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The interpretation of deep learning (DL) hydrological models is a key challenge in

data-driven modeling of streamflow, as the DL models are often seen as “black box”

models despite often outperforming process-based models in streamflow prediction.

Here we explore the interpretability of a convolutional long short-term memory network

(CNN-LSTM) previously trained to successfully predict streamflow at 226 stream gauge

stations across southwestern Canada. To this end, we develop a set of sensitivity

experiments to characterize how the CNN-LSTM model learns to map spatiotemporal

fields of temperature and precipitation to streamflow across three streamflow regimes

(glacial, nival, and pluvial) in the region, and we uncover key spatiotemporal patterns of

model learning. The results reveal that the model has learned basic physically-consistent

principles behind runoff generation for each streamflow regime, without being given any

information other than temperature, precipitation, and streamflow data. In particular,

during periods of dynamic streamflow, the model is more sensitive to perturbations

within/nearby the basin where streamflow is being modeled, than to perturbations far

away from the basins. The sensitivity of modeled streamflow to the magnitude and timing

of the perturbations, as well as the sensitivity of day-to-day increases in streamflow

to daily weather anomalies, are found to be specific for each streamflow regime. For

example, during summer months in the glacial regime, modeled daily streamflow is

increasingly generated by warm daily temperature anomalies in basins with a larger

fraction of glacier coverage. This model’s learning of “glacier runoff” contributions to

streamflow, without any explicit information given about glacier coverage, is enabled

by a set of cell states that learned to strongly map temperature to streamflow only in

glacierized basins in summer. Our results demonstrate that the model’s decision making,

when mapping temperature and precipitation to streamflow, is consistent with a basic

physical understanding of the system.
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INTRODUCTION

The success of machine learning (ML) for hydrological modeling,
and in particular, the unprecedented skill of deep learning (DL)
models for streamflow prediction, has emphasized the value
of data-driven models for streamflow prediction (e.g., Kratzert
et al., 2018; Shen, 2018; Shen et al., 2018). Studies that bench-
marked ML models against both calibrated conceptual models
and process-based models have agreed that ML models typically
perform better (e.g., Hsu et al., 1995; Abramowitz, 2005; Best
et al., 2015; Nearing et al., 2016). However, despite the skill of
ML (Zealand et al., 1999; Maier and Dandy, 2000; Maier et al.,
2010), and in particular DL for streamflow prediction (Kratzert
et al., 2019c; Anderson and Radić, 2022), there is a reservation
for using these models in the hydrological community in part
due to challenges surrounding data-driven model interpretability
(Nearing et al., 2021). Since ML and DL models are often seen
as black-box models, their accurate predictions of streamflow
have not led to their widespread acceptance despite the growing
availability of big data in hydrology. Translating the information
learned by DL models into human-interpretable information
presents a middle ground for process-based and data-based
modeling communities to meet with shared concerns over how
models work, how physics is represented, and why models make
certain decisions.

Deep machine learning models have been applied across a
wide range of hydrological modeling tasks (e.g., Fang et al.,
2017; Shi et al., 2017; Bowes et al., 2019), and are attractive due
to the existence of architectures that are explicitly designed to
learn from spatially discretized information [e.g., convolutional
neural networks (CNNs); LeCun et al., 1990] and sequential
information (e.g., recurrent neural networks; Rumelhart et al.,
1985). Long short-term memory (LSTM) networks are a class
of recurrent neural network and are designed to learn from
sequential information with dependencies at both long and
short timescales (Hochreiter and Schmidhuber, 1997). Together,
CNNs and LSTMs can be combined to facilitate the learning of
spatiotemporal information, such as for video description (e.g.,
Donahue et al., 2017). LSTMs in particular have been widely
applied for rainfall-runoff modeling tasks (Hu et al., 2018; Le
et al., 2019; Sudriani et al., 2019), and recent studies in hydrology
have applied LSTMs for streamflow prediction at hundreds of
basins at daily timescales (Kratzert et al., 2018, 2019c), at hourly
timescales (Gauch et al., 2021), at ungauged basins (Kratzert et al.,
2019b), and for extreme events (Frame et al., 2021). Variants
of the LSTM have been developed, for example: an entity-
aware LSTM (EA-LSTM) that includes static basin characteristics
as input in addition to time-varying meteorological forcing
(Kratzert et al., 2019c); a sequence-to-sequence LSTM encoder-
decoder model for forecasting hourly streamflow over 24 h
lead times (Xiang et al., 2020); an LSTM with data integration
to incorporate static characteristics and recent streamflow
for daily streamflow forecasting (Feng et al., 2020); a mass-
conserving LSTM (MC-LSTM) that enforces conservation of
mass through the model formulations (Hoedt et al., 2021);
an LSTM that combines meteorological forcing and outputs
from global hydrological models to improve flood simulations

(Yang et al., 2019); and a convolutional-LSTM (CNN-LSTM) that
encodes spatially discretized meteorological forcing (Anderson
and Radić, 2022). The wide range of LSTM models and variants
have been developed with the goal of understanding how to
better incorporate available data (e.g., static characteristics, recent
observations, hydrological model outputs, spatially discretized
information) into differently structuredmodel architectures (e.g.,
sequence-to-sequence, CNN-LSTM).

Despite the many successes in terms of predictive ability,
model interpretability has been an almost ubiquitous challenge
across ML and DL modeling approaches. To gain confidence
in ML and DL beyond their use as “black box” models, it
would be helpful to understand how and why models make
decisions, and if these decisions are consistent with known
physics. Adherence to physical laws can be encouraged during
model training. For example, penalties against non-physical
results can be leveraged through the inclusion of a regularization
term in the loss function that is large when mass, energy, or
momentum is not conserved (e.g., Karpatne et al., 2017; Jia
et al., 2019). Alternatively, physical laws can be enforced or
encouraged through using physics-informed architectures, such
as those that necessarily conserve mass (Hoedt et al., 2021) or
ensure physical consistency (Daw et al., 2020). Otherwise, models
can be trained without any information on the constraining
physical laws, and physical consistency is investigated after
model training. In all cases, insights into the models’ learning
can come from probing the model with various types of
diagnostic tools (McGovern et al., 2019). Many of these tools are
different types of sensitivity analyses that seek to understand and
visualize how the model outputs are linked to and influenced
by the model inputs (Razavi et al., 2021). Examples include
occlusion, which masks small areas of the input to determine
importance of local structure to model decision making (Zeiler
and Fergus, 2014); layerwise relevance propagation, which
determines the importance of input features for any given output
by backpropagating through the network from a single output
neuron (Bach et al., 2015); saliency maps, which calculate how
an output prediction changes with small changes of each input
value (Simonyan et al., 2014); backward optimization, which
calculates input examples that maximally activate particular
output neurons (Olah et al., 2017); class activation mapping,
which uses deep convolutional feature maps to calculate input
regions that are most important for classification (Selvaraju et al.,
2020); shapely additive explanations (SHAP), which quantifies
feature importance as the contribution of each feature to a
prediction (Lundberg and Lee, 2017); and local interpretable
model-agnostic explanations (LIME), which locally approximates
a more complex model with a simpler and interpretable (e.g.,
linear) model around a prediction (Ribeiro et al., 2016). While
there are a growing number of applications of these techniques in
the geosciences more broadly (e.g., Gagne et al., 2019; Toms et al.,
2020; Mayer and Barnes, 2021), fewer interpretability studies
exist in hydrology.

Other interpretability tools include those that seek to
understand internal model states by analysis of information
contained in embedding or hidden layers of the neural network
(Karpathy et al., 2015; Wang et al., 2017; Bianchi et al., 2020).
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The analysis of cell states in the hidden layers of LSTM models
is found to be particularly useful when it comes to identifying
human-interpretable information. By investigating the hidden
layers, Kratzert et al. (2019a) showed that an LSTM trained
for streamflow prediction contained internal states that were
linked to snow cover and soil water storage. While no direct
information about snow or soil variables was given a priori to the
model, it has learned hydrologically relevant and interpretable
behavior about these unobserved variables. The same study also
demonstrated that the LSTM model determined that a longer
time history is needed for making predictions in a snowmelt
dominated basin relative to a rainfall dominated basin, consistent
with the understanding that the process of snowmelt depends
on a longer time history (e.g., runoff from the accumulation
and ablation of a snowpack vs. daily scale runoff from rainfall).
Another study, which used CNN-LSTMs to map spatiotemporal
series of meteorological variables to regional streamflow, also
identified the model’s ability to learn different runoff-generation
mechanisms across the region (Anderson and Radić, 2022).
In particular, for glacierized basins, the models automatically
learned that late summer streamflow responses are linked to the
extent of glacier cover per basin, without any a priori knowledge
about the glacier cover. Wunsch et al. (2022) used a CNN-LSTM
for predicting streamflow in karst spring systems and found
that the model automatically learned that areas of the input
precipitation fields that are within the basin are most important
for the model’s decision making, suggesting that CNN-LSTMs
may be useful for catchment localization when the basin outlines
are not known. While these and other methods are emerging
to interpret the spatiotemporal patterns or predictions made by
hydrological ML models (e.g., Fleming et al., 2021a,b), there
remains an opportunity to better understand the details of ML
and DL hydrological model decision making.

The main goal of this study is to demonstrate that a DL model
is able to learn some of the key runoff-generating mechanisms
across different streamflow regimes, while driving the model
only with temperature and precipitation data as input. To do so
we will use the previously developed and trained CNN-LSTM
model (Anderson and Radić, 2022) for streamflow simulations
at 226 stream gauge stations across southwestern Canada. The
model, forced only by gridded temperature and precipitation
data, is shown to successfully simulate observed daily streamflow
between 1980 and 2015 (Anderson and Radić, 2022). Streamflow
across the region is primarily driven by snowmelt, glacier melt,
rainfall, and groundwater flow, leading to a range of nival,
pluvial, glacial, and intermediate streamflow regimes (Eaton and
Moore, 2010). This variety of runoff-generating mechanisms is
ideal for exploring DL model interpretability. To do so, we
design a set of experiments to probe the model’s ability in
learning runoff-generating mechanisms for different streamflow
regimes. The experiments are set around basic hydrological
concepts of the response of streamflow in space, time, and across
streamflow regimes, to perturbations in the forcing temperature
and precipitation.

We investigate the model’s learning of runoff-generating
mechanisms by first partitioning the stream gauge stations into
clusters whose stations share a similar streamflow regime. For

our first set of experiments, we ask the following questions
for each streamflow regime: How does the modeled streamflow
respond to spatially varying perturbations in input data, and
how does this response vary over a year? How does the
importance of the driving input variables (temperature and
precipitation) vary over a year? What weather conditions, set
by the input variables, cause the model to predict substantial
increases in streamflow? Our second set of experiments aims at
probing the inner states of the LSTM component of the model
to investigate how physically interpretable cell states can be
identified. Here we focus on differences between glacier-fed vs.
non-glacier-fed river regimes to identify cell states that represent
glacier contributions to streamflow. The study is structured
in the following way: Background and Materials reviews the
study region and data used, Methods describes the details of
the interpretability experiments, and Results, Discussion, and
Summary and Conclusion present and interpret our findings.

BACKGROUND AND MATERIALS

Study Region
The study region is southwestern Canada in the provinces
of British Columbia and Alberta, south of 56◦N and west of
110◦W (Figure 1, Supplementary Figure 1). Streamflow in low
elevation basins along the west coast is predominantly pluvial,
where most precipitation occurs in fall and winter andmost often
falls as rain. However, temperatures decrease further inland and
at higher elevation, and so intermediate pluvial-nival regimes
exist in some coastal basins where high elevation areas are cold
enough in winter to accumulate a seasonal snowpack, leading
to a spring freshet. Predominantly nival regimes exist through
much of the rest of the study region, where colder winter
temperatures facilitate the accumulation of a seasonal snowpack
(Moore et al., 2010). West of the Rocky Mountains in British
Columbia, most precipitation occurs in fall and winter, leading to
some runoff before temperatures cool below freezing followed by
the accumulation of a substantial snowpack. The eastern slopes of
the Rocky Mountains experience substantial snowfall in winter,
but much of the region east of the Rocky Mountains in Alberta
experiences comparably dry winters due to the rain shadow of
the Rocky Mountains and the influence of cold and dry Arctic
air. Most precipitation in these areas falls as rain during spring
or summer, leading to rainfall-driven streamflow after the freshet
has ended in spring.

Thousands of glaciers exist throughout the study region in
high alpine areas (Figure 1), and glacier meltwater primarily
contributes to streamflow in these basins after the seasonal
snowpack has melted. Highly glaciated basins experience a
delayed freshet as compared to pluvial basins, with peak
flows typically occurring in late summer. Additionally, annual
variability of glacier runoff counteracts annual variability of
precipitation, where excess melt partially compensates for a
lack of precipitation in hot and dry summers, but reduced
melt partially counteracts an excess of rain in cool and wet
summers (Meier and Tangborn, 1961; Fountain and Tangborn,
1985). The strength of the expression of glacier runoff in
streamflow increases non-linearly with glacier coverage (e.g.,
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FIGURE 1 | Map of the study region, and hydrographs of streamflow regimes and sub-regional clusters. (A–C) The mean seasonal streamflow patterns of each

streamflow regime (solid line), with one standard deviation range (shaded area) derived from all stream gauge stations in the given regime. (D) The basin outlines, and

stream gauge locations that are colored according to the geographically constrained seasonal streamflow clusters. Gray dots show the locations of glaciers taken

from RGI V6.0. (E–J) The mean seasonal streamflow patterns of each geographically constrained cluster of stream gauges (solid line), with one standard deviation

range (shaded area) derived from all stream gauge stations in the given cluster. Note that all stations of the glacial regime (i.e., with >1% glacier coverage) are marked

with an “x.” The nival regime is made up of all stations with <1% glacier coverage located in the north-western, central, southern, eastern, and north-eastern clusters.

The pluvial regime includes all stations from the coastal cluster.

Stahl and Moore, 2006), leading to complex spatiotemporal
patterns of glacier runoff in streamflow throughout the study
region (Anderson and Radić, 2020).

Data
A detailed description of the data selection process for both
input weather data and output streamflow data can be found in
Anderson and Radić (2022); here, we summarize the data used
to train, validate, and test the developed CNN-LSTM models.
The CNN-LSTM models are forced by spatiotemporal fields
of maximum temperature (Tmax(x, y, t)), minimum temperature
(Tmin(x, y, t)), and precipitation (P(x, y, t)), all extracted from
ERA5 reanalysis from the European Center for Medium-Range
Weather Forecasts (ECMWF; Hersbach et al., 2020). Daily fields
at 0.75◦ × 0.75◦ spatial resolution are aggregated from 1979 to
2015. Both temperature and precipitation have been found to
be well-represented in the study region by previous versions of
ERA climate reanalysis (Odon et al., 2018, 2019). We access
daily streamflow data from Environment and Climate Change
Canada’s Historical Hydrometric Data (HYDAT) website, which
provides historical daily streamflow data (in [m3/s]) at thousands
of stations throughout Canada (Environment Climate Change
Canada, 2018). We only consider stream gauge stations that
are classified as natural (without upstream regulating features)
and that have sufficient data during the period 1979–2015,

which include the time windows for training, validation, and
testing of the CNN-LSTM models. In total, 226 stream gauge
stations were used, with station names and numbers listed in the
Supplementary Table 1 in Anderson and Radić (2022). The same
226 stations are used in this study.

The 226 stations are clustered into geographically constrained
streamflow regimes to define groups of neighboring basins
that share similar seasonal hydrographs. This grouping is
necessary for our investigation of the model’s interpretability.
Agglomerative hierarchical clustering with Ward’s method
(Hastie et al., 2009) is used to cluster stream gauge stations by
their seasonal streamflow, latitude, and longitude. In total we
identify six clusters whose mean seasonal streamflow patterns,
i.e., seasonal streamflow averaged over the stations belonging to
each cluster, reveal a range of streamflow regimes throughout the
study region (Figures 1A–H). We name the clusters according
to their geographical location in the region. The “coastal” cluster
exemplifies a pluvial regime where flows are primarily driven
by rainfall between October through April, with a minor spring
freshet due to snowmelt in the highest elevation areas of some
of the basins. The “southern” cluster is predominantly nival,
having a spring freshet and little rainfall driven runoff outside of
this period. The “eastern,” “north-eastern,” and “north-western”
clusters demonstrate both a pronounced spring freshet and a
secondary seasonal streamflow peak from rainfall in spring,
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FIGURE 2 | Examples of streamflow, temperature, and precipitation for pluvial, nival, and glacial rivers. Maximum temperature, minimum temperature, and

precipitation are taken from ERA5 data at the location of each stream gauge. For the pluvial basin (left panels): (a) Winter pluvial flows are primarily driven by

rainfall, but colder temperatures may occur at higher elevation portions of the basin and some precipitation may be stored as snow. (b) Large streamflow events are

preceded by precipitation. (c) Spring and early summer pluvial flows may be driven by a small freshet from high elevation snow melt, during which (d) streamflow

events can follow dry but warm conditions. (e) Fall pluvial flows are driven by rain and follow precipitation events. For the nival basin (middle panels): (f) Winter and

early spring nival flows are suppressed due to below-freezing temperatures. (g) Spring nival flows are driven by snowmelt, and (h) large increases in streamflow follow

warm temperatures. (i) Fall nival flows are driven by rainfall, and (j) streamflow events follow precipitation. For the glacial basin (right panels): (k) Winter and early

spring glacial flows are suppressed due to below-freezing temperatures. (l) Spring glacial flows are driven primarily by snowmelt, and (m) when warm temperatures

drive streamflow. (n) After the snowpack has melted in summer and fall, glacial flows are driven by both rainfall and glacier melt, and streamflow events follow (o)

precipitation or (p) warm temperatures.

summer, or fall. The “central” cluster demonstrates a clear spring
freshet, but unlike the southern cluster, streamflow decreases
more slowly over the course of the summer due to contributions
from glacier runoff in some of the basins in the cluster.

We also group stations by streamflow regime (glacial, nival,
or pluvial) in addition to the six geographically constrained
sub-regional clusters. While this grouping is relatively simple,
it aids the interpretability analysis of the CNN-LSTM model.
We consider all stations with >1% glacier coverage in their
watersheds to be of a glacial regime. We consider stations with a
spring freshet and<1% glacier coverage to be of a predominantly
nival regime (e.g., all central, southern, eastern, north-eastern,
and north-western stations with <1% glacier coverage). Finally,
we consider coastal stations dominated by rainfall-driven winter
flows to be pluvial.

We use glacier areas and locations from the Randolph Glacier
Inventory Version 6.0 to characterize the extent of glaciation in
each basin (RGI Consortium, 2017). We access basin outlines for
the stream gauge stations in the study region from the Water
Survey of Canada (Environment Climate Change Canada, 2016).
For each basin, we sum the total area of glaciers within the basin
outlines. We divide the total per-basin glacier area by the total
basin area to determine the per-basin glacier coverage, G. When
G = 0 there are no glaciers in the basin, and when G = 1 the
entire basin is glaciated. Across the study region, G ranges from
0 to 0.59, with mean of 0.01 (Supplementary Table A1).

METHODS

In this section we briefly describe the CNN-LSTM model and
introduce the sensitivity experiments used for interpreting the

model’s learning. By “interpreting the model’s learning” we
mean assessing how well the results from these experiments
resemble those expected from a conceptual understanding of
the hydrological processes (Figure 2). We assess the streamflow
response to perturbations in temperature and precipitation
only, neglecting further hydrological complexity. The sensitivity
experiments address the model’s learning of the following
basic concepts:

(1) Spatial sensitivity to climate forcing: Climate forcing
(temperature and precipitation fields) within a watershed
where streamflow is being modeled is a more relevant driver
of streamflow than climate forcing outside the watershed.

(2) Regime-specific importance of input variables: The
sensitivity of streamflow to the magnitude and timing of
perturbations in temperature and precipitation is streamflow-
regime specific (Figure 2). In the pluvial regime, streamflow
is primarily sensitive to precipitation if temperatures are
above freezing. In the glacial and nival regimes, streamflow
is insensitive to temperature and precipitation perturbations
during winter when sub-freezing temperatures suppress
runoff generation. Then, streamflow is highly sensitive to
temperature and precipitation perturbations during the
spring freshet when small variations in forcing can cause
large variations in streamflow. In the nival regime, summer
streamflow is more sensitive to precipitation once the seasonal
snowpack has melted since rainfall drives runoff; in contrast,
in the glacial regime, summer streamflow is sensitive to
temperature since glacier melt drives runoff.

(3) Regime-specific sensitivity to anomalous weather

conditions: The daily weather anomalies (e.g., wetter or
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FIGURE 3 | Schematic of the CNN-LSTM architecture. Tmax(x, y, t), Tmin(x, y, t), and P (x, y, t) from T − 365 ≤ t ≤ T − 1 are input frame-wise through a

time-distributed CNN, creating a series of 365 feature vectors each with length 32, where t is time (day) and T is the day of streamflow being predicted. The series of

feature vectors is input to an LSTM with 80 units. c(t) and h(t) are the cell and hidden states, respectively. The output of the LSTM is h(t = T − 1), which is passed

through a final dense layer with linear activation to predict streamflow at Ngauge stations at time t = T. Ngauge is the number of stream gauge stations being predicted

by the model, and depends on the stream gauge cluster.

drier than normal, warmer or colder than normal) that
drive substantial day-to-day increases in streamflow are also
streamflow-regime specific (Figure 2). Warm daily anomalies
drive substantial increases in runoff during periods when
streamflow is driven by melt (e.g., nival and glacial basins in
spring, glacial basins in summer), while wet daily anomalies
drive substantial increases in runoff during periods when
streamflow is driven by rain (e.g., throughout the year in
pluvial basins, during summer in nival basins). In glacial
basins, the sensitivity to warm daily anomalies in summer
is expected to increase with the glacierized-area fraction per
basin because the glacier-melt contribution to streamflow
increases with the increase of glacierized-area fraction
(Jansson et al., 2003; Frans et al., 2016).

In addition, we present a method for investigating the model’s
ability to learn glacier-runoff contributions to streamflow,
assuming that this contributor can be represented by a set of
cell states in the LSTM component of the model. To detect
these ‘glacier-runoff’ cell states, we analyze the links between
cell states and glacierized-area fraction per basin. If this link
is found and it is a strong one, we look for those cell states
whose seasonal pattern resembles a conceptual seasonal pattern
of glacier runoff.

Model
We use the trained CNN-LSTM models as developed and
described in detail in Anderson and Radić (2022). Here we
provide a summary of the model architecture and design
(Figure 3). The past 365 days of daily maximum temperature
(Tmax), minimum temperature (Tmin), and precipitation (P)

are used to predict the next day of streamflow at 226 stream
gauge stations in southwestern Canada. Each input variable
is normalized by subtracting its mean and dividing by its
standard deviation, where the mean and standard deviation
are calculated over the entire domain and training period.
Each of the past 365 days of weather is structured as an
image with three channels (Tmax, Tmin, P). Then, the 365
weather images are structured as a weather video, where each
weather image is one frame in the video. We use an ensemble
of 10 models, where each model is first trained to predict
streamflow at all stream gauge stations simultaneously. Each
model in the ensemble has the same architecture but was
initialized with a different set of random parameters before
training. Then, each model is fine-tuned to predict streamflow
at each subregional stream gauge cluster individually for a total
of 10 fine-tuned models per subregional cluster. The models
are regularized with a dropout layer between the CNN and
LSTM components, and we use the Adam optimization scheme
(Kingma and Ba, 2017) withmean squared error loss. Themodels
are developed using Keras (Chollet, 2015) and Tensorflow (Abadi
et al., 2016) in Python (van Rossum and Drake, 2009), and
are trained using Google Colab on a cloud GPU. Streamflow
from 1980 to 2000 is used for training (i.e., tuning the model
parameters so that the model output more closely resembles
observed streamflow), 2001–2010 is used for validation (i.e.,
evaluating when to stop training to prevent over-fitting to
noise), and 2011–2015 is used for testing (i.e., evaluating model
performance on data that are independent of both training and
validation datasets).

The CNN-LSTM model is driven by coarse resolution
temperature and precipitation as input data (0.75◦ × 0.75◦,
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or ∼75 km resolution), with no other meteorological (e.g.,
solar radiation, wind, humidity) or geographic information
(e.g., topography, land use, glacier coverage). The model was
designed as a relatively simple proof-of-concept model capable
of learning from spatially discretized information to predict
streamflow across different streamflow regimes. The model’s
simulations, i.e., the ensemble mean for each subregional
cluster, achieves good performance over the testing dataset,
with a median NSE of 0.68 across all stations in the study
region, and 35% of stations with NSE > 0.8 indicating
very good performance. As shown in Anderson and Radić
(2022), the model learns that (i) above-freezing temperatures
are linked to the onset of the freshet, (ii) the model is
often sensitive to input data perturbations in the areas near
the basins where streamflow is being predicted, and (iii)
summer streamflow in glaciated basins is linked to summer
temperature over monthly timescales. Furthermore, there are
no explicit climate downscaling steps, and instead the model
learns to directly map the coarse-resolution temperature and
precipitation data to streamflow. It is suggested that an effective
downscaling of climate data may have been learned by the
model, which is a plausible hypothesis considering that CNNs
have previously been used for downscaling of precipitation
data (Vandal et al., 2017). In this study we do not aim to
expand or further develop this model by including additional
input variables or by changing the architecture; rather, we
will investigate how well even the relatively simple proof-
of-concept model learns human-interpretable and physically-
consistent information.

Experiment on Model’s Spatial Learning
The goal of this experiment is to investigate if the model
has learned to focus on physically relevant areas or locations
of the input domain. By “physically relevant” we mean
areas that overlap or are in close proximity to the station
where streamflow is being modeled. We also assume that
these relevant areas may change through the year since the
physical drivers of flow change through the year (e.g., melt,
rain, and baseflow). For each streamflow regime, we generate
sensitivity maps for each individual day in the testing dataset
to detect where and when the model is most sensitive to
perturbation in the input data. The experiment consists of
systematically perturbing the input variables within a small
area of the input domain, and calculating the modeled per-
station streamflow response to this perturbation. The response
is assessed relative to the original (unperturbed) modeled per-
station streamflow. The perturbation field is scaled by the per-
station streamflow response to create per-station sensitivity
maps. In this way, each station will have a sensitivity
map for each day of modeled streamflow, revealing the
locations in the input fields where the modeled streamflow
is sensitive to perturbation, as well as the magnitude of
this sensitivity.

Mathematically, we introduce a perturbation by which we
then determine the perturbed input, perturbed output, and

sensitivity map for a single stream gauge station and single day as:
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where p(x, y) is the perturbation over the whole domain, β is
a random factor of ±1 (equal chance of either sign), x and
y are longitude and latitude, respectively, xp and yp are the
longitude and latitude of the perturbation mid-point, σx and
σy are the standard deviations of the Gaussian curve in the
x- and y- directions, Tmax,p(x, y, t), Tmin,p(x, y, t), and Pp(x, y, t)

are the perturbed input variables, y
p

flow
is the predicted model

streamflow of the perturbed input, and yflow is the predicted
model streamflow of the non-perturbed input, f (·) represents the
CNN-LSTM mapping from a weather video to streamflow, and
si(x, y) is the sensitivity map for a single perturbation, stream
gauge station, and day. p(x, y) has a maximum amplitude of
1, and because each input variable is by scaled by its standard
deviation over the training period, the maximum perturbation
corresponds to a single standard deviation of each input variable.
σx = σy = 1.5 grid cells, limiting the spatial extent of the
perturbation to a relatively small area of the input domain.

Next, we generate a mean sensitivity map, S(x, y), for each
individual day in the testing dataset, by iterating through
equations (1)–(6) for multiple different spatial perturbations
p(x, y) with different values of xp and yp. In this way we generate
a set of s(x, y) from which we then calculate S(x, y) as:
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∑

i
si

(
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)

(7)

where Niter is the number of iterations. We iterate until S
(

x, y
)

no longer substantially changes through additional perturbation,
i.e., when the mean relative error between sensitivity maps
from subsequent perturbations is <0.5%. Overall, we calculate
Ntest different sensitivity maps S(x, y) for each stream gauge
station, where Ntest is the number of days in the testing dataset,
i.e., 2011–2015. For each subregional cluster of stream gauge
stations, we apply temporal clustering to theNtest sensitivitymaps
using agglomerative hierarchical clustering with Ward’s method
(Hastie et al., 2009). This temporal clustering of sensitivity
maps helps us identify the characteristic spatial patterns of
sensitivity for each streamflow regime and reveal their evolution
through time.
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Experiment on the Importance of Input
Variables
Our goal here is to determine how strongly the model output is
linked to temperature and precipitation separately, and to reveal
how the strength of those links change over a year. These links
are different across streamflow regimes and change through the
year since the physical drivers of flow change through the year
(Figure 2). In this experiment we perturb the input temperature
and precipitation channels independently to determine if, when,
and where the model is sensitive to perturbations of the input
weather channels. The steps of the experiment are the same as
in section Experiment on Model’s Spatial Learning, but here
we perturb the temperature and precipitation fields separately.
In this way, each station will have its daily sensitivity map
to temperature and its daily sensitivity map to precipitation,
revealing the relative importance of the two variables and how
this importance evolves in time. For the final display of sensitivity
maps we will use the six subregional clusters and perform the
temporal clustering as described for the previous experiment.

We perturb one of [Tmax, Tmin] or P while keeping the
other variable(s) unchanged (e.g., we add a spatial perturbation
p(x, y) to Tmax

(

x, y, t
)

and Tmin(x, y, t) but not P
(

x, y, t
)

, and vice
versa). We perturb Tmax and Tmin together to ensure physical
consistency (e.g., Tmax > Tmin).

Mathematically, the two perturbation scenarios can be
described as:
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where y
p,T

flow
is modeled streamflow when the temperature

channels are perturbed and the precipitation channel is not,

and y
p,P

flow
is modeled streamflow when the precipitation channel

is perturbed while the temperature channels are not. Then,
we calculate sensitivity maps for a single perturbation of each
perturbation scenario:

siT
(

x, y
)

=

∣

∣

∣
y
p,T

flow
− yflow

∣

∣

∣
×

∣

∣p
(

x, y
)∣

∣ (10)

siP
(

x, y
)

=

∣

∣

∣
y
p,P

flow
− yflow

∣

∣

∣
×

∣

∣p
(

x, y
)∣

∣ (11)

where siT
(

x, y
)

is a sensitivitymap of iteration iwhen temperature

channels are perturbed, and siP
(

x, y
)

is a sensitivity map of
iteration i when the precipitation channel is perturbed. We
generate a mean sensitivity map for each of [Tmax, Tmin] and
P by iterating through equations (8)–(11) for multiple different
spatial perturbations. In both cases, we iterate through until the
sensitivity maps converge as defined in section Experiment on
Model’s Spatial Learning:
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where NT and NP are the number of iterations under the
perturbed temperature and precipitation scenarios, respectively.
ST

(

x, y
)

and SP
(

x, y
)

are sensitivity maps for a single day, and
we calculate sensitivity maps for each of the Ntest days in the
testing dataset. We calculate the maximum daily sensitivity,
ST,max (t) and SP,max (t), respectively, from the series of sensitivity
maps. ST,max (t) and SP,max (t) are measures of the sensitivity
through time of the model’s predictions to perturbations in
temperature and precipitation, respectively, and they indicate
the relative importance of temperature and precipitation for
predicting streamflow for each day. For each stream gauge cluster,
we normalize the maximum sensitivity time series ST,max(t) and
SP,max(t) to have maximum values of 1. In this way, the relative
importance through the year of temperature and precipitation
can be compared, i.e., ST,max (t) = 1 and SP,max (t) =

1 occur on the days when the models are most sensitive
to temperature and precipitation perturbations, respectively.
Finally, we evaluate how the sensitivity to temperature and
precipitation vary throughout a year for each streamflow regime
in order to characterize how the learned runoff generation
mechanisms compare to the observed streamflow (Figure 2).

Identification of Streamflow-Activating
Daily Weather Anomalies
Here we explore how well the model has learned that the
streamflow sensitivity to anomalous weather conditions, which
drive substantial day-to-day increases in runoff, vary by
streamflow regime and season (Figure 2). We start by identifying
the temperature and precipitation anomalies that the model
associates with day-to-day modeled daily streamflow increases.
To do so, we identify the input weather fields that are associated
with the maximum single-day increase in output neuron values.
For each stream gauge station, we calculate the daily change
in modeled streamflow. Consider an example where modeled
streamflow at station j increases between days t − 1 and t
(Supplementary Figure 2). Temperature and precipitation from
days t − 366 through t − 2 are used to model streamflow
at day t − 1, while temperature and precipitation from days
t − 365 through t − 1 are used to model streamflow at day
t. This means that temperature and precipitation at day t − 1
is new information to the model for predicting flow at day t.
If yflow (t) > yflow(t − 1), then Tmax

(

x, y, t − 1
)

, Tmin(x, y, t −
1), and P(x, y, t − 1) are important for the model’s decision
that streamflow should increase. While the order of the input
sequence has also changed (e.g., input variables are 1 day earlier
in the sequence for predicting streamflow at time t as compared
to at time t − 1), here we focus on the values of temperature and
precipitation at time t − 1.

We identify the days with the 10% largest single day
increases of modeled streamflow for each station and each
season [December-January-February (DJF), March-April-May
(MAM), June-July-August (JJA), September-October-November
(SON)]. Then, we calculate the basin-averaged temperature
and precipitation anomalies for the day that precedes each of
the top 10% of flow increase days, identifying the per-basin
antecedent weather anomalies that cause the model to predict
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that streamflow should increase. Temperature and precipitation
anomalies are calculated by first removing the seasonal cycle
of each variable. Then, the residual timeseries of each variable
is divided by its standard deviation (Supplementary Figure 4).
In this way the anomalies indicate by how much temperature
and precipitation have deviated from the average value of that
day at each grid cell, relative to the normal variability of that
day and grid cell. Finally, we evaluate how the flow-driving
antecedent temperature and precipitation vary by season for each
streamflow regime to characterize the learned runoff-generation
mechanisms, and we compare with a conceptual understanding
of the key drivers of flow (Figure 2).

Discovery and Interpretation of
Glacier-Runoff Cell States
It is challenging to visually find and interpret LSTM cell states
(e.g., as in Karpathy et al., 2015) when there are many states
within a single model and many models within an ensemble,
as the representation of a hydrological state of interest may be
distributed across multiple cell states of which none individually
may be similar to the hydrological state of interest. In our case,
there are 80 cell states per model and 10 fine-tuned models
for each of the six subregions, so we ask: how can we discover
physically-interpretable cell states? We assume that some cell
states in LSTMmodels represent water storage or flux terms (e.g.,
as shown in Kratzert et al., 2018). Furthermore, since glacier melt
is an important contributor to streamflow in glaciated rivers, we
expect to find a representation of glacier melt within a set of
cell states in our model. We design an approach to identify and
interpret the LSTM cell states that indirectly represent glacier
runoff, without any estimates of actual glacier runoff.

In the CNN-LSTM model, streamflow is predicted
simultaneously at multiple different stream gauge stations.
This means that a common set of 80 cell states within the LSTM
component of the model undergo different linear combinations
in the final dense layer to model streamflow at different stations.
Glacierized basins are unique in that glacier melt contributes to
streamflow even after the seasonal snowpack has melted; in other
words, melt drives streamflow through summer in glacierized
basins while it does not in non-glacierized basins. Additionally,
glacier melt is a more important constituent of streamflow
for basins with greater glacier coverage (e.g., Fountain and
Tangborn, 1985). Since the importance of glacier melt increases
with increasing glaciation, the cell states that are linked to glacier
runoff should be more strongly linked to basins with larger
fractions of glacier cover.

To identify the cell states linked to glacier runoff we consider
the parameters in the final dense layer that relate the LSTM
cell states to the neurons in the output layer of the CNN-
LSTM model. The cell states that are linked to glacier runoff
should be more strongly connected to output neurons (modeled
streamflow) of more highly glaciated basins than to those of
lightly or non-glaciated basins. The weights in the final dense
layer connect all cell states to all output neurons and the weight
wij indicates the strength of the connection between cell state
i and output neuron j. If

∣

∣wij

∣

∣ is large (small), then cell state i

is more (less) important for determining streamflow at stream
gauge j. For each cell state i, we calculate the magnitude of
Pearson correlation between the weights wij and the glacier
coverage Gj at all output neurons (1 ≤ j ≤ N, where N
is the number of output neurons), as well as the statistical
significance of the correlation as indicated by the p-value. When
the correlation between wij and Gj is significant (p < 0.05),
then increasing glacier coverage is associated with stronger
connections to the cell state i. The cell states that more likely
represent glacier runoff are those for which this correlation is
significant, as these states matter more for glaciated basins and
less for non-glaciated basins.

For this analysis, we consider only the CNN-LSTM models
that are fine-tuned for the central region, because this region
has the most glaciated basins in the study domain (Figure 1 and
Supplementary Table A1). The fine-tuned ensemble of models
for the central region uses a common set of cell states to predict
streamflow at multiple glaciated stream gauge stations. From
each of the 10 models in the ensemble, we take the cell states
connected to weights that are most significantly correlated with
glacier coverage (p < 0.05). We further analyze these cell states
by clustering them into characteristic temporal patterns to detect
a pattern that is visually similar to a conceptual seasonal pattern
of glacier contributions to streamflow, i.e., smallest cell state
values in winter, positive trend over spring and early summer,
largest values in late summer, and negative trend in autumn.
The pattern of these cell states is also expected to be linked to
the seasonal pattern of positive daily temperatures as these are
recognized as an indicator of glacier melt (Hock, 2003).

RESULTS

Temporal Patterns of Spatial Sensitivity
The temporal evolution of sensitivity maps, as derived for each
cluster, reveals two distinct patterns of spatial sensitivity of
streamflow to perturbations in temperature and precipitation
(Figure 4 and Supplementary Figure 3). One pattern of this
sensitivity occurs during high flow periods, while the other occurs
during low flow periods (Figure 4). The most sensitive areas of
the “high-flow” pattern overlaps the basins where streamflow
is being predicted (Figure 4, right column). This indicates that
when streamflow is most substantial and most dynamic, the
model is most sensitive to perturbations in the input data within
the basin areas. In contrast, the most sensitive areas of the “low
flow” sensitivity maps do not necessarily overlap the basins. In
fact, all “low-flow” sensitivity maps are sensitive to perturbations
in the input data offshore of the west coast. Furthermore,
the evolution of the sensitivity maps reveals that the model
is sensitive in a given region for several months at a time,
and the sensitivity does not frequently alternate throughout the
year between the high-flow and low-flow patterns. This overall
behavior is found for all clusters except for the eastern cluster,
where the model does not transition from the low-flow pattern
to the high-flow pattern until after the spring freshet has already
occurred. Thus, for the eastern region, themodel is most sensitive
to perturbations in the input fields offshore the west coast when
it is trying to predict spring flow.
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FIGURE 4 | The two characteristic patterns of spatial sensitivity and their occurrence through time for each of the six streamflow clusters. Rows (A–G) display results

for nival, glacial, and pluvial sets of stream gauges. Left column: modeled and observed mean streamflow as spatially averaged across stations belonging to the

cluster (white circles). Middle column: the “low-flow” sensitivity pattern S(x,y); red indicates areas with high sensitivity to perturbations in input fields. The occurrence of

this “low-flow” pattern in time is shown by a dark blue shaded area in the left panel. Right column: the “high-flow” sensitivity pattern S(x,y). The occurrence of this

“high-flow” pattern in time is shown by a light blue shaded areas in the left panel. Each sensitivity map S(x,y) is normalized to have a minimum value of 0 and a

maximum value of 1.
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FIGURE 5 | The daily maximum sensitivity to temperature and precipitation perturbations (ST ,max(t) and SP,max(t)) alongside observed streamflow for each of the

stream gauge clusters. A single year in the testing dataset (2011) is shown as an example. The clusters belonging to the glacial (A), nival (B,C,D,F,G), and pluvial (E)

regimes are indicated by the bounding boxes.

Importance of Input Variables Through
Time
For glacial and nival regimes, ST,max(t) and SP,max(t) are similar
during the beginning of the freshet, indicating that the model
has learned that the relative importance of temperature is similar
to the relative importance of precipitation when predicting
the large melt-driven freshet flows (Figure 5). For these two
regimes, SP,max (t) and ST,max(t) are smallest during winter,
indicating that the model has learned that streamflow is relatively
insensitive to temperature and precipitation perturbations, as
the subfreezing temperatures suppress streamflow during winter
(Figures 2f,k). SP,max (t) > ST,max(t) after the freshet in the
eastern, north-eastern, and north-western regions and during fall
in the coastal region, consistent with the understanding that rain
is driving streamflow and precipitation is not stored as snow
(Figures 2e,i,j). In the pluvial regime, the relative importance of
precipitation dominates over temperature for the bulk of the year.

Streamflow-Activating Daily Weather
Anomalies
For each streamflow regime we calculate seasonal distributions
of daily temperature and precipitation anomalies that precede
the largest modeled flow increases (Figure 6). During winter
and spring in melt-driven nival and glacial regimes, modeled
streamflow increases following warm but not necessarily wet
anomalies (Figures 6A,B), consistent with snowmelt-driven

flows (Figures 2h,m). In contrast, modeled streamflow increases
follow wet but not necessarily warm anomalies in the pluvial
regime, consistent with rainfall-driven flows (Figure 2b). During
summer in nival and pluvial basins, modeled streamflow
increases following cool and wet anomalies (Figure 6C),
consistent with the knowledge that rainy summer days are cooler
and wetter than average summer days. In glacial basins, warmer
than average temperatures precede modeled streamflow, but
both wet and dry anomalies can precede streamflow increases
in glacial basins. This learned behavior is consistent with the
understanding that both rainfall and glacier melt can drive
streamflow during summer in glacial basins (Figures 2o,p).
During fall, modeled streamflow increases following wet and
warm anomalies in all regimes (Figure 6D), consistent with
rainfall- (pluvial, nival, or glacial regimes; Figures 2e,j,o) or melt-
driven flows (glacial regime; Figure 2p). The coastal basins are
the only set of stations that the model has learned that wet
precipitation anomalies precede an increase in flow in all seasons
(Figure 6), consistent with the known rainfall-driven regime.

The same experiment is used to determine if the model has
learned that daily-scale streamflow is more driven by warm
anomalies in more highly glaciated basins indicative of melt-
driven streamflow, rather than by wet anomalies indicative
of rainfall-driven streamflow. We consider only the summer
months (JJA) when glacier runoff is greatest. We find that
warmer and drier anomalies precede a rise in modeled flow in
more highly glaciated basins, while colder and wetter anomalies
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FIGURE 6 | Daily anomalies of maximum temperature, minimum temperature, and precipitation, preceding the largest day-to-day modeled flow increases in (A)

winter, (B) spring, (C) summer, and (D) fall. Results are presented by streamflow regime (pluvial, nival and glacial). The dashed black line indicates zero (or average)

values. Positive values indicate warmer or wetter than average, while negative values indicated colder or drier than average.

precede a rise in modeled flow in less glaciated basins in
summer (Figure 7). These findings indicate that the model has
learned that large streamflow events are driven by different
processes in glaciated basins as compared to non-glaciated
basins, consistent with the understanding that glacier melt is an
important constituent of streamflow in glaciated basins.

Cell States Linked to Glacier Runoff
For the ensemble of 10 models fine-tuned for the central region,
we identified 106 (out of the 800) cell states whose weights
are significantly correlated with basin glacier coverage (p <

0.05). The mean correlation coefficient between the weights in
the final dense layer in the CNN-LSTM model and the basin
glacier coverage for these 106 “glacially-relevant” cell states is
0.35 (minimum correlation of 0.27, maximum correlation of
0.51). Out of these 106 cell states we investigate one set of 56
states whose seasonal pattern resembles the idealized seasonal
pattern of glacier runoff (Supplementary Figures 5, 6). The
mean pattern, averaged across those cell states, is then compared
with positive daily mean temperatures, derived from ERA5 data
as a spatial mean over the central region (Figure 8A). The
seasonal pattern of daily temperatures shows minimum values
in the winter months, then an increase from late April through
early August, and then a decrease until November. The cell
state pattern, however, increases from early June through August,
and then decreases until November (Figure 8A). We remove the
30-day running mean from both time series to investigate the
cross-correlation between the daily-scale fluctuations of positive
temperatures and the cell state cluster pattern. We find that
correlation between the two residuals is maximized when the
positive temperature residuals lead the cell state residuals by 2
days (Figure 8B). The correlation between the residuals with the
2-day lag is 0.55 over the year; for comparison, the correlation is
0.47 for a 3-day lag, 0.46 for a 1-day lag, and 0.11 for no lag.

In addition to the cross-correlation analysis over the whole
year, we investigate shorter time windows throughout the year.
For this analysis, we use a running 60-day window, and calculate
the correlation coefficient between the 2-day lagged residuals
over each window (Figure 8C). We find that the correlation,
with a 2-day lag, is greatest between approximately mid-June

through mid-September. During this period, the average Pearson
correlation coefficient is approximately 0.70, as compared to 0.37
throughout the rest of the year.

DISCUSSION

The CNN-LSTM model is not given any information other than
gridded temperature and precipitation for predicting streamflow
at multiple stations across the region (e.g., climatic, geographic,
or topographic variables). Yet we demonstrate that the model, in
this process of learning to simultaneously model streamflow at
different stations, has learned human-interpretable links between
the input and output variables. In particular, the sensitivity
experiments reveal three characteristics of the model’s learning
that resemble those expected from a conceptual understanding
of the hydrological processes (Figure 2). Here we highlight
three characteristics of the model’s learning that demonstrate
that the learned temporal variation of streamflow sensitivity
to perturbations in temperature and precipitation, as well as
the learned temporal variation of daily weather anomalies that
drive runoff generation, are both streamflow regime specific.
Firstly, themodel learns that themechanism that generates runoff
can vary through time for a particular streamflow regime. The
nival eastern, north-eastern, and north-western basins have a
snowmelt-driven freshet in spring and rainfall-driven flows in
late spring, summer, or fall (Figures 1B,C,E). For these basins,
both temperature and precipitation are highly important for
predicting flow during the spring freshet (Figures 5C,E,F) and
warm temperature anomalies precede modeled flow increases
(Figure 6B), all of which is consistent with the understanding
that the timing and magnitude of flow is governed primarily
by snowmelt (Figures 2g,h). Then, as the basins transition
to being driven by rainfall, precipitation becomes a more
important predictor (Figures 5C,E,F) and wet anomalies precede
modeled flow increases (Figure 6C), indicating that the model
has learned that the runoff generating mechanism has changed
and is now more strongly linked to precipitation rather than
temperature (Figures 2i,j). Secondly, the model learns that the
runoff generating mechanism can vary through space across
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FIGURE 7 | Box plots of daily anomalies of (A) maximum temperature, (B) minimum temperature, and (C) precipitation that precede modeled flow increases in

summer, for a given fraction of per-basin glacier cover (G). The dashed black line indicates zero (or average) values. Positive values indicate warmer or wetter than

average, while negative values indicate cooler or drier than average. We divide basins into four bins of glacier coverage (no glacier coverage: G = 0; light glacier

coverage: 0 < G ≤ 1%; moderate glacier coverage: 1% < G ≤ 10%; and high glacier coverage: 10% < G ≤ 100%).

FIGURE 8 | The representation of glacier runoff in LSTM cell states. (A) Positive mean daily temperatures, calculated as an average over the central region, and the

mean cell state pattern of the glacier-runoff-like set of cell states. (B) The lagged residuals of mean temperature and the cell state pattern, as calculated by removing

the 30-day running mean of each time series in (A). (C) The correlation between temperature residuals and 2-day-lagged cell state residuals for each 60-day running

window through the year.

different streamflow regimes. Nival and glacial basins are
predominantly driven by melt (Figures 2g,l), while pluvial basins
are predominantly driven by rain (Figures 2a,e). That the learned
runoff generating mechanisms are different between the nival
and glacial regimes as compared to the pluvial regime is revealed
by the different antecedent weather conditions that drive flow
during the spring freshet (Figure 6B). The model has learned to

link warm and dry anomalies with streamflow increases in glacial
and nival rivers, indicative of melt, while at the same time linking
cold and wet anomalies with streamflow increases in pluvial
rivers, indicative of rainfall-driven flows. Thirdly, we find that
the model learns that the runoff generating mechanism can vary
across a latent variable unknown to the model during training;
in our case, basin glacier coverage. The model has automatically
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learned that the runoff generating mechanisms in summer vary
across a range of glacier coverage (Figure 7), consistent with
glacier melt generating the most substantial modeled streamflow
events in more highly glaciated basins (Figure 2n).

Our findings that the model learns regime-specific sensitivity
to perturbations in the input fields corroborate previous findings
by Wunsch et al. (2022) who used a CNN-LSTM model
for streamflow prediction in three karst catchments. Their
model is shown to be more sensitive to perturbations in
precipitation as compared to temperature and radiation for a
basin that is predominantly driven by rainfall, while the model
is more sensitive to perturbations in snowmelt as compared
to precipitation for a basin that has important snowmelt
contributions (Wunsch et al., 2022). In our study, we go a
step further by demonstrating that the model’s sensitivity to
perturbations in the input variables not only varies across
different streamflow regimes, as in Wunsch et al. (2022), but that
it can also vary both through time and across a latent variable
unknown to the model during training. Furthermore, we also
show that themodel has learned to differentiate between different
melt sources (e.g., between the runoff-generating mechanisms of
glacier-melt and snow-melt driven flows), despite not giving any
information on the source of melt (seasonal snow or glacier) to
the model. In fact, without giving any information on glacier
cover per basin, the model learned that the streamflow sensitivity
to warm daily anomalies in late summer will increase with the
increase in fraction of glacier cover per basin (Figure 7).

We explain how the model’s decision making varies across
differently glaciated basins by identifying a set of internal
cells in the LSTM model that can be interpreted as a proxy
for glacier runoff. These internal cell states have the highest
correlation between their daily fluctuations and the 2-day lagged
fluctuations of daily temperature (Figure 8). Physically, the
2-day lag could represent the travel time that it takes for
surface glacier melt to travel first through the glacier system,
with an hourly (sub-daily) response time (e.g., Burkimsher,
1983; Jansson et al., 2003), and then through the basin’s
stream network, with a daily response time (e.g., McGuire
and McDonnell, 2006; Attard et al., 2014). Importantly, this
relationship between daily positive temperature and streamflow
is strongest in late summer (Figure 8C) when glacier melt
is maximized (e.g., Hock, 2005; Figure 2n), and for basins
with greater glacier coverage (Figure 7). This identified cell
state pattern can be interpreted as a temperature-dependent
streamflow source that is activated for glacial basins, and that
is most strongly linked to positive temperature during the
glacier melt season. We note that our method to identify and
interpret these LSTM cell states is different than prior examples
in hydrology. While Kratzert et al. (2019a) correlate cell states
directly with hydrological states of interest (soil moisture and
snow water equivalent), we identify and interpret the cell states
through their links with an indicator (basin glacier coverage)
of the hydrological state of interest (glacier runoff), and then
through their similarity with an idealized pattern of glacier
runoff. By identifying and interpreting the cell states in this way,
we circumvent the need to know the observed glacier runoff
for each basin, data that is not available for this region and

is generally hard to obtain through observations or modeling
on a regional scale (e.g., Radić and Hock, 2014). Here we
leverage glacier coverage and runoff to interpret the LSTM cell
states, while previously LSTMs have primarily been applied for
regional streamflow prediction in regions where relatively few
basins are glaciated (e.g., Kratzert et al., 2019c; Feng et al.,
2020; Xiang et al., 2020; Gauch et al., 2021). As such there
has been limited consideration of how glaciers modulate the
learned streamflow response and internal model parameters,
i.e., the same meteorological forcing (input to the LSTM)
produces a different streamflow response (output of the LSTM)
in a glaciated basin as compared to a non-glaciated basin,
necessitating different internal model decision making between
the two cases.

Glacier runoff has not been explicitly considered by deep
learning models developed for either regional streamflow
prediction, or for glaciological applications. To our knowledge,
our study is the first application of deep learning in hydrology
with specific considerations of glacier runoff (Shen et al.,
2021), despite wider use of deep learning in hydrology and
a growing number of applications in glaciology (Liu, 2021).
Deep learning in glaciology has been primarily developed
for classification tasks using remote sensing data due to the
large volumes of data available (e.g., Xie et al. Nijhawan
et al., 2018; Baumhoer et al., 2019; Robson et al., 2020; Taylor
et al., 2021). Applications of deep learning for regression
tasks, rather than classification, are scarcer, and have so
far been restricted to the most data-rich regions such as
the French Alps (e.g., Bolibar et al., 2020a,b, 2022). One
reason for this restriction is the limited availability of long-
term observations in many glacierized regions for training
deep learning models. There is opportunity for the further
development and investigation of deep learning models
in glacier hydrology because of the wider availability of
streamflow data and globally available glacier inventories (RGI
Consortium, 2017), as we demonstrate that these data sets
together can be leveraged to gain insights from deep learning
hydrological models.

In this study we investigate glacier runoff in particular
because of its importance as a contributor to streamflow
in the study region. More generally, deep learning models
should be interpreted under the conditions and context for
which they will be applied. For example, future work could
investigate how and if other important processes are represented
(e.g., evapotranspiration, groundwater flow), and how these
representations are influenced by training models in regions with
different geographic and climatic characteristics or by training
models over different spatial and temporal scales.

The sensitivity maps used for investigating the model’s
spatial learning expand upon the earlier findings in Anderson
and Radić (2022) that used the same CNN-LSTM model
over the same study region as here. As reported in their
study, the model was not always sensitive to the perturbation
in the input variables within or nearby the basins whose
streamflow is being modeled. In fact, for some stations
in the region (e.g., in the eastern cluster) the model was
more sensitive to the perturbations far away (off-shore the
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west coast of BC) than within/nearby the basins. Here we
demonstrate that this sensitivity to “distant” perturbations in
input fields occurs mainly during low-flow periods of the
year (Figure 4), when the streamflow sensitivity to temperature
and precipitation is low or negligible (Figure 5). As soon as
streamflow becomes more dynamic (e.g., during the freshet),
the model re-focuses on the climatic drivers within/nearby
the modeled streamflow and maintains this focus until the
streamflow becomes more dormant again in the late fall and
winter. The only exception to this finding is the eastern cluster
where the model continues to focus on the “distant” climate
forcing (west coast of BC) through the freshet period. The
eastern cluster is situated in the Prairie Pothole Region which
is characterized by small surface depressions that allow for
dynamical water storage and intermittent connectivity which
can vary on both seasonal and decadal timescales (Shook
and Pomeroy, 2011; Shaw et al., 2012; Hayashi et al., 2016).
This level of complexity in runoff generation, characteristic of
the eastern region, may “mask” the links between the local
weather variables and streamflow, justifying the model’s “poor
learning” in this sub-region. Data integration that incorporates
previous streamflow into the input data has been found to
improve LSTM model performance in the Prairie Pothole
Region of the United States (Feng et al., 2020). Future
work can investigate if improvements to model performance,
such as through incorporation of additional information (e.g.
topography, radiative forcing, surface water storage, previous
streamflow), also alters the spatiotemporal patterns of model
sensitivity.

SUMMARY AND CONCLUSION

We investigated the interpretability of the previously trained
CNN-LSTM model from Anderson and Radić (2022) used
for streamflow simulations at 226 stream gauge stations
across southwestern Canada. Forced only by the gridded daily
temperature and precipitation fields from ERA5 reanalysis,
the model was shown to successfully simulate observed daily
streamflow between 1980 and 2015 (Anderson and Radić, 2022).
Here we designed a set of experiments to assess the model’s
sensitivity to spatiotemporal perturbations in temperature and
precipitation fields. With these sensitivity tests, we probed the
model’s ability to learn runoff-generating mechanisms across
three main streamflow regimes in the region: glacial, nival,
and pluvial. Our results reveal that the model has learned
the basic principles behind the runoff generation for each
streamflow regime, without being given any information other
than temperature, precipitation, and streamflow data. We
show that:

1. The model is more sensitive to the perturbations while the
streamflow is dynamic, i.e., from the onset of freshets in
spring until the start of subfreezing temperatures in late fall

or early winter. During this period of “dynamic flow,” the

model is more sensitive to the perturbations within/nearby
the basins, whose streamflow is being modeled, than to the

perturbations far away from the basins. The only exception

to this sensitivity pattern is found for the eastern subregion
(Prairies in Alberta), where the model’s counter-intuitive
sensitivity to distant perturbations (off-shore the west coast
of British Columbia) during freshets is likely attributed to
the presence of more complex water-storage systems in the
subregion relative to the rest of the study region.

2. The model learned that each streamflow regime displays
characteristic temporal pattern of sensitivity to the
perturbations in temperature and precipitation. During
freshets in the nival and glacial regimes, the model is more
or equally sensitive to temperature as to precipitation,
while sensitivity to precipitation generally dominates over
temperature for the rest of the year. In the pluvial regime, the
model is more sensitive to precipitation than to temperature
throughout the year.

3. The model learned that substantial day-to-day increases in
streamflow are triggered by daily anomalies in temperature
and precipitation, and the seasonal pattern of this sensitivity
to weather anomalies is characteristic for each streamflow
regime. For the nival regime, the streamflow increases are
driven by warm daily anomalies in spring, and wet daily
anomalies in summer. For the glacial regime, warm daily
anomalies drive the flow increases in the spring and summer,
corresponding to the temperature-driven snow- and glacier-
melt contribution to the streamflow.

4. The model learned that daily-scale flow events are
increasingly preceded by warm anomalies under increasing
fraction of glacier cover per basin. We interpreted this finding
by identifying a set of cell states in the LSTM model that act
as temperature-controlled streamflow sources in summer,
i.e., glacier runoff. These cell states most strongly mapped
temperature to streamflow in glacierized basins during the
summer months, while at the same time were inactive for the
non-glacierized basins.

In conclusion, our results reveal that the decision-making process
of the deep-learning model is interpretable and consistent
with the known drivers of streamflow. These findings agree
with the currently small, but growing number of studies that
have explored the interpretability of deep learning models for
streamflow prediction (e.g., Kratzert et al., 2019a; Anderson and
Radić, 2022; Wunsch et al., 2022). The growing body of evidence
that deep learning resembles a physics-based understanding of
the hydrological processes can help build confidence in these
models beyond their use as “black box” models. Gaining trust
in the deep learning models is an important step forward for
the hydrological modeling community facing the challenges and
opportunities associated with the growing availability of big
data at a time of unprecedented risks of water scarcity under
climate change.
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Copyright © 2022 Anderson and Radić. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Water | www.frontiersin.org 18 June 2022 | Volume 4 | Article 934709

https://doi.org/10.1007/s11263-019-01228-7
https://doi.org/10.1002/hyp.8390
https://doi.org/10.1029/2018WR022643
https://doi.org/10.3389/frwa.2021.681023
https://doi.org/10.5194/hess-22-5639-2018
https://doi.org/10.1002/hyp.8381
https://doi.org/10.48550/ARXIV.1312.6034
https://doi.org/10.1029/2006WR005022
https://open.canada.ca/data/en/dataset/a883eb14-0c0e-45c4-b8c4-b54c4a819edb
https://open.canada.ca/data/en/dataset/a883eb14-0c0e-45c4-b8c4-b54c4a819edb
https://doi.org/10.1088/1755-1315/299/1/012037
https://doi.org/10.1177/03091333211023690
https://doi.org/10.1029/2019MS002002
https://doi.org/10.48550/arXiv.1703.03126
https://doi.org/10.1109/TKDE.2017.2754499
https://doi.org/10.5194/hess-26-2405-2022
https://doi.org/10.1029/2019WR025326
https://doi.org/10.1109/ACCESS.2020.2991187
https://doi.org/10.1088/1748-9326/ab4d5e
https://doi.org/10.1016/S0022-1694(98)00242-X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/water
https://www.frontiersin.org
https://www.frontiersin.org/journals/water#articles

	Interpreting Deep Machine Learning for Streamflow Modeling Across Glacial, Nival, and Pluvial Regimes in Southwestern Canada
	Introduction
	Background and Materials
	Study Region
	Data

	Methods
	Model
	Experiment on Model's Spatial Learning
	Experiment on the Importance of Input Variables
	Identification of Streamflow-Activating Daily Weather Anomalies
	Discovery and Interpretation of Glacier-Runoff Cell States

	Results
	Temporal Patterns of Spatial Sensitivity
	Importance of Input Variables Through Time
	Streamflow-Activating Daily Weather Anomalies
	Cell States Linked to Glacier Runoff

	Discussion
	Summary and Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


