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The beginning of the 21st century is marked by a rapid growth of land

surface satellite data and model sophistication. This o�ers new opportunities

to estimate multiple components of the water cycle via satellite-based land

data assimilation (DA) across multiple scales. By resolving more processes in

land surface models and by coupling the land, the atmosphere, and other

Earth system compartments, the observed information can be propagated

to constrain additional unobserved variables. Furthermore, access to more

satellite observations enables the direct constraint of more and more

components of the water cycle that are of interest to end users. However, the
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finer level of detail inmodels and data is also often accompanied by an increase

in dimensions, with more state variables, parameters, or boundary conditions

to estimate, and more observations to assimilate. This requires advanced DA

methods and e�cient solutions. One solution is to target specific observations

for assimilation based on a sensitivity study or coupling strength analysis,

because not all observations are equally e�ective in improving subsequent

forecasts of hydrological variables, weather, agricultural production, or hazards

through DA. This paper o�ers a perspective on current and future land DA

development, and suggestions to optimally exploit advances in observing and

modeling systems.

KEYWORDS

data assimilation, soil moisture, snow, vegetation, microwave remote sensing, land

surface modeling, targeted observations

Introduction

The distribution of water on Earth determines human

livelihoods and is itself influenced by human activities.

Estimating the water availability in various terrestrial

compartments is essential for water resources management,

agricultural monitoring, natural hazards and disaster risk

assessment, biodiversity and planet health protection, numerical

weather prediction (NWP), seasonal prediction, and climate

change mitigation and adaptation. Currently, the most complete

regional- to global-scale estimates of water-related variables

are obtained by merging satellite data records into numerical

models of Earth system processes through data assimilation

(DA) (Asch et al., 2016). DA can combine the unprecedented

amounts of satellite data with the steadily acquired process

understanding of the past decades. Specifically, DA uses the

satellite observations to correct errors in model simulations,

including errors in unobserved variables. Thereby, DA adds

value to the observations by inferring unobserved information,

filling gaps and/or enhancing the spatial resolution of satellite

data. In the geosciences, DA mostly refers to state estimation

theory, but it more generally covers any technique that uses

data to estimate the most accurate possible system state

(Carrassi et al., 2018) and associated fluxes. Therefore, DA also

encompasses model parameter optimization and the correction

of boundary conditions, including meteorological forcings.

Land DA developments have been reviewed earlier (Reichle,

2008; Lahoz and De Lannoy, 2014; De Lannoy et al., 2016; Jin

et al., 2018; Huang et al., 2019; Xia et al., 2019; Girotto et al.,

2020; Baatz et al., 2021; Durand et al., 2021). In parallel to

our paper, Kumar et al. (2022, in review) review and identify

current community-agreed gaps and priorities for the future

of state estimation via land DA. In this paper, we reflect

on advances in observing, modeling and DA techniques, the

associated opportunities and complexities of future land DA

systems, and solutions to keep land DA efficient and effective,

in the presence of rapid data growth and model sophistication

in the first half of the 21st century. First, we summarize the

state of the art of land DA for the estimation of water cycle

variables (Section State of the art). Next, we offer a perspective

on current observing, modeling and DA systems (Section

Perspective on current observing, modeling and DA systems)

and on the future goals of land DA (Section Perspective on

future DA development). The focus will be on soil moisture,

snow and vegetation estimation and how to extend the impact

of satellite-based land DA to improved dynamic estimates of the

atmosphere, vegetation, hydrological and biogeochemical cycles,

as well as of natural hazards.

State of the art

The beginning of the 21st century has seen a sustained

increase in remotely sensed data of the Earth system. Figure 1

shows the exponential growth in satellite missions, with

about 4,800 active satellite platforms orbiting our Earth

in 2021 (https://www.statista.com/statistics/897719/number-of-

active-satellites-by-year/), but only 20–25% collect Earth

observations, and fewer than 1% are regularly used for land

DA. Gravity measurements from the Gravity Recovery and

Climate Experiment (GRACE) and GRACE Follow-Onmissions

directly sense changes in total water storage but at a very

coarse scale. Optical sensors (onboard the Terra, Landsat,

and Sentinel-2 missions, among others) measure fine-scale

water content proxies, e.g., snow cover extent, open water

extent, vegetation, and soil color or temperature. Microwave

sensors (onboard the Soil Moisture Ocean Salinity -SMOS-, Soil

Moisture Active Passive -SMAP- and Sentinel-1 missions, the

Advanced Microwave Scanning Radiometer onboard Aqua, and

the Advanced SCATterometer -ASCAT- onboardMetop, among
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many more) are used to retrieve water amounts in the soil,

vegetation and snow. The passive radiometer sensors collect

brightness temperature data at a coarse resolution (∼40 km),

whereas active synthetic aperture radar (SAR) instruments can

collect backscatter data at finer resolutions (<1 km). Microwave

sensors exploit the fact that the presence of water directly

affects the dielectric properties of the soil, vegetation and

snow, and it strongly influences the emission and scattering

of microwave radiation (Ulaby et al., 2014). Insight into how

radiation interacts with water in different land compartments is

summarized in radiative transfer models, which can be used in

two ways: (i) to invert the observed radiance into geophysical

“retrieval” products (e.g., soil moisture, vegetation or snow

water content), or (ii) as so-called observation operators to map

simulated land surface variables to satellite-observed signals

(e.g., brightness temperature or backscatter).

Many land DA systems have used microwave observations

to estimate surface and deeper soil moisture (de Rosnay et al.,

2014; De Lannoy et al., 2016; Reichle et al., 2019), and related

variables such as discharge (Lievens et al., 2015; De Santis et al.,

2021), turbulent fluxes (Lu et al., 2020), and even groundwater in

peatlands (Bechtold et al., 2020). With the activation of dynamic

vegetation models, the assimilation of optical vegetation indices

(e.g., leaf area index) and microwave vegetation optical depth

(Fairbairn et al., 2017; Kumar et al., 2020; Mucia et al., 2022)

has gained interest, including to improve evapotranspiration

(ET) and runoff. DA of thermal satellite data has also been

popular for ET and soil moisture estimation (Crow et al., 2008),

but studies on the intersection between the water and energy

cycle will not be further discussed, to keep the focus on water

cycle variables. At the finer scale, optical and radar satellite data

have been assimilated in crop models to update canopy or soil

state variables and ultimately estimate transpiration, agricultural

biomass and yield (Jin et al., 2018; Lu et al., 2022). Under frozen

conditions, the assimilation of optical snow cover fraction or

microwave-based snow depth has been explored (Helmert et al.,

2018; Girotto et al., 2021).

In practice, land DA systems are developed by merging

the theoretical insights in DA, which provide a portfolio of

algorithms, with the operational and physical constraints of land

surface observations and modeling. An overview of regional

and global land DA systems is given by Xia et al. (2019).

The observations consist either of satellite retrieval products

(soil moisture: Dharssi et al., 2011; Liu et al., 2011; Rodríguez-

Fernández et al., 2019; vegetation: Albergel et al., 2017; Kumar

et al., 2020; snow: De Lannoy et al., 2010) or direct satellite

signals (related to soil moisture: De Lannoy and Reichle, 2016;

Lievens et al., 2017; Muñoz-Sabater et al., 2019; Reichle et al.,

2019; snow: Larue et al., 2018; Xue et al., 2018), and most

land DA systems consider far fewer observations than state

variables (this characterizes DA in the geosciences at large).

For example, one surface soil moisture retrieval every few days

can update soil moisture in multiple soil layers and possibly

vegetation, or one weekly snow cover fraction observation can

update the water amount in different snow layers, while the

model state evolves at sub-hourly time steps. Furthermore,

most land DA systems are one-dimensional, i.e., they update

each soil-vegetation-snow column (grid cell) independently

and the analysis update is strictly limited to the observed

columns. This formulation does not exploit the capability of

manyDA approaches to propagate information across themodel

domain from observed to unobserved areas. If communication

among different columns is made possible via the physics-based

model or via spatial error correlations, thus making the DA

system spatially distributed, then state variables in neighboring

(observed or unobserved) columns within the influence radius

of a given observation are analyzed together (Reichle and Koster,

2003; De Lannoy et al., 2010; Magnusson et al., 2014; Reichle

et al., 2019).

The above studies all aim at state estimation via particle or

Kalman filtering variants (other DA methods such as variational

DA or direct insertion have also been used) to correct the

land surface state for short-term and interannual errors in the

meteorological forcings (in offline systems, i.e., not coupled to an

atmospheric model) or other unmodeled temporary deviations

in some water compartments. In this process, only a few DA

systems effectively assign the DA corrections to the source

of errors, such as for example snowfall or precipitation input

to obtain good snow depth or total water storage estimates

(Winstral et al., 2019; Girotto et al., 2021). Most DA systems

do not conserve mass, unless the water budget is explicitly

constrained (Pan et al., 2012).

To correct land surface estimates for longer-term or

systematic deviations, and to minimize water budget

imbalances, satellite data can be used more effectively for

parameter estimation. These parameters can be part of the

prognostic model (Han et al., 2014; Kolassa et al., 2020), the

diagnostic radiative transfer model (De Lannoy et al., 2013;

Rains et al., 2022), or represent a bias factor for meteorological

input (Wrzesien et al., 2022). Long-term model calibration

could be seen as a form of long-term DA or history matching.

Alternatively, DA for sequential parameter updating (with or

without simultaneous state updating) allows to account for

time-varying parameters (Montzka et al., 2011; Magnusson

et al., 2016).

Perspective on current observing,
modeling and DA systems

Observations

The spaceborne observations of many water cycle variables

have been improving in radiometric, spatial, and temporal

resolution, but dedicated missions are not yet available for

all parts of the water budget. Soil moisture is now routinely
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FIGURE 1

The 21st century within the history of remote sensing, which started with the understanding of electromagnetic radiation (EMR). Select satellite

missions used for land DA are marked and discussed in the text.

measured at a coarse resolution by dedicated L-band satellite

missions (SMOS, SMAP, Kerr et al., 2010; Entekhabi et al.,

2014), and can also be inferred from shorter wavelength C-

band sensors onboardmeteorological satellite missions (ASCAT,

Figa-Saldaña et al., 2002). Finer-scale estimates can be obtained

from current C-band SAR or optical sensors, and the upcoming

NASA-ISRO L-band SAR (NISAR, Rosen and Kumar, 2021)

and ESA High Priority Candidate Mission Radar Observation

System for Europe in L-band (ROSE-L, Pierdicca et al., 2019)

are expected to improve fine-scale soil moisture estimates.

There is currently no mission devoted to SWE, but various

passive microwave sensors have been combined to produce

coarse-scale SWE products (Luojus et al., 2021). The complexity

of snow itself and its presence in complex terrain require more

insight on how different types of radiation interact with snow

to support the development of a dedicated mission (e.g., Ku

and X-band) for fine-scale SWE observation. Multi-frequency

missions such as the planned Copernicus Imager Microwave

Radiometer (CIMR) will become relevant for SWE remote

sensing in the future. Meanwhile, existing sensors have been

used in an opportunistic way (e.g., snow depth from Sentinel-

1 radar, Lievens et al., 2022), and upcoming missions such

as NISAR and ROSE-L will further help to estimate high

resolution SWE.

The water stored in vegetation is also not yet fully observed

from space. Several optical vegetation indices (e.g., leaf area

index) approximate the vegetation health and transpiration

(Bannari et al., 2009). More recently, the microwave-based

vegetation optical depth (VOD) products have shown promise

to represent biomass, vegetation structure and water (Steele-

Dunne et al., 2017; Chaubell et al., 2020; Wigneron et al., 2021).

The upcoming BIOMASS Earth Explorer mission (Quegan

et al., 2019) promises to explore long wavelength (P-band)

measurements to estimate the total biomass in whole forest

layers. Recent studies also aim at the estimation of plant

transpiration from novel solar induced fluorescence (SIF)

retrievals (Maes et al., 2020). The upcoming FLEX Earth

Explorer mission (Drusch et al., 2017) will collect SIF data to

serve agricultural purposes. Ultimately, advancing VOD and

SIF-based retrievals and gaining insights in how vegetation

affects microwave radiation or fluorescence will lead to better

estimates of the water, carbon and energy cycle when combined

with dynamic vegetation and crop yield modeling.

Spaceborne observation of water fluxes such as total ET

and discharge remains a challenge. Intermittent satellite-based

discharge estimates can be derived from optical and altimeter

data (Abdalla et al., 2021; Tarpanelli et al., 2021). The Surface

Water andOcean Topography (SWOT)mission will soon enable

frequent spaceborne observations of river stage for large rivers to

allow inference of discharge (Biancamaria et al., 2016; Frasson

et al., 2021). Currently, no mission is specifically dedicated to

ET measurements (Fisher et al., 2017), and ET is most typically

inferred from satellite-observed surface or skin temperature

(related to sensible heat) as the residual of a simple energy

balance model (Anderson et al., 2021), or indirectly obtained via

soil moisture and VOD DA in a land surface model (Martens

et al., 2017). Most high-resolution ET methods based on optical

sensors suffer from low coverage (clear-sky conditions, low

revisit times) and from large discrepancies among the various

products. The ECOsystem Spaceborne Thermal Radiometer

Experiment on Space Station (ECOSTRESS, Fisher et al.,

2020) mission helped evaluating the use of thermal infrared
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observations at fine spatial and temporal resolutions to define

future ET mission requirements. The future Land Surface

Temperature Monitoring (LSTM, or Sentinel-8) and Thermal

infraRed Imaging Satellite for High-Resolution Natural resource

Assessment (TRISHNA, Roujean et al., 2021) missions promise

to advance ET measurements in the coming decade. The

quantification of other water fluxes, such as irrigation fluxes,

from satellite observations is still in its infancy (Kumar et al.,

2015; Massari et al., 2021; Dari et al., 2022).

Most DA systems use satellite observations that are directly

related to land surface state variables (e.g., soil moisture,

temperature, vegetation, snow) to improve subsequent state

and flux forecasts. Conversely, the assimilation of satellite-based

flux observations (e.g., ET, runoff, irrigation) is relatively less

explored and limited to regional applications (Hartanto et al.,

2017; Gavahi et al., 2020), because only a few global flux products

are available (mainly ET) and they heavily depend on model

background which might be inconsistent with the assimilation

model. Furthermore, the diagnostic flux DA requires a careful

design to link flux observations to prognostic state or parameter

updates that are memorized in the system for improved

forecasts. The latter can be achieved e.g., via selecting particles

with a self-consistent combination of parameter, state and flux

values in particle filters or via an adequate observation operator

in Kalman filter-based techniques (Pauwels and De Lannoy,

2006).

New sensor technologies have not only helped to observe more

variables, but also increased the resolution of data. For example,

SAR data can regularly monitor soil moisture and surface water

at km-scale resolution, albeit with more noise, longer revisit

times or smaller coverage than coarser-scale data. Even if some

(mainly commercial) sensors are indeed able to measure with

high levels of detail, observations with meter-scale resolution are

unlikely to make it into equally fine-scale land DA systems for

global applications any time soon (Section Increased dimensions

of future land DA: challenges and opportunities).

The level of satellite observation processing desirable for

land DA is the subject of a debate that should strengthen

the collaboration between geophysical retrieval and DA

communities in the future. Land DA uses satellite observations

either in the form of gridded radiances collected by the sensor

or as the associated geophysical retrievals. Just like retrieval

DA, radiance DA has been used to update the land surface

state (examples below) and parameters in the land surface or

radiative transfer model (Han et al., 2014). Radiance DA requires

a forward model to relate the land surface state (soil moisture,

temperature, snow, vegetation water content) and parameters

(clay fraction, vegetation scattering albedo) to the satellite

radiance signals as part of the observation operator (Reichle

et al., 2014). The observation operator can also deal with the

difference in spatial support of the observations and simulations

in a multiscale DA system, e.g., to downscale coarse-scale

observations to a finer resolution. Some studies report little

DA skill difference between radiance and geophysical retrieval

assimilation (De Lannoy and Reichle, 2016; Aires et al., 2021),

and other studies show that radiance DA can circumvent biases

associated with retrievals. For example, for deep mountain

snow, SWE retrievals can be significantly biased (e.g., Wrzesien

et al., 2017), but microwave radiance DA allowed both Li

et al. (2017) and Kim et al. (2019) to achieve unbiased

SWE estimates. Furthermore, DA of radiances facilitates the

simultaneous updating of multiple state variables (e.g., soil

moisture, temperature and vegetation) more elegantly than DA

of the various associated individual retrieval products with

cross-correlated errors. Radiance DA is also physically more self-

consistent than retrieval DA, because retrievals are constrained

by background information that may deviate from that of

the model. E.g., soil moisture retrieval may use temperature

information, and soil or vegetation parameters from data

sources that are different from those of the model. The

physical consistency makes radiance DA particularly attractive

for coupled land-atmosphere DA (de Rosnay et al., 2022).

Finally, the observation error characterization is more traceable

for radiance DA. In the realm of DA algorithms, the use of (non-

linear) observation operators enables solving DA as a non-linear

optimization problem, without (or with limited) relying on

linearity assumptions. In short, satellite observations should be

provided along with good observation operators that can support

land DA.

The spatio-temporal characterization of the observation

error (that is, retrieval or instrument error, plus

representativeness error) is a key element to successful

DA systems. New sensor developments would thus ideally

be preceded by a synthetic observing system simulation

experiment (Crow et al., 2005) to quantify the tolerable levels

of uncertainty for efficient DA. Furthermore, observations

and model estimates typically have distinct biases, which are

ideally resolved, explained, or removed prior to state updating

(see Section DA methods and Land DA goals of the future:

priorities). This requires that satellite missions span enough

years to quantify climatological biases in observation space,

and this has so far limited the use of short-lived exploratory

missions onboard new platforms (e.g., drones, cubesats) in

DA systems.

Models

The beauty of nature is that it is intelligible and can be

captured in general physical laws, despite its complexity in

the details. This knowledge is indispensable to add value to

observations, and to inter- and extrapolate them to unobserved

variables. In the last decades, a slow but steady increase in

sophistication of large-scale land surface modeling and DA

systems has been achieved (Fisher and Koven, 2020) by (i)

improving model parameterizations (Balsamo et al., 2009)
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and resolving multiscale processes (Figure 2A), (ii) improving

prognostic representations of hydrological processes, such as

e.g., lateral subsurface flows in aquifers (Shrestha et al., 2014),

snow processes (Bartelt and Lehning, 2002; Deschamps-Berger

et al., 2022), peatland-specific processes (Bechtold et al., 2020),

(iii) improving prognostic representations of vegetation (Clark

et al., 2011), biogeochemical cycles including the nitrogen cycle

(Oleson et al., 2013) and phosphorus cycle (Goll et al., 2017), (iv)

activating anthropogenic processes, such as irrigation (Lawston

et al., 2017), or by (v) land-atmosphere coupling (Figure 2B).

By shifting from parameterized to physically resolved

modeling (e.g., static parameterized to prognostic dynamic

vegetation) and by coupling more processes, the DA impact

of a single observation can reach more unobserved, but

model-resolved, compartments. For example, snow depth DA

can improve discharge and low-level atmospheric estimates

(Griessinger et al., 2019; Rudisill et al., 2021; Lahmers et al.,

2022), and backscatter DA can update dynamic vegetation and

soil moisture, to eventually update irrigation (Modanesi et al.,

2022). Efforts are ongoing to advance land DA in coupled

land-atmosphere models (de Rosnay et al., 2014; Boussetta

et al., 2015; Carrera et al., 2019; Reichle et al., 2021b) to make

good on the promise to improve NWP and subseasonal to

seasonal predictions (Kumar et al., 2022). As a matter of fact,

the use of physics-based models has also been pivotal to the

success of atmospheric DA in NWP to propagate information

to unobserved areas (Kalnay, 2002). At the same time, several

studies with current state-of-the-art land surface models also

reported limited success (Crow et al., 2020; Hung et al., 2022)

in propagating information from one compartment to another,

which suggests that the modeling (parameterization) of the

coupling and fluxes between land compartments as well as DA

strategies need further research.

Surprisingly few new prognostic physics-based models (or

model components) have been developed in response to the

growing number of satellite data. This might be because we

have reached the maximal desired structural complexity for

large-scale applications, or because the coarse resolution of

many satellite data integrates too much spatial variability,

complicating a clean local physical interpretation of processes.

As both model simulations and satellite observations become

available at higher resolutions and for longer time spans,

more spatial and temporal scales get resolved (Figure 2A).

This might possibly deepen our process understanding,

limit parameterizations and ultimately help hyper-resolution

modeling (Wood et al., 2011) and DA.

Alternative ways of model development are emerging, which

in fact have the potential to use the growing amount of

(possibly coarse-scale) data and artificial intelligence rather

than our human intelligence to build a model. Specifically,

machine learning (ML) holds promise (Nearing et al., 2020) to

develop models for multiple variables directly from multiple

types of observations. e.g., ML can be used to diagnose how

satellite-observed signals can be related to a set of land surface

variables via complex interactions. Especially for microwave-

based observation operators (Xue et al., 2018; Shan et al.,

2022), ML might currently be more efficient than trying to

fully understand and parameterize all radiation interactions.

It is however unclear if ML is capable of entirely replacing

prognostic land surface models in Earth system models, given

thatML is not well-suited for non-stationary systems (e.g., under

climate change), or to support the inference of unobserved land

variables, because ML typically employs supervised learning

that requires the existence of observations prior to training.

More pragmatically and potentially more successfully, MLmight

complement physically based descriptions in a hybrid fashion

(Reichstein et al., 2019). Note that in this subsection, ML is

presented as a tool for model development. The following

section discusses how ML can be used for DA.

Ideally, models offer a framework to propagate observations

to unobserved variables, but models are imperfect, and their

uncertainties originate from errors in the numerical schemes,

unresolved scales, parameters, initial conditions, meteorological

input (in offline systems) or missing processes. Via DA, the

model state, parameters or forcing inputs will be updated

to correct the model trajectory. If parameterizations are

replaced with physically resolved process descriptions and the

associated parameters would become physically measurable,

then the need to update parameters should reduce in favor

of more state updating. Similarly, when offline forcing inputs

are replaced with coupled land-atmosphere modeling and

constrained by atmospheric observations, then the need to

update meteorological input in land surface models should

reduce in favor of more state updating.

DA methods

The choice of DA method for a given application is

arguably often driven by the research group’s repository of

source code, and it is rarely optimal in a mathematical

sense (Carrassi et al., 2018). However, the discontinuity (e.g.,

via activation thresholds) and non-differentiability of land

surface processes (including prognostic soil-water-vegetation-

snow and diagnostic radiation interactions) is a valid reason

to favor ensemble Kalman or particle-based techniques (Evensen

et al., 2022), instead of variational methods that require

model adjoints, which are difficult to obtain and maintain.

Furthermore, ensemble- and particle-based DA can diagnose

flow-dependent forecast error estimates for non-linear land

surface models. Like in other areas of climate science, filters

dominate operational land DA systems because they naturally

support the sequential inclusion of satellite observations,

provided they are available to describe an optimal current

state for subsequent forecasts. For longer-term re-analysis

solutions, or for slowly varying variables, smoothers (Dunne
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FIGURE 2

Land surface model sophistication increased in the 21st century toward (A) higher resolutions, by resolving multi-scale hydrological processes

and improving model parameterizations, and (B) coupling of more processes, by replacing simplistic parameterizations and including more

interactions between variables in multiple compartments.

and Entekhabi, 2006; Margulis et al., 2015) gather observations

over a sliding retrospective time window to obtain the best

historical solution.

The key to any DA method is in the treatment of the

forecast and observation errors. State estimation assumes random

errors. In the ensemble Kalman filter (EnKF) or particle

filter (PF), the distribution of the random forecast error

accumulated between assimilation time steps is diagnosed from

an ensemble of realizations, and ensemble generation is an art

by itself (choice of perturbations, variable transformations to

obtain Gaussianity, covariance inflation, localization; Carrassi

et al., 2018). The observation errors are typically set to

a constant standard deviation parameter that reflects the

instrument or retrieval error, increased by the representativeness

error that also includes observation operator error (Tijana

et al., 2018). The forecast and observation error estimates

are typically hyperparameters optimized by manual tuning

of DA diagnostics (Reichle et al., 2017), because automated

adaptive filtering (Crow and Reichle, 2008; De Lannoy

et al., 2009) remains too inefficient. Most DA methods

rely on the assumption of unbiased sources of information,

and thus biases are typically removed prior to DA via,

e.g., cumulative distribution function matching between the

assimilated observations and the model simulations (Reichle

and Koster, 2004; Kumar et al., 2012); consequently, DA

analyses are consistent with the (potentially erroneous) model

climatology. Ideally, biases are disentangled to estimate (De

Lannoy et al., 2007; Pauwels et al., 2013) and possibly remove

forecast or observation bias, or perhaps to identify the impact

of water management or other human activity (e.g., unmodeled

groundwater pumping and irrigation; Kumar et al., 2015;

Girotto et al., 2017).

The nature of the errors associated with different land

variables is very different. Figure 3 illustrates how soil moisture

has a more bounded error growth than snow or vegetation,

and that a single DA update reduces the forecast error for

a longer time in variables with longer error autocorrelation

lengths. More research is needed on how to best address these

various types of errors for different variables via different DA

methods and different bias treatments. For example, state-only

updating without observation bias correction was advantageous

to correct the accumulated snow and the associated river

discharge in Smyth et al. (2019) and Lahmers et al. (2022),

but in other studies, snow observation bias correction (De

Lannoy et al., 2012; Liu et al., 2013) or bias correction to

snowfall (Magnusson et al., 2016) was preferred. Similarly,

Albergel et al. (2017) and Kumar et al. (2020) used a

bias-blind filter for vegetation updating, but omitting bias

correction for vegetation observations can possibly cause

undesirable sawtooth timeseries and inferior ET and runoff

estimates when assimilating intermittent observations, when

the model is pushed out of its statistical equilibrium. The

need for observation bias correction might depend on the

boundedness of variables and the coupling between variables in

different models, i.e., whether there is strong circular coupling

equilibrium (vegetation-transpiration-soil moisture-vegetation)

or rather a dominant one-way coupling (snowpack-discharge).

Finally, most of the above considerations hold for DA in

the traditional sense of merging physics-based model variables

with satellite observations. New, data-driven methods such as

ML offer an alternative to DA and can in some ways be

similar to four-dimensional variational DA (by including the

time dimension as in smoothers). Like DA (Geer, 2021), ML

can be used to obtain better state estimates, bias estimates
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FIGURE 3

Di�erent error characteristics of (A) surface soil moisture, (B) deeper soil moisture, and (C) vegetation or snow depth, for (gray) model-only and

(blue) DA simulations. The semi-transparent plumes represent ensemble uncertainties.

(Pan et al., 2021) or parameter estimates (Mudunuru et al.,

2022). Novel hybrid DA-ML methods (Bonavita and Laloyaux,

2020) are showing success in discovering and emulating

unresolved-scale processes, whenever a chronic lack of data

makes the task extremely difficult for pure ML. In the context

of coupled atmosphere-ocean modeling, DA-ML has shown

promising results (Brajard et al., 2021) and its future use in a

land-atmosphere context could be attractive.

Perspective on future DA
development

Land DA goals of the future: Priorities

From its origin in atmospheric and ocean sciences, DA

for state updating provides the best-possible initial conditions

for subsequent forecasts. Properly estimating the initial state is

critically important in chaotic systems (Carrassi et al., 2022),

where small errors can grow exponentially in time and where

the characteristics of such growth are themselves unpredictable.

By contrast, land systems are usually asymptotically stable.

Therefore, initial errors are typically internalized in the state

(memory) until the system reaches an equilibrium after some

time. Nevertheless, in a coupled land-atmosphere system, a small

land initialization error could result in exponential error growth

in the atmosphere. Seemingly small improvements obtained via

land DA are therefore critical for NWP and seasonal predictions,

provided the coupling mechanisms for long-term predictability

are well represented. In land-only applications, state updating

is essential to reset cumulative vegetation or snow variables

for seasonal-scale yield or discharge forecasts, or to adjust soil

moisture or input forcings for more accurate short-term hazard

predictions of landslides (Felsberg et al., 2021), fires (Jensen

et al., 2018), floods (Massari et al., 2018), and droughts (Li et al.,

2019).

However, DA is not equally effective in all circumstances.

For example, soil moisture updating can generally improve

streamflow predictions (Mahanama et al., 2012; Reichle et al.,

2021a), but might not be effective to reduce errors in the fast

runoff component which are dominated by rainfall errors (Mao

et al., 2020). Similarly, the influence of soil moisture on ET

depends on the seasons, the coupling strength between soil

moisture and ET in different climate regimes (Dong et al.,

2020) and the ability of the assimilation model to accurately

capture that coupling (Crow et al., 2020). To use data and

resources most efficiently in a century when ever more data are

becoming available (Section Increased dimensions of future land

DA: challenges and opportunities), one should wonder which

specific type of observations at what time and location has the

largest impact on land DA analyses and beyond. A suggestion

for future research is thus to explore targeted land DA. This

requires that we first determine which type of observations

are most useful to improve the forecast skill of particular land

or atmosphere variables under the given circumstances, via

sensitivity studies, forecast sensitivity-based observation impact

studies, or coupling strength analyses. The land DA community

can learn from the NWP community, which already has a strong

grasp on how much various observations contribute to forecast

skill (Eyre, 2021). Thereafter, we can efficiently assimilate those

observations that likely have the most impact. The limitation is

that satellite observations are collected in fixed orbits and not

necessarily at the strategically most optimal location or time, so

the main goal of targeting observations is a careful selection of

the available observations.

Apart from state updating, satellite DA should be further

explored for parameter estimation to (i) improve inherited static

global soil and vegetation parameter databases that served older

model generations, and to (ii) assign values to newly resolved

parameters that will emerge from the sophistication of land

surface models, e.g., to parameterize dynamic vegetation growth

or water table dynamics. Parameter estimation is in principle

possible using the same DA framework used for state estimation.

Nevertheless, the success of parameter updating depends on

the model sensitivity to that specific parameter and to its

correlation with the observed quantities. The latter could be
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automatically estimated via the ensemble (for the EnKF) or

the particles (for the PF), thus further promoting the use of

this family of methods. Recently, hybrid EnKF-PF methods

have been developed precisely to use the EnKF for the “more

linear” state update and the PF for the “more non-linear”

parameter updates (van Leeuwen et al., 2019). Those methods

could prove effective in land DA as well. Finally, parameter

updating is particularly relevant for long-term applications,

because DA frameworks for state-only updating rely on the

assumption of the system being autonomous and stationary

and are thus not theoretically suitable if a system is subject to

climate change or human activities that cause changes in the

system’s equilibrium. This is a broader issue for DA and goes

well beyond the realm of land DA. Usually, the assumption is

that by sequentially updating the system state and parameters

we drive the conditional posterior probability toward the new

equilibrium, yet rigorous mathematical results along these lines

are still missing.

DA can be used to correct the state, parameters or forcings

for unmodeled or poorly modeled processes, such as e.g., human

activities. For example, Saharan dust deposited on snow should

result in a sudden update of the parameterized or simulated

albedo to ensure correct snow melt estimates. A forest fire,

deforestation, land use change, or crop rotation within or across

years (Boas et al., 2021) all require updates of vegetation model

parameters or states. Such events will be followed by a gradual

adjustment to a new soil moisture equilibrium both in the model

and reality, but the transition time might differ, because some

(unobserved) model parameters that determine the transition

time are not in line with reality. The same is true for land systems

in the presence of climate change, which might necessitate

gradually changing model parameters. How to combine long-

term updates for poorly modeled processes via parameter updating

with short-term state updating should be explored in the future.

DA diagnostics of observation-minus-forecast and analysis-

minus-forecast residuals allow an evaluation of the optimality

of the DA system (Desroziers et al., 2005; Reichle et al., 2017).

These diagnostics could in the future also help to identify (and

improve) times and locations of poorly modeled processes, or

system transitions from steady state to a new equilibrium.

DA aims at blending multiple sources of information

seamlessly. However, in one-dimensional DA systems, no

horizontal information propagation is achieved, which can

result in artificial spatial patterns (e.g., swath edges or cloud

screening imprinted in the DA analysis). When the land DA is

coupled to an atmospheric model, such spatial discontinuities

could lead to undesirable triggering of turbulence (Alapaty

et al., 1997). Furthermore, only a part of the model variables

might be included in the DA state vector. E.g., only a few

soil moisture layers might be updated out of all soil-vegetation

variables, or only the land variables and no atmospheric

variables might be updated in a coupled DA system. To avoid

unphysical discontinuities at the border between domains (e.g.,

land vs. atmosphere, or observed vs. non-observed land) or

at the interface between variables, spatially distributed and

multivariate DA methods are recommended, where multiple

state variables of the land surface and coupled processes

are updated.

As an extension of multivariate DA, the use of coupled DA

is seen as another key area of desired DA development (de

Rosnay et al., 2022). Strongly-coupled DA intends to inform

one component of the climate system (e.g., the land) by using

observations of the other (e.g., the atmosphere) and vice-versa

(Penny and Hamill, 2017). This contrasts with the so called

“weakly-coupled DA” in which the analysis update only affects

the model compartment where data are collected, but then a

coupled model is used in the forecast step. The model usually

acts as a dynamical way of propagating information from the

observed to the unobserved component, and weakly-coupled

DA is usually developed first toward the ultimate goal of

strongly-coupled DA. The spatio-temporal difference between

processes in the coupled media (e.g., land-atmosphere) make it

extremely difficult to construct a suitable error covariance across

them (Tondeur et al., 2020). The sophistication of DA techniques

will need to grow with a stronger coupling of the simulated

water, energy and biogeochemical cycles (Baatz et al., 2021) in

land surface, terrestrial ecosystem and atmospheric modeling

and with the use of multivariate constraints across the various

compartments of these coupled systems.

Increased dimensions of future land DA:
Challenges and opportunities

Most visions for future land DA include multisensor DA

(Durand et al., 2021), multivariate DA (Kumar et al., 2022),

and multi-scale DA with a push toward finer resolutions. Our

priorities above should be viewed against the backdrop of these

foreseen developments, and here we highlight some associated

opportunities. A multisensor approach is recommended to

constrain more water cycle variables (Girotto et al., 2019)

and obtain finer spatial and temporal resolutions, e.g., to

benefit from the higher accuracy of coarse-scale observations

and from the spatial detail in fine-scale observations (De

Lannoy et al., 2012; Lievens et al., 2017). The use of

multiple independent observations also has the potential

to mitigate equifinality problems, i.e., to identify the state

variable, input or parameter correction, or combination thereof,

that results in the most effective constraint (e.g., particle

selection). As discussed above, multivariate DA is needed for

physical consistency and to reach more unobserved variables

in more sophisticated systems. Higher-resolution (km-scale)

DA systems promise to better resolve local land details for

improved NWP and land-atmosphere reanalysis products.

Higher resolutions for coupled land surface-subsurface models
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also better represent runoff processes at the hillslope scale, and

narrow valleys with underlying groundwater bodies, which affect

the simulation of ET (Shrestha et al., 2018). Furthermore, high-

resolution estimates are needed for agricultural applications and

hazard estimation.

From the viewpoint of system theory, these desires for high-

resolution multivariate and multisensor DA translate into larger

dimensions of state and observation error covariances, which

necessitates practical and computationally affordable solutions.

Larger updated state vectors require larger ensemble sizes

to mitigate the sampling error in the ensemble-based error

covariances, or beg for alternative solutions to partition the

state into less-dependent groups of correlated variables that can

be updated sequentially (thus making the ensemble covariance

essentially block-diagonal). Indeed, the latter grouping of state

variables conceptuallymimics the idea of localization to filter out

spurious error correlations in spatially distributed DA systems,

and is also the essence of weakly-coupled DA systems.

Assimilating more observations from multiple sensors,

multiple products, or high-resolution datasets increases the

dimensions of the observation error covariance matrix.

Spatially neighboring observations, or joint soil moisture and

vegetation retrievals from the samemicrowave sensor, cannot be

assimilated independently due to associated error correlations.

Solutions can be found in directly assimilating radiances rather

than multiple derived retrieval products, targeting only those

observations that have most impact on the forecast (Section

Land DA goals of the future: priorities), and thinning the

observations (Waller et al., 2018). A second problem with

assimilating multiple observations is that they each might have

their own bias, represent something different than the model

variables, and/or might cause contradicting updates (Girotto

et al., 2019). Appropriate uncertainty estimates and bias removal

partly solve this problem, and allow DA to update the temporal

variability, while preserving the model’s climatological water

distribution as a strong constraint (Pan et al., 2012). Ideally,

when observation biases get resolved and we find adequate ways

to relate modeled and observed land estimates in absolute terms,

then the multitude of observations should be used to also correct

the modeled terrestrial water partitioning, and thereby create

the correct climatological land conditions to support the correct

coupling regimes.

Finally, using models, observations and DA at ever

finer resolutions inevitably requires advanced computational

infrastructure, more background information, e.g., on land

surface processes, soil and land use parameters, high-resolution

meteorological information (for off-line land simulations), and

a DAmethod that can address the problem complexity (Carrassi

et al., 2018). Furthermore, fine-scale estimates are by their nature

more uncertain than the aggregated counterparts. In the future,

we will have to balance the advantages of resolving more detail

against the curse of dimensionality.

Conclusion

Satellite-based land DA is an interdisciplinary field of

research that yields the most complete and consistent estimates

of terrestrial water cycle variables. The growing amount of

satellite data and the sophistication of modeling systems in

the 21st century require efficient land DA systems to fuse

observations and models into meaningful information for

end users. Land DA can convert the intermittent swaths

of satellite signals into temporally and spatially complete,

gridded fields of soil moisture, snow or vegetation estimates

and related variables, including land surface fluxes such

as ET and runoff. By coupling the land with atmosphere

or groundwater processes, and by resolving vegetation or

snow parameterization schemes with physics-based processes,

observations have the potential to update more unobserved

variables, and to have an impact beyond the land surface.

This is especially the case for NWP, crop monitoring,

hazard (landslides, fires, floods, droughts) assessment, and

carbon management.

Large, dynamical modeling systems that include more

resolved or coupled processes require sophisticated DA

techniques (perhaps supplemented with ML) to optimally

distribute the observed information into improved estimates

of the multivariate state, parameters, or boundary conditions.

The exponential growth of satellite data will support improved

constraints of the advanced modeling frameworks, but the

growing dimensions in land DA will also necessitate the

development of efficient DA algorithms. It will thus become

increasingly important to select the most suitable levels of

observation processing and the most impactful observations for

assimilation, because not all observations are equally efficient

all the time in DA systems. We can curb the growth of

state and observation dimensions in the DA problem by

considering targeted DA, rather than a mass integration of

all data.
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