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The interaction between climate and the hydrologic cycle is complex

due to intricate feedback mechanisms that can have multiple impacts

on key hydrologic variables. Under a changing climate, it is becoming

increasingly important for undergraduate engineering students to have a

better understanding of climate and the hydrologic cycle to ensure future

engineering systems are more climate resilient. One way of teaching

undergraduate students about these key interactions between climate and the

hydrologic cycle is through numerical models that mimic these relationships.

However, this is di�cult to do in an undergraduate engineering course because

these models are complex, and it is not feasible to devote class time and

resources to teaching students the knowledge base required to run and

analyze these numerical models. In addition, the recent COVID-19 pandemic

required a rapid change to flexible teaching methods that can be implemented

in online, hybrid, or in-person courses. To overcome these limitations, a

backward design and constructive alignment approach was used to develop

an active learning module in the HydroLearn framework that allows students

to explore the connection between snow processes and streamflow and how

this will change under di�erent climate scenarios using numerical models and

analysis. This learning module provides learning activities and tools that help

the student develop a basic knowledge of snow formation and terminology,

snow measurements, numerical models of snow processes, and changes

in snow and streamflow under future climate. This module is particularly

innovative in that it uses Google Colabs and an interactive user interface to

facilitate the students’ active learning in an environment that is accessible for

all students and is sustainable for continued use and adaptation. This paper

describes the approach, best practices and lessons learned in developing

and implementing this active learning module in a remote and in-person

course. In addition, it presents the results from motivation and student self-

assessment surveys and discusses opportunities for improvement and further

implementation that have implications for the future of hydrologic education.
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Introduction

In a warming world, the frequency and patterns of

precipitation have the potential to change due to changes in

global circulation that may cause some areas of the world to see

increases in drought and other areas to see increases in floods.

In a warming climate, changes in atmospheric circulations

patterns will lead to poleward displacement of storms that can

produce subtropical dry zones (Marvel and Bonfils, 2013) and

an enhancement of the rainfall response to El-Nino Southern

Oscillation (ENSO) which amplifies rainfall extremes (Bonfils

et al., 2015). The interaction between climate and the hydrologic

cycle are complex due to intricate feedback mechanisms that

can have varied impacts on key hydrologic variables in space

and time. One area of the hydrologic cycle that is particularly

sensitive to climate variability is seasonal snow pack. There

has been extensive research showing changes to seasonal snow

pack characteristics under a warming world. This includes less

winter precipitation falling as snow, migration of snow pack

to northern latitudes, changes in the timing and magnitude

of spring peak runoff, and the intensification and increase

in length of snow droughts (Barnett et al., 2005; Demaria

et al., 2016; Huning and AghaKouchak, 2020). These feedbacks

between climate and the hydrologic cycle will cause strain

on existing water resources and water infrastructure and will

be a generational challenge for future engineers. Therefore,

it is becoming increasingly important for undergraduate

engineering students to have a better understanding of climate

and the hydrologic cycle to ensure future engineering systems

are more climate resilient.

One way of teaching undergraduate students about these

key interactions between climate and the hydrologic cycle

is through measurements of key hydrologic variables and

through numerical models that mimic these relationships

through mathematical equations. Models allow students to

test simple hypotheses and modify the assumed relationship

between variables to determine the outcome. This exploration

of the hydrologic cycle takes on real world meaning when

the numerical models are validated and analyzed with key

hydrologic variables such as streamflow, precipitation, and snow

in order to assess and evaluate the extent to which the model

mimics reality. This provides students with an intuitive way

to learn how different processes interact within the hydrologic

cycle and gives students an opportunity to actively explore parts

of the hydraulic cycle and its interaction with climate. Yet,

teaching students how to explore models and evaluate their

ability to answer specific questions using real world data is not

easily achieved (Lane et al., 2021).

Research has shown that active learning increases student

performance on examination and concept inventories over

traditional lecturing in Science, Technology, Engineering

and Mathematics (STEM) fields (Freeman et al., 2014).

Merck et al. (2021) showed that an active learning module

allowed students to take part in the modeling process

while helping students understand the mathematical

models and develop their skill set. Specifically, within the

hydrologic sciences, there has been a lot of work in creating

online active learning modules to foster deeper conceptual

knowledge of the students through a learning platform

called HydroLearn (www.hydrolearn.org; Gallagher et al.,

2021).

HydroLearn is a web-based platform that was developed

with the primary purpose of supporting hydrology and water

resources instructors in finding, adapting, and creating learning

modules that integrate authentic problems, instructional

content, real data, and modeling resources to create an active

learning environment for students. More than just a repository

for instructional materials, the modules housed within

HydroLearn go through a rigorous development and review

process based on research in curriculum design (Gallagher et al.,

Accepted). Modules include Development of Design Storms,

Quantifying Runoff Generation, Developing Storm Inflow

and Outflow Hydrographs, Culvert Design Using HEC-RAS,

Physical Hydrology, and Detention Basin Design (Gallagher

et al., 2021; Lane et al., 2021; Merck et al., 2021). All modules

on the HydroLearn platform are freely available to students

and instructors.

Even though online active learning modules have been

shown to be an effective way to teach students new skills

and deeper understanding of the subject, it is also important

to recognize that technology and decisions relative to model

selection can still be a barrier to student learning (Merck et al.,

2021). Difficulties arise because models are complex and require

a large amount of input data and a prior familiarity with

running numerical models and using computer programming.

Even after running the model, there is still a significant level

of expertise needed to process and analyze the model results.

While developing these technical computational skills can be an

important part of students’ education, it is not feasible to devote

class time and resources to teaching students the knowledge base

required to run and analyze numerical models in a course that is

not focused on numerical analysis. As such, using coding-based

solutions can sometimes lead to too much focus on the tools

and syntax of implementing the module activity that limit the

student’s ability to explore the fundamental process (Lane et al.,

2021). To help address this, we developed an active learning

module using Jupyter Notebooks that allows students to explore

the connection between numerical snow models and climate.

Themotivation for using Jupyter Notebooks is to strike a balance

between a “black box” standalone applications and open access

code development (Peñuela et al., 2021). The advantage of using

a “black box” application is that students do not get lost in

the coding and therefore are able to focus on utilizing the

tools to solve the authentic problem. However, the downside

is that the underlying codes and assumptions are not readily

available and cannot be changed. In using widgets within Jupyter
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Notebooks, the module provides the students with a simple and

intuitive way of analyzing the data without the requirement of

needing to understand and manipulate computer code. At the

same time, the computer code is readily available and can be

manipulated or changed by the instructor or advance student

to further develop and explore the data and the model. In this

way, Jupyter Notebooks provide a flexible framework that is

effective for both the instructor and the students. The purpose

of this paper is to share how this active learning module was

designed, as well as lessons learned from implementing it in an

undergraduate class in order to add to the knowledge base in

the field regarding the design of active learning modules. This

work was also highly motivated by the COVID-19 pandemic and

the sudden need for flexible teaching methods that utilize best

practices and can be implemented for both in-person, hybrid

and online courses. The remainder of this paper discusses the

development of the Snow and Climate Module (Section Module

development), the effectiveness of the module (Section Module

effectiveness) and lessons learned from its implementation

(Section Lessons learned).

Module development

The Snow and ClimateModule (SCM) includes five sections.

Each of the sections of the module are discussed following the

same design structure of the module which includes an

Overview (2.1), Snow Basics (2.2), Snow Measurements (2.3),

Snow Modeling (2.4), and Snow and Climate (2.5). While this

paper discusses the development of the module, the reader is

strongly encouraged to explore the module itself at https://edx.

hydrolearn.org/courses/course-v1:KU+CE552+Fall2021/about.

Most of the module content can be explored without registering

for an account, however, the “Check Your Understanding”

activities can only be viewed by registered users.

Overview

The first section of the SCM discusses and presents the

learning outcomes and objectives. The SCM was developed

using a backwards design approach (Wiggins and McTighe,

2005), whichmeans it starts with the learning outcomes and then

the content is developed based on helping the student to achieve

the learning outcomes. The SCM as a whole has four learning

outcomes which are given below.

Given examples of various aspects of snow physics and snow

dynamics, students will display a technical vocabulary of snow

science and snow measurements.

Given snow measurements, the student will be able to

analyze the difference in snow measurements and monthly

and annual relationships between snow depth, Snow Water

Equivalence (SWE), and streamflow at two locations in the US.

Given simulated snow estimates, the student will be able

to contrast modeled and observed snow relationships while

considering uncertainty.

Given simulated snow estimates based on projected climate,

the student will be able to analyze the temporal change in

snow due to climate projections and develop recommendations

that consider uncertainties in the snow model and changes

in climate.

While these outcomes are listed in the order they are

presented in the module, it is important to note that in

the backwards design approach, outcome 4 was the primary

outcome identified and then outcomes 3, 2 and 1 were

developed to support the achievement of outcome 4. This

approach provides an intuitive progression of knowledge

through the module that culminates with achieving the main

learning objective.

While the structure of the module is driven by the learning

outcomes, this module was also designed to be an active learning

module. To help facilitate active learning within the module, the

module learning outcome is presented to the students in the

form of a problem and is the first thing presented in the module.

The motivating problem for the module is given below.

“You work for a consulting company and one of your clients

is expanding their snow centered business across the US and

is interested in knowing how climate change will impact snow

and streamflow in the intermountain west and the northeastern

United States. They have hired you to project likely changes in

future snow depth, snow duration and streamflow under climate

change. The client would like your analysis presented in a report

that analyzes the change in snow and streamflow for two 30-year

periods (1991–2020 and 2021–2050) and includes a description

of snow measurements, snow models, and climate projections

used in the analysis and their associated uncertainties.”

In summary, after the first section the students have been

given a problem that will help facilitate active learning and

are given a road map of how they will learn the necessary

knowledge and skills to complete the project and achieve the

learning outcome.

Snow basics

This section of the module provides the foundational

knowledge that is imperative for students to be able to begin

to understand the snow-climate relationship. This section of

the module introduces a wide range of snow-related science

and terminology, including snowflake formation, types of snow,

and snowmeteorology. There are three main learning objectives

associated with this section.

• The student will be able describe the characteristics and

properties of snowflake formation.
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• The student will be able to describe some of the

meteorological processes that create snow, including,

orographic effect, weather bombs, atmospheric rivers, and

lake effect snow.

• The student will be able to identify key terminology related

to snow types and climate from definitions from the

National Snow and Ice Data Center.

The content in this section is presented using a variety of

text, videos and activities to help the students check their level

of understanding of the content. These activities are a nice way

to keep the student engaged and actively learning in an online

format. These activities include, true or false questions, multiple

choice questions, and drag and drop matching. An example

of one of these learning activities is shown in Figure 1, which

shows the drag and drop activity associated with section Snow

modeling in the module designed to facilitate student learning

of snow terminology. All of these activities provide feedback to

the students and the students are allowed to redo the activities as

much as they like.

Snow measurements

The snow measurements section of the module introduces

the students to the various methods and agencies involved in

snow measurement and provides an active learning opportunity

for the student to analyze snow measurements at two locations

in the U.S. This section has four learning objectives that are

given below.

• The student will develop a technical vocabulary to describe

snow states and measurement.

• The student will be able to describe how to dig and make

measurements in a snow pit.

• The student will be able to describe how regular

measurements of snow are made including SNOTEL and

Snow Course monitoring network and where to access

the data.

The student will be able to analyze snow measurements to

assess the difference in snow measurements and monthly and

annual relationships between snow depth, SWE, and streamflow

at two locations in the US.

Like the previous section of the learning is done through

a series of videos, text and learning activities that help the

students understand the vocabulary and process of making

snow measurements, but it also provides an opportunity for

the students to analyze real snow measurements from two

locations in the U.S. This is accomplished by using Google

Colabs and programming a front-end user interface in python

using the ipywidgets library which creates interactive HTML

widgets within a Jupityer notebook. The way this technical

activity is incorporated into this learning activity is one of

the unique and innovative aspects of this module. A Jupyter

Notebook is a combination of text and code within a single file.

Google Colab provides the server on which the interface is run

and is free and accessible for anyone with a google account.

This setup provides a nice way to have all students running

in a consistent computing environment that is easily accessed

through a web browser. The notebook framework also provides

a means to include formatted text alongside the computer

code to provide a clear and easy to follow directions for the

learning activity.

The Jupyter Notebooks used in SCM are designed to be

used by anyone and require no prior knowledge of Python

programming. This is achieved by making the Notebooks

self-contained and self-initiating through detailed instructions,

figures and code that automates setup and configuration of the

user interface. This translates to the user only seeing a couple

lines of code, while the backend of the learning activity is

written in the Python programming language and consists of

thousands of lines of code that set up the user interface and

allows the students to explore the data and generate figures

that can be used to complete the activity. Specifically, the first

code block downloads the data and the user interface code

and sets up the directory structure. This code can be run by

simply pushing the run button in the top-left corner of the

code block. Once the data is downloaded the student can move

to the next section and run another code block that only has

two lines of code, which generates the user interface. Figure 2

shows the first section of the snow measurements activity which

includes a brief introduction that is followed by a description

of setup and a small three-line code block that downloads

the backend code and data and sets up the environment and

directory structure. The code block can be run by clicking on

the play button. The snow measurement activity includes four

different interfaces that allows the students to explore snow

depth, SWE and streamflow at the two measurement locations.

These activities include (1) analyzing the daily timeseries of snow

depth and SWE values, (2) analyzing the monthly timeseries of

snow depth, SWE and streamflow, (3) analyzing the monthly

relationship between snow depth, SWE and streamflow using

scatter plots and (4) analyzing the annual relationship between

snow depth, SWE and streamflow through scatter plots. In each

of these activities the student has the option to save the figure

as a PNG file for use in their report. This learning activity

provides a simple and effective way for a student to explore snow

measurement data without needing a technical background in

data analysis.
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FIGURE 1

An example of a drag and drop learning activity in Section Snow Modeling in the module focused on facilitating learning and retention of key

snow terminology.

Snow modeling

The Snow Modeling section introduces the students

to modeling snow accumulation, snow melt, streamflow,

the importance of parameter estimation and the

uncertainty associated with inputs, parameters, and model

structure. There are six learning objectives in this section

and include:

• The student will be able to describe the need for

snow modeling.

• The student will be able to analyze model uncertainty.

• The student will be able to analyze model performance.

• The student will be able to list the key components of

snow models.

• The student will be able to demonstrate the

relationship of snow properties and streamflow

in models.

• The student will be able to contrast modeled and observed

snow relationships while considering uncertainty.

Just like previous sections, the content includes text, figures

and videos that help the students learn about snow modeling.

In the first section, students learn about numerical modeling,

uncertainty and the importance of model validation and ways

of assessing models through statistical summary measures such

as the Nash Sutcliffe Efficiency (NSE) and the Kling-Gupta

Efficiency (KGE; Gupta et al., 2009). This section ends with

a series of True and False questions and a drag and drop

activity to check the student’s level of understanding. The next

section introduces the snow model structure and includes a

section on snow accumulation and snowmelt. Only one model

for snow accumulation is presented but three different models

are presented for snow melt. This includes the Temperature

Index Model, Hybrid Model, and Energy Balance Model.

Each of these three snowmelt models have varying levels of

complexity and together provide a way for students to explore

the impact of different model structures on the model outputs.

The next section discusses model inputs or driving variables

needed to run the snow models and different sources of

these inputs. The different inputs provide another way for the
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FIGURE 2

The first section of the learning activity for the snow measurement active learning module. This section includes a brief introduction, a

description of how the notebook is set up and a small code block that downloads the backend code and data and sets up the environment and

directory structure so that the activity can be easily run through an internet browser.

students to actively understand the uncertainty and sensitivity

of having different model inputs on the model outputs. The

next section then focuses on identifying the key parameters in

the snow accumulation and snowmelt models and discusses the

importance of parameter estimation. This is then followed by

three questions where students can apply what they have learned

by using the three snowmelt model equations to estimate the

snowmelt for a particular day. The snow modeling section then

ends with a learning activity where the students get to run and

analyze the snow models at the two study sites. The first part of

this section provides some background information about the

hydrologic model used with the snowmodel for this activity and

includes a brief discussion of other processes such as infiltration,

evaporation, and streamflow routing that are included in the

hydrologic model. The learning activity is structured the same

as the previous activity in that it is a self-contained Jupyter

Notebook that seamlessly downloads the model and data and

sets up the environment, directory structure, and each of the four

individual learning components. The first learning component

of the activity allows the students to explore the uncertainty in

the model structure, inputs, and parameters by changing the

snowmelt model, the input data and key parameters and see

how these changes impact the snow depth, SWE, and streamflow

from the model through an interactive user interface. The next

part of the learning activity allows students to run different

models and compare the models with observations to facilitate
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FIGURE 3

An example of a learning activity in the SCM that allows students to run di�erent models and compare the model with observations in order to

facilitate selecting a model that they will use for the final report.

selecting a model that they think is best. An example of this

is shown in Figure 3. Once the students have selected and run

their model of choice, they can then do a detailed comparison

between their model and the observed snow depth, SWE and

streamflow using monthly and annual statistics in the last two

sections. Just like the previous activity, students can download

images they create to include in their report.

Snow and climate

The Snow and Climate section introduces the students

to climate modeling, the concept of downscaling climate

models, using statistical tests to quantify statistically significant

differences between two periods and analyzing temporal changes

in snow due to climate. The five learning objectives for this

section of the module are given below.

• Develop a technical vocabulary to describe climate models.

• Describe the downscaled climate model outputs used in the

snow model.

• Utilize a difference in the means test to assess the

statistical significance of model data over two different

climate periods.

• An analysis of the temporal change of snow due to

climate projections.

• Recommendations that are backed by both observations

and models and that considers uncertainties in the snow

model and changes in climate.

The same format of including text, figures, and videos is

used in the final section of the module. The first part of this

section uses several videos and figures to introduce the students

to climate models and some of the key terminology. It also

explicitly introduces the five climate models that will be used in
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the final learning activity. Next the module teaches the students

about downscaling outputs from climate models and why it is

important. The next section introduces using a difference in the

means test to assess if there is a statistically significant difference

in snow or climate variables between two periods. This is

then followed by a series of questions to help students check

their understanding. Like other learning activities throughout

the module, students can complete these questions as many

times as they need to ensure that they understand the key

concepts. Lastly, the final learning activity is introduced using

text and demonstration video. As with the other major learning

activities, this last activity uses a self-contained Jupyter notebook

to download the code and data needed to set up and configure

the different components of the learning activity. This final

learning activity includes three sections. The first section allows

the student to explore the climate input data (Precipitation,

Temperature, Humidity, Wind, Pressure, Shortwave Radiation,

and Longwave Radiation) to the snow model by analyzing a

timeseries from 1991 to 2050. In addition to downloading the

figure, the students also have the option of downloading the

data to a csv file so that they can perform statistical tests

to determine which input variables show a significant change

between the average value over the base period (1991–2020)

and future climate (2021–2050). In the next section of the

learning activity, the students can run the snow model from

1991 to 2050 using the climate forcing they explored and using

the model structure and parameters that they identified in the

snow modeling section. Once the students have run their snow

model, they can download and analyze the changes in annual

statistics of snow depth, SWE and streamflow using a difference

in the means tests as well as using the figures generated in

the final section of the learning activity. An example of this

user interface is shown in Figure 4 which allows the students

to explore the data and utilize the knowledge they gained in

the module to complete the main objective in the form of

a report that includes figures and analysis from all of the

learning activities.

Module e�ectiveness

Data collection

To determine the effectiveness of the module, we collected

and analyzed data regarding students’ self-assessed learning

gains and their motivation for learning before implementing the

module (pre) and immediately after (post). We then analyzed

these data to see if there were statistically significant changes

from pre to post. Additionally, students were given the choice

of completing the module independently or in groups and so we

also chose to analyze the data to see if there were statistically

significant differences from pre to post for students who

completed individually as compared to those who completed

in groups.

Course description

The SCM was implemented in a senior design course at

a mid-western university during the COVID-19 pandemic in

2020 and 2021. The senior design course requires students to

have taken a course in both Fluid Mechanics and Hydrology.

In 2020 there were 47 students enrolled in the course and

in 2021 there were 53. Both courses took place during the

COVID-19 pandemic and due to involving regulations in the

classroom the learning environment was different for each

year. In 2020, the module was implemented during the last

2 weeks of the course which were after the Thanksgiving

break and University regulations required that all content be

online to reduce transmission from students traveling for the

holiday. Therefore, the students in 2020 worked on the module

individually and it was implemented as a fully online course even

though the course was hybrid before the break. In contrast, in

2021, the course was back to normal in-person delivery with

the only regulations being that masks were required in the

classroom. For consistency, the SCM was implemented during

the last 2 weeks of the semester which again occurred after

Thanksgiving break. However, in 2021 students were given an

option to complete the module individually or in a group.

Students who completed the module individually did it at their

own pace and were not required to attend class during the

module portion of the class. In this sense the individual students

completed the module similar to what would be expected in

an online course. The students who chose to work in groups

were required to attend class and work with their groups on the

learning activities. The group size ranged from 2 to 3 students.

The group work format is consistent with the learning style

of the course. Even though students were allowed to self-select

betweenworking individually or with a group, it was a fairly even

separation with 31 students choosing to work individually and

22 students selecting to work in groups.

All students in the class, both semesters, were invited to

participate in the study and 33 consented to participate and had

complete data. Of the participants, 61% (n = 20) identified as

male and 85% (n= 28) identified as White.

Student-assessment of their learning gains

The Student Assessment of their Learning Gains (SALG)

survey was created in 1997 and has continually been upgraded to

promote greater clarity, consistency of language, ease of student

comprehension, and to make the instrument adaptable enough

to suit different disciplines and learning objectives (Seymour

et al., 2000). We modified the SALG survey used in this study

to align with the learning objectives of the SCM. Students

participated in the SALG survey at two-time points, as they
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FIGURE 4

An example of the learning activity where students get to explore the change in the snow model outputs due to projected climate from 1991 to

2050. This final activity provides an opportunity for the students to apply the knowledge they gained throughout the entire learning module and

complete the main objective.

were introduced to the module (pre) and after completing their

final assignment (post). The survey consists of two parts that

ask students to report their understanding of concepts and their

proficiency in using technical skills pertaining to the module.

The concepts items begin with, “Presently I understand the

following concepts that will be explored in this module. . . ”

followed by items representing key concepts from the module.

For example, in the Snow and Climate module, one concept

item is “Snow terminology.” The skills portion follows the

concepts portion of the survey. The skills statement begins with,

“Presently, I can. . . ” followed by items representing the skills

students learn using the module. An example of a skills item is,

“Use Jupyter notebooks.” Students rank each item on a 6-point

Likert scale that ranges from 1-Not applicable to 6-A great deal.

See Supplemental Materials for the full Likert scale and a list of

the concepts and skills items for the Snow and Climate module.

Motivated strategies for learning questionnaire

Motivation is a key predictor of student learning (Caldwell

and Obasi, 2010; Bong et al., 2012; Torenbeek et al., 2013). In

particular, students can be extrinsically motivated by grades,

rewards, or other external factors or they can be intrinsically

motivated by their own interest in a subject or a personal

desire to learn the content. Intrinsic motivation has been found

to be a stronger predictor of student learning, as students

are more able to use that internal motivation to persevere

through challenges. The SCMwas purposefully designed around

an authentic problem to pique students’ interest. Thus, we

hypothesized that students would feel greater intrinsic value

toward this problem as compared to traditional instruction.

Additionally, students’ motivation is also affected by their self-

efficacy, their belief in their own ability to be successful (Schunk,

1989; Parker et al., 2014). The content in the SCM was carefully
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created to support students to be able to successfully complete

the authentic problem by considering exactly what concepts and

skills students would need exposure to before being asked to

solve this problem. We hypothesized that these supports would

enhance students’ self-efficacy.

In addition to being purposefully designed to be motivating

for students, the SCM also required students to engage in self-

regulated learning. Self-regulated learning requires students to

be proactive in determining what they know and do not know,

and seeking out the support they need to master new content

(Zimmerman, 1990). Students who are self-regulated use specific

cognitive strategies, such as organizational strategies (Pintrich

and de Groot, 1990). The SCM includes text, videos, and

questions that support students’ learning if those students are

self-regulated and choose to take advantage of them. Therefore,

students’ success with the module depends on their ability

to self-regulate and use cognitive strategies. We hypothesized

that engaging with this module would support students’ self-

regulation skills and cognitive strategy use.

The Motivated Strategies for Learning Questionnaire

(MSLQ) measures students’ motivational beliefs and self-

regulated learning strategies (Pintrich and de Groot, 1990). The

survey consists of five factors, four of which we used in this

study: self-efficacy, intrinsic value, cognitive strategy use, and

self-regulation. The original MSLQ also contains a factor for

measuring test anxiety; however, we chose to omit this scale

because it does not apply to the SCM.

The two factors related to motivational beliefs are self-

efficacy and intrinsic value. The self-efficacy scale has nine

items that measure perceived confidence and ability in classwork

performance (e.g., “My study skills are excellent compared with

others in this class.”). Intrinsic value, which includes nine items,

refers to a student’s intrinsic interest in and perception of

the relevance of coursework, as well as a desire for challenge

and goal mastery. An example item is, “Understanding this

subject is important to me.” Self-regulated Learning Strategies

comprises two scales: cognitive strategy use and self-regulation.

Elaboration strategies such as summarizing and paraphrasing,

rehearsal strategies, and organization strategies are examples of

cognitive strategy use. One example of the 13 items is, “When

I study, I put important ideas into my own words.” Finally,

self-regulation relates to students’ planning, scanning, cognitive

monitoring, perseverance, and dedicated effort on difficult or

tedious tasks and includes (nine items. An example of a self-

regulation scale item is, “I ask myself questions to make sure I

know the material I have been studying.”

In total, students responded to 52 items that measure these

four scales. We calculated each scale by taking the mean score

of students’ responses to items from each category. The order of

survey items was randomized, and students ranked these items

on a seven-point Likert scale (1= not true of me at all to 7= very

true of me). The MSLQ used in this study is included in the

Supplementary Materials Section.

Data analysis

We first conducted six paired samples t-tests to determine

if there were statistically significant differences from pre to post

on the two components of the SALG (i.e., the concepts and skills

presented in the Snow and Climate module) and on the four

factors of the MSLQ (i.e., self-efficacy, intrinsic value, cognitive

strategy use, and self-regulation). We used paired samples t-tests

to account for the dependence of observations (i.e., one student’s

scores from pre to post; Warner, 2012). To determine if there

were statistically significant differences from pre to post based

on whether the students chose to work independently or in

groups, we first computed gain scores for each student and then

examined two analyses of variance (ANOVAs), one each for gain

scores on SALG concepts and SALG skills. We first examined

the assumption of normality by examining histograms of all

variables. All appeared normally distributed.

Results

Overall

On the SALG survey, we found statistically significant

improvements for students in both concepts, t(47) = 15.05,

p< 0.001, with a large effect size Cohen’s d= 0.83 (Cohen, 1988),

and skills, t(47) = 9.94, p < 0.001, with a large effect size Cohen’s

d = 0.74 (see Table 1). These findings suggest that not only did

students improve in their self-reported learning of the concepts

and skills in the module (which would be expected), but that the

module had a very large effect on their learning, as indicated by

the large effect sizes.

With regard to students’ motivation for learning, we found

no statistically significant changes from pre to post. There are

several possible explanations for this lack of change. It could

be that undergraduate students’ self-efficacy, intrinsic value,

cognitive strategy use, and self-regulation are fairly fixed, it

could be that the module did not target these specific aspects

of students’ motivation, or it could be that because the timing of

the post administration of the survey was on the final day of class

and students were not feeling motivated.

Individual vs. group

When we tested whether there were statistically significant

differences in the gain scores (computed by subtracting pre

scores from post scores) between the two groups of students (i.e.,

those who chose to complete the module individually vs. those

who chose to complete it in groups), we found no statistically

significant differences for gain in concepts, p = 0.39 (see

Table 2). However, we did find statistically significant differences

for skills, F(1,46) = 4.27, p < 0.05, partial eta2 = 0.09 a medium

effect size (Cohen, 1988). These findings suggest that students

who chose to complete the SCM in groups self-reported a greater
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TABLE 1 Means, standard deviations, and sample size on the SALG and MSLQ factors from the student assessment.

SALG MSLQ

Concepts Skills Self-efficacy Intrinsic value Cognitive strategy use Self-regulation

Pre 2.98* (0.76) n= 48 3.75* (0.66) n= 48 5.03 (0.99) n= 33 5.30 (1.08) n= 33 4.66 (0.77) n= 33 4.58 (0.90) n= 33

Post 4.78* (0.69) n= 48 4.80* (0.63) n= 48 5.08 (1.18) n= 33 5.14 (1.06) n= 33 4.77 (0.82) n= 33 4.49 (0.91) n= 33

*p < 0.001.

TABLE 2 Means, standard deviations, and sample size on the SALG

gain scores for individuals vs. groups.

Concepts gain Skills gain

Individual

n= 31 1.73 (0.86) 0.89*(0.81)

Group

n= 17 1.95 (0.79) 1.33*(0.44)

*p < 0.05.

gain in skills as compared to those who chose to complete the

module individually.

Lessons learned

In implementing the SCM in the classroom for a senior

design course in Civil and Environmental Engineering majors

there were several lessons learned. First, the interactive and self-

contained nature of the SCM received an overwhelming positive

response from the students. This was qualitatively assessed by a

discussion period on the last day of the class where the students

took the post survey and after the survey there was a general

discussion about themodule. One of the specific comments from

the students was that they appreciated the change of pace and the

freedom to complete the assignment either individually or in a

group. This flexibility allowed students to choose the learning

method that worked best for them. From an instructor point of

view, this flexibility in implementation was greatly appreciated

especially during 2020 when the University required that the last

2 weeks of the course be fully online. With the sudden switch

to online, it was relatively simple to adapt the SCM to an online

format. The overall flexibility for the students and the instructor

is one of themain advantages of developing course content using

the Hydrolearn platform.

Overall, students appreciated the fact that they did not need

to manipulate or write computer code in order to complete the

activities, however, there were still some technical challenges.

One of the quirks with using the embedded widgets within a

Jupyter Notebook is that it can sometimes glitch and the widget

can crash. When this occurs, the widget cannot be fixed by

simply reloading the widget, but the Notebook environment

needs to be restarted and then the widget can be reloaded.

Restarting the Notebook does not erase the underlying data that

was generated by the student, but it can disrupt the workflow

and was only a mild inconvenience for most. However, for a

few of the students who worked individually this glitch in the

widget kept them from finishing themodule, despite the fact that

instructions for fixing the glitch were provided within each of

the Jupyter Notebooks and discussed in class before the students

started their individual work. This problem was only seen for

students that worked individually, as those who worked in

groups were more likely to ask group members or the professor

about this issue when they ran into this while working with

the module. When students were asked about trouble shooting

this error, most had forgotten that it was discussed and did not

bother to read the instructions in the Jupyter Notebook file.

This indicates that more effort needs to go into clearly directing

students on how to troubleshoot the activity when they run into

an issue. One way this could be done is to include a section

in the Notebook that is specifically labeled troubleshooting so

that students know exactly where to look when encountering

problems with the activity.

Another major finding from this study is that students

reported large gains in their conceptual understanding and

technical skills after participating in the SCM. Such large

effect sizes (concepts, d = 0.83, skills, d = 0.74) far exceed

the average effect size in education research (d = 0.40;

Hattie, 2009) and suggest that this module may be particularly

impactful on students’ acquisition of these concepts and skills.

These gains in concepts and skills mirror gains found for

undergraduates completing other HydroLearn modules (Byrd

et al., under review). Additionally, given that this module takes

only 2 weeks to complete, these findings suggest considerable

learning in a short time. We also found that the students

who chose to complete the SCM in groups gained more in

skills as compared to those who chose to complete the module

individually. Because of the small sample size and research

design, we cannot infer causality from these findings (i.e.,

we cannot infer that working in groups impacted students’

learning of skills). It may be that students who were more

likely to gain skills were also those more likely to self-select

into groups. It may also be that the additional time in class

working with their groups enabled these students to learn more
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skills. Nevertheless, these findings are interesting and warrant

further investigation.

This module also demonstrates the effectiveness for creating

active learning modules to teach key concepts of the hydrologic

cycle and has the potential to be expanded to include further

components of the hydrologic cycle and the impact of a changing

climate on engineering design. One way this could occur is to

expand the module to include other key components of the

hydrologic cycle such as rainfall, soil moisture, evaporation,

streamflow and groundwater. In fact, several HydroLearn

modules on these subjects already exists and could easily be

integrated together to create a semester long course specifically

focused on the hydrologic cycle. Furthermore, there are also

several ways that the existing SCM could be expanded to

provide a more complete coverage of the many impacts of

snow on engineering design and how it may evolve under

climate change. One such addition would be considering the

impact of changes to snowpack on the water supply by adding

a reservoir component to the module so that students can

assess water storage and the impact of climate change. The

module could also be expanded to include further analysis

on the impact of snow on scheduling and carrying out of

engineering works. The SCMmodule could also be expanded to

include a broader set of statistical tools such as trend analysis

and time series decomposition in order to provide students

with greater set of tools that would have broader impacts for

engineering design.

Another lesson learned is that the development of this

active learning module was a significant time investment.

The majority of the time was spent developing the Jupyter

Notebook widgets and the backend codes that integrated

the snow models with the simple hydrologic model and

the climate simulations. However, since these codes are

freely available, they can be used as a basic framework for

implementing new and extensions modules. Thus, making

the development of another module similar to the SCS

significantly less time consuming. Furthermore, the significant

time investment required to create an active learning module

in general, further emphasizes the importance and necessity

for a curriculum sharing web-based platform like HydroLearn.

While an individual may invest a large amount of time

in creating a module, the overall benefit of those efforts

will be justified if the module is utilized in many courses

around the world. This sharing of content also provides a

means of standardizing best practice and facilitating new

ideas into the broader hydrologic curriculum. In this vein,

the authors welcome suggestions, bug reports and additional

expansion ideas as others implement the module into their

own curriculum.

Overall, this work shows that complex and data

intensive model applications can successfully be brought

into undergraduate courses through Jupyter Notebooks and

Google Colabs without requiring students to edit or write

computer code or create complex computing environments

to run models. This provides students with a unique learning

opportunity to expand their knowledge of the hydrologic

cycle and its interaction with climate. While this work used

both in-situ measurements and climate model simulations to

create the learning activities, the underlying hydrologic model

is very basic and is only a simple teaching model based on

roughly connecting key components of the hydrologic cycle.

In the future, these applications should include models that

have undergone years of model development and continue to

evolve and improve through community development such

as the Noah-MP (Niu et al., 2011) or the Community Land

Model (CLM; Lawrence et al., 2019) land surface models. These

models would provide students with a more complete set of

modeling tools to explore the hydrologic cycle and would give

students access to the state of the art in land surface modeling.

While there are still several challenges to overcome to make this

happen, including streamlining data requirements, reducing

runtimes through more efficient computations, and setting up

a more complex computing environments, this work illustrates

the feasibility and a path forward for making this happen.
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