in the gravity even at small spatial scales, if the gravity
anomaly is large enough (Sneeuw and Sharifi, 2015). In this
context, it has been shown that small spatial scale variations
require dedicated modeling of the range acceleration signal
obtained from the level 1-b data of the satellite mission (Weigelt,
2017; Ghobadi-Far et al., 2020).

The GRACE derived total water storage (TWS) anomaly
includes changes in the soil moisture, canopy water, surface
water, snow water, and groundwater (Tapley et al., 2019).
Therefore, to arrive at one component, such as either ice mass
balance or groundwater change, it is necessary to remove other
storage components usually obtained from a model simulation
that can have high uncertainty (Tiwari et al., 2009; Chen et al.,
2015; Long et al., 2016). Therefore, using GRACE data for
estimating mass changes over a glacier, which is much smaller
than the spatial resolution of the observation, or in a groundwater
aquifer is challenging (Wang Q. et al., 2018; Vishwakarma,
2020). Nevertheless, there have been some efforts in quantifying
glacier mass change in the HMA using the point mass modeling
approach, which gives an estimate for the whole region but with
very high uncertainty. For example, Jacob et al. (2012) estimated
the mass loss at a rate of−4± 20 Gt/yr from 2003 to 2010, while
a recent study by Wouters et al. (2019) reported a trend of−13.5
± 6 Gt/yr for the complete GRACE time series.

GRACE has been found more useful at studying basin-scale
hydrology. While there are spatial and temporal resolution issues
with GRACE data, it has proved useful in downstream regions
where groundwater is being exploited rapidly (Chen et al., 2016).
In addition, like any other remote sensing product, there is a
need to validate the GRACE data with groundwater monitoring
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data from government agencies, farmers and stakeholders. In
the past, the use of crowd sourced farmer data for groundwater
management using the Mywell App has been successful in
creating a high-resolution database for groundwater level data
at the village scale (Maheshwari et al., 2014; Maheshwari, 2020).
Preliminary results indicate that the locals can aid in better
management of groundwater resources and can also augment
rural database by providing crowd sourcing of data along with
GRACE/GRACE-FO data.

Another geodetic technique that has recently emerged as a
tool for monitoring water resources near glaciated regions is
Global Navigation Satellite System (GNSS). It has been used for
monitoring glacier mass change, lake water level, and surface
deformation due to hydrological mass change (Dunse et al., 2012;
Durand et al., 2019; Elliott and Freymueller, 2020; Koulali et al.,
2022).

Global Navigation Satellite Systems
GNSS enable the most ubiquitous methods of geodetic
positioning. It uses the known positions of the constellation of
satellites to determine the position of the GNSS receiver at sub-
cm accuracies. The precise positioning is based on the carrier
phase pseudo range equation given by Hofmann-Wellenhof et al.
(2007).

φ =
ρ

λ
+ N +

c

λ
δt + T − I +M + S+ ε, (1)

where ϕ is the carrier phase, ρ is the true range between the
satellite and the receiver, λ is the wavelength of the carrier, N is
the integer number of cycles, c is the velocity of light, δt is the
clock error, T is the delay due to the troposphere, and I is that
due to the ionosphere, M is the multipath error, S is the combined
term of all other systematic errors like antenna phase center error
and hardware delays in the satellite and the receiver, and ε is the
random error associated with the phase measurement. The term
ρ contains the position of the receiver and the satellite, and the
terms T and M provide important environmental information.

In GNSS monitoring of glaciers, the position information
from GNSS is sensitive to the movement of the glacier and
surface elevation changes due to the load changes associated
with glacier mass change. The tropospheric delay term T
provides information concerning the precipitable water vapor
(PWV), which is typically absorbed into weather models for
forecasting. The multipath term M is the reflected GNSS
signal. Since the GNSS uses a microwave L-band for sending
signals, the reflected signal contains information concerning
the backscattering properties of the surface. This has been
successfully used for retrieving snow height information in
glaciers andmountainous areas alike (Larson, 2016). Thus, GNSS
can provide a variety of vital information for monitoring snow
and glaciers.

The observation strategies vary for the different types of
variables that can be retrieved from GNSS positioning. For
understanding loading due to glacier mass change, it is typical
to have a continuously operating network of GNSS stations
in and around the glacier (Jacobsen and Theakstone, 1997).

Such networks can also provide PWV estimates, but to perform
GNSS reflectometry with them, the sites with reasonably flat
terrain have to be chosen (Larson, 2016). For monitoring
glacier movement and shape, real-time kinematic (RTK) GNSS
measurements can be conducted in periodic campaigns. DEMs
can also be constructed to identify surface elevation changes of
the glacier (Jacobsen and Theakstone, 1997). With the advent of
low-cost GNSS receivers and antennas, more observations are
being retrieved that are used for deriving novel inferences. For
example, Koch et al. (2014) and Henkel et al. (2018) planted
a low-cost GNSS antenna on a snow-free area in the summer
months and estimated the winter snow depth from distorted
GNSS signals. The low-cost GNSS receivers perform as good
as the geodetic receivers (Odolinski and Teunissen, 2016), and
therefore, they can be used for the densification of GNSS
networks in the snow and glaciated areas.

GLACIER ICE THICKNESS MODELING

Glacier ice thickness and ice reserves are estimated by in-
situ measurements, power-law relations, physical models, and
artificial neural networks (ANN) (Zemp et al., 2019; Haq
et al., 2021; Millan et al., 2022). In-situ measurement of ice
thickness such as borehole drilling, radio-echo sounding and
ground-penetrating radar (GPR) is often costly, logistically
demanding, and unsafe due to the rugged nature and harsh
climatic conditions of the glaciated terrain (Saintenoy et al., 2013;
Bohleber et al., 2017). The next approach is based on Volume
Area Scaling (VAS) (Bahr, 1997). VAS is suitable for obtaining
a general ice thickness pattern for most of the glaciers (Bahr
et al., 2015), but requires calibration from a DEM and estimates
of glacier extents (Möller and Schneider, 2010; Laumann and
Nesje, 2017; Banerjee, 2020). It is to be noted that VAS cannot
give information regarding the distribution of ice thickness.
As a result, glaciologists have begun to rely on ice thickness
models that use multi-temporal, multi-spectral and high spatial
resolution satellite data to represent varying complexities of the
glacial environment (Farinotti et al., 2021).

Types of Glacier Ice-Thickness Models
Recent work by the Ice Thickness Models Intercomparison
eXperiment Phase 1 and Phase 2 (ITMIX1 and 2) evaluated
all the models developed so far for the mountain glaciers.
Several models exist that rely on different principles, viz., (1)
using the shallow ice approximation (SIA) and an empirical
relation between glacier elevation range and basal shear stress
(Haeberli and Hoelzle, 1995) at the local scale; (2) flowline-
based approach considering mass conservation and Glen’s ice
flow law (Glen, 1955); (3) two-dimensional consideration of the
continuity equation (Morlighem et al., 2011). Apart from these,
recent developments in data sciences have led to models that that
do not rely on the physics of the problem, such as the Artificial
Neural Network (ANN) approach (e.g., Clarke et al., 2009; Mey
et al., 2015; Haq et al., 2021). Table 4 provides an up-to-date list
of ice thickness models that have been used in the Himalaya.
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TABLE 4 | List of model categories and mode of estimating ice thickness. Brackets within the model categories represent the remote sensing-based inputs used in the

model.

Ice thickness estimation methods

∧Local/point/gridded #Flowlines/Elevation

bands/Cross sections

$Two-dimensional

Model category Shear-Stress based

(OL + DEM)

GlabTop (Linsbauer et al., 2009)

GlabTop2 (Frey et al., 2014)

GlabTop2_IITB (Ramsankaran

et al., 2018)

Velocity-Based (OL +

DEM, Vel)

∧@Gantayat et al., 2014
∧@Millan et al., 2022

Mass conserving (OL +

DEM, SMB/Vel)

ITEM (Farinotti et al., 2009)

HF (Huss and Farinotti, 2012)

GCbedstress (Clarke et al.,

2013)

Rabatel et al., 2018

OGGM (Maussion et al., 2019)

BITE (Werder et al., 2019)

Morlighem et al., 2011

Minimization approach

(OL + DEM, SMB,

∂h/∂t, Vel, field data)

Pelt et al., 2013

Bayesian inference

(Brinkerhoff et al., 2016)

Brinkerhoff_v2 (unpublished)

Fürst et al., 2017

Other approaches Artificial neural networks (Clarke et al., 2009; Haq et al., 2021) (No physical laws followed)

Glacier outline and Digital elevation model of the surface (OL + DEM); Surface mass balance (SMB); Surface ice flow velocity (Vel.); Rate of elevation change ( ∂h
∂ t ).

#$Represent type of model approaches.

∧Perfect plasticity assumptions + local scale empirical relation between basal shear stress and elevation range.
∧@Glen’s flow law; #Glen’s flow law + Mass conservation (all the concepts in this line obeys the Shallow Ice Approximation assumptions).
$Minimization problem—Cost function definition (penalizes the difference between observed and estimated quantities).

ITEM, Ice thickness estimation method; OGGM, The open global glacier model; BITE, Bayesian ice thickness estimation; GlabTop, Glacier bed topography.

Recent Advancements in Ice Thickness
Modeling
The applicability of ice thickness models has evolved significantly
due the abundance of satellite remote sensing datasets (e.g.,
LiDAR, Optical and SAR images) to the development of
automated models like the Volume and Topography Automation
(VOLTA; James and Carrivick, 2016), the Open Global Glacier
Model (OGGM; Maussion et al., 2019), and ice velocity and
slope-based methods (Millan et al., 2022). On the other hand, like
the Glacier Thickness Database (GlaThiDa; Welty et al., 2020)—
a global archive for in-situ ice thickness datasets and Global
Glacier Thickness Initiative (G2TI; Farinotti et al., 2019)—have
opened gateways for exploiting the maximum potential of the
ice thickness models. Farinotti et al. (2021) have shown that
calibrating the ice thickness models with field observations
(even limited) and ensemble-approach is beneficial in terms
of improving accuracy and robustness compared to individual
model estimates. Millan et al. (2022) have recently modeled the
ice thickness for all the glaciers on Earth using high-resolution ice
velocity and topographic data based on the SIA approximation.
The re-evaluated ice volume estimates by Millan et al. (2022)
is the most comprehensive estimate because they rely on recent
DEMs and satellite remote sensing image. The next best attempt
was by Farinotti et al. (2019) that were based on at least a decade
old dataset.

Recent Estimates of Ice Thickness Over
the Himalaya
Studies related to ice thickness date to the 1960s (Raina, 2009),
and field investigations are still ongoing in sporadic nature
at accessible glaciers in the Himalaya. However, only a few
glaciers are being surveyed using GPR (e.g., Azam et al., 2012;
Vincent et al., 2016; Mishra et al., 2018; Pritchard et al., 2020).
GPR survey-based ice thickness measurements are available for
only around 21 glaciers and that too at different time intervals
(Kulkarni et al., 2021). Therefore, VAS and ice thickness models
with inputs from glacier inventories (e.g., GLIMS, RGI, etc.) and
remote sensing paved the path to study glaciers at a relatively
larger scale than with the GPR (e.g., Sattar et al., 2019; Pandit and
Ramsankaran, 2020).

The VAS approaches were used to estimate glacier ice volume
for the entire Hindu-Kush Himalaya range with the help of
the RGI glacier outlines. However, the estimation of glacier ice
volume varied from one study to the other due to a different set of
parameters being used in different studies (Radić andHock, 2010;
Marzeion et al., 2012; Grinsted, 2013). Bolch et al. (2012), Frey
et al. (2014), Linsbauer et al. (2016), and Farinotti et al. (2019)
were able to estimate the total glacial volume of the HK region
using ice thickness models for the year 2000. Bolch et al. (2012)
reviewedVASmodels and provided an updated estimate based on
a shear-stress model. Similarly, Frey et al. (2014) and Linsbauer
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TABLE 5 | Summary of estimated ice volume (103 km3 ) in the Himalayan region.

Region/ Reference Method South Asia West

(Karakoram +

Western

Himalaya)

South Asia East (Central

Himalaya + Eastern

Himalaya)

Entire/ Pan

Himalayan

region

Number of glaciers and total area

No. of glaciers (RGI 6.0) – 27,986 13,119 41,105

Total glacierised area (km2 ) – 30,630 10,351 40,981

Volume from different estimates

Millan et al. (2022) Ice velocity and slope based – – 9.6 ± 3.7

Farinotti et al. (2019) Five different modeling experiment 2.87 ± 0.74 0.88 ± 0.23 3.75 ± 0.97

Frey et al. (2014) GlabTop2 model 2.19 0.77 2.96

Huss and Farinotti (2012) HF model – – 4.55 ± 0.24

Marzeion et al. (2012) Volume-area scaling – – 5.35 ± 0.25

Grinsted (2013) Multivariate scaling relationship – – 6.02

Radić et al. (2014) Volume-area scaling 4.46 1.86 6.32

Estimate from Millan et al. (2022) includes RGI regions South Asia West + South Asia West + Central Asia (HMA; glacier count is n = 95,534). Glacier count and area is based on RGI

6.0 (RGI Consortium, 2017). Refer to Table 4 for details about the method/modeling experiments.

et al. (2016) also employed the shear-stress based model, while
Farinotti et al. (2019) used an ensemble of ice thickness models
to provide a consensus estimate of 2.87 ± 0.74 × 103 km3

and 0.88 ± 0.23 × 103 km3 of ice volume for RGI subregion
14 (South Asia West; Figure 1) and 15 (South Asia East) that
covers the entire Hindu-Kush Karakoram Himalayan range).
Surprisingly, the results of Millan et al. (2022) are 37% higher
than the Farinotti et al. (2019) consensus ice volume estimates
for RGI subregions (13, 14, and 15) that covers HMA. These
difference between different studies reveal the inconsistency
in the available ice thickness estimates for the glaciers in the
HMA and in other regions as well. Hence, there is a need for
developing new models with better strategies on utilizing variety
of the available observations. Table 5 provides a summary of the
estimated ice volume for the Himalayan region from various
methods and sources.

Estimates of ice thickness is a crucial input for glacier models
that are driven by climate models to project future glacier mass
balance. Climate model projections of future glacier mass balance
over the Himalaya produce consistent results and suggest that
glaciers in the region will lose up to 90% of their mass by 2100
(Barsch and Jakob, 1998; Kraaijenbrink et al., 2017; Bolch et al.,
2019a; Shannon et al., 2019). Based on these projections, there
is considerable concern among policymakers and infrastructure
planners about future water supplies to the wider region and
the potential for increased glacier-related hazards impacting
populations and infrastructures in the high mountain valleys
(Huggel et al., 2020; Immerzeel et al., 2020).

CLIMATE MODELS BASED MASS
BALANCE OF KARAKORAM-HIMALAYAN
GLACIERS

Various parts of the Earth system, such as oceans, atmosphere,
cryosphere, land surface dynamics, and human systems, interact

and influence each other. Therefore, Global Climate Models
(GCMs) were developed to include all possible sub-systems, their
interactions, and response to any change in the Earth system.

GCMs are computationally expensive and run at a coarse
spatiotemporal resolutions, which reduces their efficacy at a
regional scale. Testing and calibrating GCMs require high-
resolution present-day climate data along with well-constrained
information on past climates of critical regions worldwide,
which includes changes in the glacier extent and mass
balance. So far, the terrestrial cryosphere is represented in
a highly simplified way in majority of the state-of-the-art
global and regional climate models (RCMs) as they use static
glacier masks, i.e., (i) no changes in ice extent, no feedback
to the atmosphere; (ii) no consideration of water volume
stored; (iii) either no or simplified runoff generation (see
Figure 3; Kotlarski et al., 2010; Kumar et al., 2015, 2019).
Therefore, a more sophisticated approach is necessary to
overcome the poor representation of the glacier processes in
climate models.

RCMs, owing to their more nuanced spatiotemporal
resolutions, act as better alternatives for regional studies.
Within the framework of the Coordinated Regional Climate
Downscaling Experiment (CORDEX), a regional earth
system model comprising of REgional atmospheric MOdel
(REMO), Max Planck Institute’s Ocean Model (MPIOM), and
a hydrological discharge (HD) model, coupled using OASIS
coupler, has been developed for the CORDEX-SA (South-Asia)
domain for climate change studies. This setup is called the
Regional Earth System Model (RESM; Kumar et al., 2022).
The proper description of cryospheric processes is essential for
simulating the complete terrestrial water cycle in climate models,
especially for the high mountain regions.

Owing to various socio-economic, topographical, and political
constraints, attempts for a holistic study of Hindu-Kush
Karakoram Himalayan glaciers have been very sporadic,
undermining the fact that the region suffers from an acute
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FIGURE 3 | A schematic representation of the complex glacial processes involved in mass-balance estimations (top left). The difference in simplified (static glacier

masks) and sophisticated (dynamical glacier masks) approaches (top right). Description of the dynamical glacier scheme DYNAMICE and the regional model dynamics

of REMOglacier (bottom right). Different model dynamics and parameterisation schemes operate separately for glacierised and non-glacierised regions (bottom left).

shortage of quality observational datasets, both spatial and
temporal. In RCM REMO, a dynamical glacier scheme (DGS)
was implemented that has the unique ability to simulate the
glacier mass balance for even dynamic fraction of each grid box
depending on the accumulation and ablation conditions, while
accounting for direct physical feedbackmechanisms. The scheme
represents surface glacier cover on a subgrid-scale and calculates
the energy and mass balance of the glacierised part of a grid
box (Kotlarski, 2007; Kotlarski et al., 2010; Kumar et al., 2015,
2019). This coupled model system is referred to as REMOglacier.
It has been applied for the Himalaya to show computational
effectiveness. Recently, several studies (e.g., Kumar et al., 2015,
2019; Javed et al., 2022) have started to assess the impact of large-
scale and micro-climate on Himalayan glaciers, focusing on area
and mass balance changes at a sub-grid scale.

SNOW COVER, SNOW DEPTH, AND SNOW
WATER EQUIVALENT VARIABILITY OVER
THE HIMALAYA

In addition to ice-related processes, snow cover has significant
spatial and temporal variations over the Himalaya. Snow cover is
regulated by seasons, topography, and hydrometeorology (Singh
et al., 2014; Gurung et al., 2017; Rathore et al., 2018). Different
techniques were proposed to estimate snow cover over different
regions. Some of these techniques were adopted for snow cover

monitoring over the Himalaya, and they were reported in
Sood et al. (2020): normalized difference snow index (NDSI)
(Sharma et al., 2012; Rathore et al., 2018), change detection
(Singh S. et al., 2021), pan-sharpening (Singh et al., 2020), and
snow cover mapping using snow depth maps (Gusain et al.,
2016). Other than these techniques, snow cover mapping with
interferometry coherence analysis using synthetic aperture radar
(SAR) data (Kumar and Venkataraman, 2011) and, backscatter
ratio-based technique (Thakur et al., 2013) have also been
used over different sub-basins in the Himalayan region. The
backscatter ratio from wet snow was calculated with the help
of reference image from dry snow season. Different threshold
values for different landcover values are reported for mapping
the wet snow (Thakur et al., 2013). RISAT-1 data (∼50m
resolution) in HV (vertical transmit and horizontal receive)
polarization is used for deriving timeseries of snow cover area
(SCA) maps over Beas and Bhagirathi river basins during 2013–
2014 (Thakur et al., 2017). The accuracy of the SCA was 95%
when compared with themaps prepared using optical data. These
studies (Kumar and Venkataraman, 2011; Thakur et al., 2013,
2017) have demonstrated the potential of snow cover mapping
using active microwave in Himalayan region. However, majority
of the studies have focused mainly on using the optical data in the
Indian Himalayan region for mapping snow cover and studying
its variability (Sharma et al., 2012; Ahmad et al., 2020). The
Himalayan snow cover does not have a uniform pattern or trend.
In the upper parts of the Indus, the Ganga and the Brahmaputra
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basins, the snow cover area varies from 85 to 10% of the total area
during ablation season (Singh et al., 2014). There is no trend in
the mean snow cover over the Himalaya, however, at a regional
scale, there is a statistically significant declining trend over small
basins of Jhelum, Kosi, Manas, Gandaki, and Chandra (Gurung
et al., 2017; Sahu and Gupta, 2020). For instance, in the low-
elevation Ravi Basin, the snow cover decreases in mid-winter
from 90 to 55 %, however, in the high-elevation Bhaga Basin,
snow cover does not subside until April (Kulkarni et al., 2010).
There is a shift in snow cover trends after 2010 and a deceleration
in snow/ice cover shrinkage during recent years in the north-west
Himalaya (Singh et al., 2018). However, due to large inter-annual
fluctuation, snow depth depletion is not considered in snow
cover variability, especially when the whole Himalayan range is
examined (Gurung et al., 2011; Rathore et al., 2018).

The present synthesis shows that procuring a trend in snow
cover changes is challenging for the Himalayan region due
to the limited number of observations, substantial annual and
inter-annual variability, and scarce in-situ snow depth area data
(Kulkarni et al., 2021). However, overall, it is widely reported
that depleting snow cover and its spatiotemporal changes are
associated with changes in climatic variables over the Himalaya
(Sood et al., 2020; Desinayak et al., 2022). Understanding
variability of snow cover with respect to altitude and air
temperature is vital for assessing availability of regional water
resources and the impact of climate change in the Himalaya
(Immerzeel et al., 2010; Shrestha et al., 2015). Moreover, the
snow cover variation patterns, e.g., accumulation and ablation
can potentially lead to imbalance in glacier mass balance and
can trigger changes in water availability in different river basins
(Kaser et al., 2010; Bolch et al., 2012).

Along with snow cover, snow depth (SD) and snow water
equivalent (SWE) are also equally important in understanding
regional hydrological cycle, and quantifying water availability
in the Himalayan region. Annual snow water storage trends
observed during 1987–2009 using Scanning Multichannel
Microwave Radiometer (SMMR) data present a negative trend
over Himalayan region (Smith and Bookhagen, 2018). The major
contribution to SWE comes from mid-elevation range, i.e.,
4,000–5,000m a.s.l. in the Himalayan region and strongly affects
the meltwater discharge. SWE in this elevation range has been
shown to exhibit a strong negative trend (Smith and Bookhagen,
2018) along with shift in seasonality (Panday et al., 2011; Smith
et al., 2017). Though exact mechanism behind these changes
are not completely understood yet, few studies emphasized that
aerosol contamination (Lau et al., 2010), changing precipitation
patterns (Lutz et al., 2014), changes in western disturbances
(Cannon et al., 2015), and evolving temperature dynamics could
be the potential drivers behind SWE changes. Negative SWE
trend can potentially impact the downstream water availability
in the Himalayan region.

Monitoring of SD and SWE depends on the availability of
a dense gauge network, but what we have is rather poor due
to operational challenges. Remote sensing datasets, particularly
microwave datasets [e.g., Advanced Scanning Microwave
Radiometer for Earth observation (AMSR-E), Microwave
Emission Model for Layered Snowpacks (MEMLS)] remains one

of the most reliable techniques for obtaining SD and SWE in the
Himalayan region. Various approaches consisting of non-linear
models (Wang Y. et al., 2019), physically based models (Liu et al.,
2014), data driven approaches (Xiao et al., 2018; Yang et al., 2021)
and assimilation-based approaches (Stigter et al., 2017; Kwon
et al., 2019) has been applied in different studies for estimating
SD and SWE. However, correcting the radar penetration issue
is one of the biggest challenges in such remote sensing datasets
(Tiwari et al., 2016; Patil et al., 2020; Awasthi et al., 2021).

ROCK GLACIERS IN THE HIMALAYA

Rock glaciers are lobate or tongue-shaped assemblages of ice-
rich angular debris that moves or slowly creeps downslope due
to gravity (Owen and England, 1998; Haeberli et al., 2006; Janke
and Bolch, 2022). The surface velocity of active rock glaciers
varies between 0.1m to a few meters per year. Rock glaciers
contain significant amounts of ice and are climatically more
resistant than glaciers due to the thick insulating debris (Jones
et al., 2019a; Janke and Bolch, 2022). Even though the origin of
the ice is debated they are commonly considered as permafrost
landforms (Berthling, 2011). Rock glaciers are gaining more
attention because of their importance in the mountain water
cycle in particular with the expected reduction of the glacier water
resources (Harrison et al., 2021; Janke and Bolch, 2022).

Rock glaciers are also an important component of the debris-
transport system and their characteristics and occurrence is
strongly influenced by the debris supply (Barsch and Jakob,
1998; Janke and Bolch, 2022). Rock glaciers can potentially
transition from debris-covered glaciers especially in permafrost
environments (Haeberli et al., 2006; Monnier and Kinnard, 2017;
Jones et al., 2019b). Characteristics and evolution of debris-
covered glaciers and their transition from clean -ice glaciers are
also determined by debris supply. Hence, knowledge about the
evolution of mountain slopes and geomorphological processes
(such as valley-ridge scale interactions including rock slope
failure and degradation of lateral moraines) that operate glacial
and periglacial systems and how they impact the glaciers and
rock glaciers are crucial. However, the ice-debris systems vary as
the systems change in response to climate forcing. As a result,
viewed from the land system perspective, a debris-ice land system
incorporates numerous processes that respond to the climate in
different ways over time.

Climate model projections resolve fundamental climatic and
terrestrial processes only at broad scales; often around 100 km
or so. Even downscaled products such as CORDEX-SA (South
Asia) produce projections at around 25 × 25 km grids (e.g.,
Tangang et al., 2020). As a result, such projections at these spatial
scales are challenging in resolving many of the geomorphological
processes that operate in glacial systems, and which might affect
their response to climate forcing.

For land surface models to enhance climate model projections
of glacier mass balance and subsequent water supplies, they
will need to more accurately account for paraglacial processes
and be able to more accurately project the future evolution
of debris-covered glaciers and rock glaciers to assess which
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glaciers will undergo the transition to debris-covered glaciers
and rock glaciers, and which glaciers will not. The implications
of such processes for future water supplies are likely profound.
Recent research (Jones et al., 2021) has identified ∼25,000 rock
glaciers across the Himalaya. Most are located within the central
Himalaya (∼40%, n= 10,060), with∼30% situated in the eastern
Himalaya and ∼29% in the western Himalaya. The estimated
areal coverage of rock glaciers across the area is 3,747 km² (i.e.,
intact and relict), representing ∼16% of that covered by glaciers
(22,829 km²). Water volumes are estimated as 51.80 ± 10.36
km3, which translates to a rock glacier: glacier WVEQ (water
volume equivalent) ratio in the central Himalaya of 1:17, with
lower ratios in other regions. However, in some regions (e.g., in
western Nepal), rock glacier WVEQ ratios reduce to between 1:3
and 1:5, suggesting strong regional contrasts in their significance.
Also, rock glaciers are being mapped regionally, e.g., Bolch et al.
(2022) identified 370 rock glaciers which cover an area of more
than 10% of the total glacier area in the Poiqu basin in the Central
Himalaya in Tibet. Pandey (2019) estimated 516 rock glaciers
covering ∼350 km2 area in Himachal Pradesh (northern India).
Other forms of buried ice (i.e., ice-rich permafrost, ice-cored
moraines, can also contain a significant amount of ice (Bolch
et al., 2019b). No estimates have been made of the amount of
ice in other non-glacial landforms, but it has been argued that
this is likely to be substantial and should be accounted for better
understanding the water resources in the Himalaya (Harrison
et al., 2021; Janke and Bolch, 2022).

PERMAFROST IN THE HIMALAYA AND
SURROUNDING AREAS

Permafrost is commonly defined as rock or soil with a
temperature below 0◦C for more than two consecutive years.
Permafrost ground often contains ice lenses or ice located in
pores of rock and soil. Hence, permafrost impacts hydrology but
also slope stability. Thawing permafrost can destabilize mountain
slopes leading to hazards and impacting geomorphological
processes (Krautblatter et al., 2013; Gruber et al., 2017; Bolch
et al., 2019a).

In the Himalaya, most of the existing studies about the
permafrost are from remote sensing methods. In-situ studies
confirming the permafrost presence in the Himalaya are still rare
(Gruber et al., 2017; Wani et al., 2020). A surface temperature
model suggests that the total permafrost area in the HKH
(including the Hindu-Kush and Tibetan Plateau) is 16 times
higher than the HKH glacierised area (Gruber, 2012; Gruber
et al., 2017). Another study suggested that rock glaciers can be
used as a proxy to infer the existence of permafrost (Schmid et al.,
2015).

Cryospheric components —including snow, glacier and
permafrost— release meltwater from seasonal to multi-century
frozen storage and control the spatiotemporal changes in the
river runoff. Therefore, in a warming climate, permafrost thawing
is expected to have similar impacts on river runoff like snow
and glaciers (Hewitt, 2014; Biskaborn et al., 2019; Wang C.
et al., 2019). However, unlike glaciers, detailed studies on ice
rich permafrost are not yet available in the Himalayan region.

As a result, permafrost is not yet included in the hydrological
modeling framework, and the impacts of permafrost thaw on
the hydrological cycle remain unknown in the Himalayan region
(Azam et al., 2021).

In some other parts of the Northern Hemisphere including
the neighboring Tibetan Plateau, studies suggested permafrost
degradation under recent climate change has resulted in
hydrological changes, destabilization of rock glaciers, and
frequent landslides (Zhang and Wu, 2012; Kargel et al., 2016;
Rogger et al., 2017). These studies underscore the importance of
including permafrost while designing frameworks formonitoring
and assessing impact of climate change over catchments
in the Himalaya (Azam et al., 2021). Understanding the
volumetric and seasonal shifts in river runoff due to contribution
of permafrost thaw would require a precise assessment of
permafrost distribution, volume, and freeze/thaw processes
(Azam et al., 2021). To fill these gaps, techniques should be
developed that assess permafrost mass changes at large-scale by
integrating time-varying changes of gravity with the GRACE
satellites, digital elevation model differencing from multispectral
images, and InSAR; while catchment-scale in-situmeasurements
can be used to validate satellite measurements (Azam et al., 2021).
These in-situ data may include those from the automatic weather
stations (Wani et al., 2020), geophysical surveys measuring
electrical resistivity, data from ground penetrating radar, and
temperature measurements from boreholes (Sjöberg et al., 2015;
Wang S. et al., 2018; Wang C. et al., 2019).

DATA INTEGRATION AND ASSIMILATION

Combining different datasets can help in improving the data
quality and also in determining an unknown variable when the
others are known. It has been shown that the effective resolution
of a dataset can be improved by assimilating information at
better spatial resolution (Reichle et al., 2001; Houborg et al.,
2012; Peng et al., 2017; Miro and Famiglietti, 2018). Various
data assimilation techniques have been devised and successfully
implemented, such as improving operational weather forecast,
predicting ocean dynamics, and modeling soil moisture content
(Jackson et al., 1981; Peng et al., 2017) in streamflow estimates
(Patil and Ramsankaran, 2017, 2018). Recently several studies
have assimilated hydro-geodetic data and hydrological models
to estimate, calibrate, or validate hydrological flux variables.
For example, modeling river runoff with the help of hydro-
geodetic approaches (Tourian et al., 2013; Sneeuw et al., 2014),
estimating catchment-scale water budget using a Kalman filter
framework (Pan and Wood, 2006; Lorenz et al., 2015), and
calibration or/and validation of hydrological model outputs using
GRACE datasets (Döll et al., 2014; Eicker et al., 2014). The
ensemble Kalman filter approach has been used effectively to
assimilate GRACE TWSC into a Land Surface Model (LSM)
to improve model performance (Zaitchik et al., 2008; Houborg
et al., 2012; Eicker et al., 2014). Several non-parametric methods
have also been proposed to improve spatiotemporal knowledge
of hydrological variables. For example, Sun (2013) predicted
groundwater level changes by incorporating GRACE with hydro-
meteorological variables in an ANN framework. Long et al.
(2014) demonstrated the efficacy of ANN to predict TWSC from
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precipitation, soil moisture, and temperature, and Seyoum and
Milewski (2017) used ANN to produce high-resolution TWS
estimates. Recently Vishwakarma et al. (2021) used multivariate
regression to improve the resolution of GRACE satellite products
to half degree grids. Such higher spatial resolution datasets are
required to better attribute spatiotemporal changes in water
mass redistribution.

Data integration can also be carried out by using budget
equations that rely on the conservation of mass or energy to
define relations between various physical observables. These
equations can be used to estimate one variable when others are
known, and such a dataset is a derived dataset. For example,
the water budget equation writes precipitation in a catchment
as a sum of storage change, evapotranspiration, and runoff. If
any three of these variables are known, then the fourth dataset
can be estimated (Sneeuw et al., 2014; Lehmann et al., 2022).
Such approaches have been used to estimate evapotranspiration,
which, when compared to evapotranspiration from models, can
provide an assessment of the accuracy of the model. It is to be
noted that the efficacy of such an approach is limited by the
accuracy of the variable with the highest uncertainty.

MAJOR GAPS

The Himalaya has the largest glacierised area outside poles, and
therefore, it requires a massive collaborative effort to measure
a representative number of glaciers in the field. Working on
Himalayan glaciers is challenging, and only about 36 glaciers
have been studied so far for mass balance (Table 1), which
constitute about 1% of the total glacierised area in the Himalaya
(Bolch et al., 2012; Azam et al., 2018). Therefore, the biggest
gap is the lack of glacier in-situ mass balance data from the
region. Likewise, our current knowledge of the volume of water
stored and ice thickness distributions in individual glaciers
is also poor (c.f. Figure 4). Hence, one of the fundamental
research questions in front of us is “How are climate change
and glacier volume responses affecting the glacier movements of
Himalayan glaciers?” So far, this is still under investigation and
has been recently highlighted by Azam et al. (2021). In Figure 4

we show a schematic that dissects our current and required
knowledge in the spatial and temporal domains. We are yet to
obtain a comprehensive understanding of frozen water at various
spatiotemporal scales.

Another gap is the lack of in-situ meteorological datasets
that are required to model glacier mass balance accurately.
Temperature data from several reanalysis, gridded and model
datasets (ERA5, ERA5-Land, APHRODITE, CRU, HAR, among
others) are the best available options (Kumar et al., 2015,
2019; Kanda et al., 2020). However, precipitation values from
these sources are either over or underestimated due to the
unpredictability of precipitation in high altitude regions (e.g.,
Immerzeel et al., 2015;Wortmann et al., 2018). Also, information
from the inaccessible areas and avalanche contribution to glacier
mass balance is typically ignored (Laha et al., 2017).

The downstream countries would be affected the most by
changes in the Himalayan water storage. There are several
hydro-power projects being developed that would be severely

affected by changes in water availability. Recently several water-
related disasters were reported that were triggered by sudden
release of large water volumes, e.g., the Chamoli disaster in
2021 (Shugar et al., 2021) and the Kedarnath disaster in
2013 (Dobhal et al., 2013b; Allen et al., 2016). Although the
communities in the downstream countries recognize the need
for improving the quantity/quality of the observation data, but
still there is a lack of cooperation between surface water and
groundwater management agencies (including trans-boundary,
inter-and intra-government agencies). In such scenarios, data
from remote sensing platforms (e.g., Altimeters, GRACE) can be
used to understand the state of water use. However, due to poor
spatiotemporal resolution of remote sensing data (c.f. Figure 4),
there is a need for exploring data-integration or assimilation
methods that may predict hydrometeorological variables of
interest at various scales. It is also recommended to develop
a framework for upscaling the use of crowd sourcing-based
data and remote sensing data, along with observation data from
government agencies to formulate management plans.

CHALLENGES AND FUTURE RESEARCH
DIRECTIONS

We have made significant advances in our understanding of
water resources variability in the Himalaya and downstream
during the past few decades. These advances resulted from an
improved understanding of the physical processes and dynamics
and the advances in data collection and automation. However,
we still need to overcome some of the challenges to direct
future research.

Installing more weather stations and collecting long-
term continuous in-situ data at different elevation over the
Himalayan regions for a comprehensive spatiotemporal coverage
is needed. Instrumentation and data collection schemes
should be developed to monitor changes in glacier mass,
snow hydrological processes and permafrost storage. In-situ
meteorological observations are sub-daily, while glaciological
measurements are usually seasonal or annual, but both are
at point scale. Remote sensing can help us obtain spatially
consistent, sub-monthly or monthly time-series data. Hence,
there is an eminent need to develop frameworks that can
assimilate/integrate both in-situ and multi-satellite remote
sensing observations to create high resolution time-series
estimating various hydro-glaciological processes.

Models are an invaluable tool for predicting future water
availability and understanding the role of individual drivers.
Current climate models lack in representing feedback processes
involving human interferences, snow and glacier processes, and
the corresponding basin runoff responses. For example, at the
regional scale, coupled glacier-climate model setups such as
REMOglacier have already shown good potential in replicating
the observed glacier mass-balance variability. Furthermore,
estimation of uncertainties in model outputs must be improved.
Ensemble modeling, for example, has been shown to provide a
realistic assessment of uncertainty range.

Geodetic observations can provide critical data formonitoring
snow, glaciers, surface, and sub-surface water storage. The
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FIGURE 4 | Spatiotemporal timeline of research investigation and understanding of the cryosphere and regional water resources in the Himalayan region. Relative

data availability from various techniques/methods are also shown.

low-cost GNSS receivers can be deployed as they provide a
wide variety of information on snow and glaciers. Particularly,
a dense network of GNSS stations that can also perform
GNSS reflectometry will be of immense value for snow
and glacier monitoring in the Himalaya. The development
of micro-electromechanical-system (MEMS) based gravimeters
(Carbone et al., 2020) should make in-situ gravity measurements
cheaper. It must be noted that terrestrial gravimetry is the
most underutilized of all the geodetic techniques in glacier
monitoring. Dedicated modeling of GRACE-FO data for
retrieving Himalayan glacier mass change must be pursued
to extract data for nearly two-decades. With the success of
GRACE-FO, a number of future gravimetric missions are being
proposed to ensure the continuous availability of temporal
gravity data. Thus, investment in dedicated and integrated
geodetic observations will open new vistas in the Himalayan
glacier research.

Tracking changes in glacier mass balance, ice volume,
permafrost storage, and snow hydrology over the Himalaya
is challenging and we can minimize the above-mentioned
gaps by capacity building and collaborations. Indian sub-
continent hosts a large number of universities and institutions.
Development of curriculum in this area of expertise in many
of these institutions will increase the chances of minimizing
the gaps. Also, capacity building from the secondary education
level will prepare the upcoming generation to contribute
significantly to this field. Collaboration and easy data sharing
between institutions like India Meteorological Department
(IMD), Indian Space Research Organization (ISRO), Defense
Geoinformatics Research Establishment (Formerly Snow
Avalanche and Study Establishment; SASE), Defense Research
and Development Organization (DRDO), National Center for

Polar and Oceanic Research (NCPOR), and other regional
intergovernmental institutions such as the International Center
for Integrated Mountain Development (ICIMOD) will also
help immensely.
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APPENDIX

TABLE A1 | List of abbreviations used in the manuscript.

Abbreviation Full name

AAR Accumulation Area Ratio

AMSR-E Advanced Scanning Microwave Radiometer for Earth

observation

ANN Artificial neural networks

APHRODITE Asian Precipitation—Highly-Resolved Observational Data

Integration Toward Evaluation

ASTER Advanced Spaceborne Thermal Emission and Reflection

Radiometer

BITE Bayesian Ice Thickness Estimation

CH Central Himalaya

CORDEX Coordinated Regional Climate Downscaling Experiment

CPDD cumulative positive degree days

CRU Climatic Research Unit

DDM Degree day model

DEM Digital Elevation Model

DGS Dynamical glacier scheme

DRDO Defense Research and Development Organization

DST Department of Science & Technology, Govt. of India

ECMWF European Center for Medium-Range Weather Forecasts

EH Eastern Himalaya

ELA Equilibrium Line of Altitude

G2TI Global Glacier Thickness Initiative

GCM Global Climate Model

GDM Glacio-hydrological Degree-day Model

GlabTop Glacier bed Topography

GlaThiDa Glacier Thickness Database

GLIMS Global Land Ice Measurements from Space

GLOF Glacial lake outburst flood

GNSS Global Navigation Satellite System

GPR Ground-penetrating radar

GRACE Gravity Recovery and Climate Experiment

HAR High Asia Refined Analysis

HKH Hindu-Kush Himalaya

HMA High Mountain Asia

ICESat Ice, Cloud and land Elevation Satellite

ICIMOD International Center for Integrated Mountain

Development

IMD India Meteorological Department

ISRO Indian Space Research Organization

ITMIX Ice Thickness Models Intercomparison eXperiment

KK Karakoram

LSM Land Surface Model

MEMLS Microwave Emission Model for Layered Snowpacks

MEMS Micro-electromechanical-system

MODIS Moderate Resolution Imaging Spectroradiometer

MPIOM Max Planck Institute’s Ocean Model

NCPOR National Center for Polar and Oceanic Research

NDSI Normalized difference snow index

(Continued)

TABLE A1 | Continued

Abbreviation Full name

OGGM Open Global Glacier Model

PWV Precipitable water vapor

PyGEM Python Glacier Evolution Model

RCM Regional climate model

RCP Representative Concentration Pathway

REMO REgional atmospheric MOdel

RESM Regional Earth System Model

RGI Randolph Glacier Inventory

SAR Synthetic aperture radar

SASE Snow Avalanche and Study Establishment

SCA Snow cover area

SD Snow depth

SEB Surface energy balance

SfM Structure from Motion

SIA Shallow ice approximation

SMMR Scanning Multichannel Microwave Radiometer

SPOT Satellite Pour l’Observation de la Terre

SRTM Shuttle Radar Topography Mission

SWE Snow water equivalent

TRMM Tropical Rainfall Measuring Mission

TWS Total water storage

UAV Uncrewed Aerial Vehicles

UKIERI UK-India Education and Research Initiative

VAS Volume Area Scaling

WEIGH Water Security Assesment in Rivers Originating from

Himalaya

VOLTA Volume and Topography Automation

WH Western Himalaya

WVEQ Water volume equivalent
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