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In Quaternary deposits, the characterization of subsurface heterogeneity and

its associated uncertainty is critical when dealing with groundwater resource

management. The combination of di�erent data types through joint inversion

has proven to be an e�ective way to reduce final model uncertainty. Moreover,

it allows the final model to be in agreement with a wider spectrum of

data available on site. However, integrating them stochastically through an

inversion is very time-consuming and resource expensive, due to the important

number of physical simulations needed. The use of multi-fidelity models, by

combining low-fidelity inexpensive and less accurate models with high-fidelity

expensive and accurate models, allows one to reduce the time needed for

inversion to converge. This multiscale logic can be applied for the generation

of Quaternary models. Most Quaternary sedimentological models can be

considered as geological units (large scale), populated with facies (medium

scale), and finally completed by physical parameters (small scale). In this

paper, both approaches are combined. A simple and fast time-domain EM 1D

geophysical direct problem is used to first constrain a simplified stochastic

geologically consistent model, where each stratigraphic unit is considered

homogeneous in terms of facies and parameters. The ensemble smoother with

multiple data assimilation (ES-MDA) algorithm allows generating an ensemble

of plausible subsurface realizations. Fast identification of the large-scale

structures is the main point of this step. Once plausible unit models are

generated, high-fidelity transient groundwater flow models are incorporated.

The low-fidelity models are populated stochastically with heterogeneous

facies and their associated parameter distribution. ES-MDA is also used for

this task by directly inferring the property values (hydraulic conductivity and

resistivity) from the generated model. To preserve consistency, geophysical

and hydrogeological data are inverted jointly. This workflow ensures that the

models are geologically consistent and are therefore less subject to artifacts

due to localized poor-quality data. It is able to robustly estimate the associated

uncertainty with the final model. Finally, due to the simplification of both the

direct problem and the geology during the low-fidelity part of the inversion,

it greatly reduces the time required to converge to an ensemble of complex

models while preserving consistency.
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1. Introduction

Quaternary aquifers are frequently used for groundwater

supply, but due to their high heterogeneity, they are difficult

to characterize and model. A possible strategy is to combine

geological knowledge, geophysical data, and hydraulic

tests. Geophysical methods, especially electromagnetic

(EM) ones, are inexpensive and can efficiently help when

facing an under-constrained problem (Barfod et al., 2018;

Christensen et al., 2017). They are usually sensitive to several

petrophysical parameters, such as resistivity, but provide limited

information regarding the hydraulic conductivities or the water

storage capacity of the underground. Consequently, inverted

geophysical models can be integrated into the first steps of

the aquifer modeling workflow by delineating the geological

structures from a manual interpretation and obtaining a so-

called cognitive model (e.g., Høyer et al., 2015). This approach

can be combined with stochastic models to populate the

main stratigraphic units with lithologies and represent that

level of heterogeneity. Furthermore, one can use geophysical

inversion results and borehole data to estimate the probability

of occurrence of several lithologies (e.g., clay or sand) and use

these probabilities as soft information to generate stochastic

realizations that are both constrained by some geological

reasoning, borehole, and geophysical data (Jørgensen et al.,

2015; Carle and Fogg, 2020). This approach ensures consistency

with available knowledge, it reproduces accurately the soft

information in terms of probability, but nothing ensures that

if the final models were used in a forward geophysical model

they would reproduce the field measurements. Furthermore,

it is likely that the overall uncertainty may be underestimated

because it is rare that the aquifer geometry derived from the

cognitive model is assumed uncertain.

To ensure consistency, we propose to reverse the

methodology described in the previous paragraph and

start by constructing a prior geological model that we will then

use in geophysical and hydrogeological inversion. Therefore, the

first key ingredient of our proposed methodology is the ArchPy

hierarchical modeling approach developed recently (Schorpp

et al., 2022). ArchPy decomposes the construction of the aquifer

model in three main simulation steps: the stratigraphic units, the

litho-facies, and the petrophysical parameters. The approach is

automated and accounts for a geological concept described in a

data structure called a stratigraphic pile as well as borehole data.

ArchPy can quickly generate an ensemble of models compatible

with the prior geological knowledge of the site. Each model can

serve as input to any geophysical forward or hydrogeological

model. Comparing the results of the calculated responses to

data measured in the field allows one to estimate the likelihood

of any proposed model and identify which one corresponds to

the maximum a posteriori likelihood and generate realizations

representing the posterior uncertainty. This type of Bayesian

strategy combining geophysical and hydrogeological data has

shown that it can produce consistent models and allowed to

reduce the final uncertainty (e.g., Irving and Singha, 2010;

Jardani et al., 2013). But these joint inverse problems are often

solved using Markov chain Monte Carlo methods and are

computationally challenging (Linde and Doetsch, 2016).

Ensemble Smoothers with Multiple Data Assimilation (ES-

MDA) have shown to obtain solutions to complex nonlinear

inverse problems more efficiently than Ensemble Smoothers

(ES) (Emerick and Reynolds, 2013) and faster than Markov

Chain Monte-Carlo (MCMC) methods (Juda et al., 2022). The

method uses a Monte-Carlo approximation of the Kalman

Filter (Kalman, 1960) where the relations between the state

variables and the parameters are estimated using an ensemble

of models. ES-MDA and PESTPP-IES (White, 2018) are both

variants of the Ensemble Smoothers (ES) algorithm proposed

by van Leeuwen and Evensen (1996). The key aspect of ES-

MDA is to perform iterative ES corrections of the parameters

by assimilating the data of the previous iteration, when

PESTPP-IES optimizes directly an objective function using a

modified form of the Levenberg-Marquardt algorithm. Lam

et al. (2020) showed a comparison of different Iterative Ensemble

Smoothers, including PESTPP-IES and ES-MDA. It was shown

that PESTPP-IES approach outperforms ES-MDA when the

ensemble size is relatively small (200 in the study) but that

ES-MDA tends to improve with an increase of the ensemble

size, while PESTPP-IES does not. ES-MDA has been successfully

applied in groundwater studies (Kang et al., 2019; Lam et al.,

2020; Xu et al., 2022). One important underlying assumption is

that the state variables and parameters are normally distributed

(and even multi-Gaussian). If not, one can apply a normal score

transform to ensure that the marginal distributions are Gaussian

(Zhou et al., 2011).

A recent study byWang et al. (2022) proposed a hierarchical

inversion, where the posterior distribution of global variables

including for example hyper-parameters of the geostatistical

models are first estimated using a machine learning approach.

Following this, an ES algorithm that includes local reduction of

dimension is applied to invert the field parameters.

Even if ES-MDA is known to be faster than the MCMC

approaches, it can still be computationally heavy because a

proper estimation of the covariance matrices used to estimate

the Kalman gains requires running a large ensemble of models

and, therefore, running a large ensemble of forward geophysical

or hydrogeological models. Often, this step is the one that

requires most of the computational power. Therefore, there is

still a need to devise techniques to accelerate such approaches,

and one is to use a multi-fidelity framework. By using a

simple surrogate model, one can approximate the forward

model and accelerate the inversion (Asher et al., 2015; Dagasan

et al., 2020). This idea has been applied, for example, by

Zheng et al. (2019), who trained a Gaussian process model

to approximate the forward flow problem in a multi-fidelity

ES-MDA algorithm.
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In this paper, we employ the multi-fidelity principle

and ES-MDA but with a different perspective. We do not

try to build a surrogate model of the forward model, but

instead, we use the fact that the computing times for the

geophysical and hydrogeological forward models are very

different and that ArchPy provides a hierarchy of levels of

representation of the geological heterogeneity. In practice, we

invert jointly the multiple data types in the same workflow

using ES-MDA in two steps. To ensure that our aquifer models

are geologically consistent, they are generated using ArchPy.

To accelerate the inversion, we run first a fast low-fidelity

ES-MDA inversion to obtain an initial representation of the

main geological discontinuities with the fast geophysical forward

only. The complete heterogeneous models are then generated

from the low-fidelity ones, and used in a second ES-MDA

high-fidelity inversion loop including both the geophysical and

hydrogeological forward models. The present paper introduces

this idea and demonstrates its applicability to two simple 2D

synthetic cases of increasing complexity.

2. Methodology

In this study, we propose to combine the advantages of a

stochastic ES-MDA inversion with a multi-fidelity approach for

joint hydrogeophysical inversion. Themodel is inverted for both

hydraulic conductivities and electrical resistivity. In this section,

we first introduce the ArchPy modeling approach and its use

for our approach for multi-fidelity geological models. We then

briefly introduce the ES-MDA algorithm and present the test

case used to benchmark our approach.

2.1. Geological model generation

2.1.1. The ArchPy approach

The first key tool in our methodology is the stochastic

hierarchical geological modeling approach named ArchPy

and proposed by Schorpp et al. (2022). The method is

implemented in an open source pythonmodule and is capable of

producing both Low-Fidelity (LFM) and High-Fidelity models

(HFM). These models are consistent with the prior geological

knowledge and capable of integrating geological information in

a hierarchical manner. For a complete description of ArchPy

capabilities and algorithms, the readers are referred to Schorpp

et al. (2022) and to the repository of the code1.

In short, ArchPy relies on the concept of Stratigraphic Pile

(SP) which is used to formalize the existing geological knowledge

for a given site. All the rules, information, and parameters

required to generate the geological models are stored in the SP.

For example, the SP contains the list of the stratigraphic units

1 http://www.github.com/randlab/ArchPy

that must be simulated, the list of litho-facies to simulate in

which units, and the different simulation parameters (covariance

functions, Training images for MPS, etc.). The SP is defined

by the user and represents his prior knowledge. Once the SP,

is defined ArchPy constructs automatically the models in three

main steps:

• The stratigraphic units are first simulated using 2D

simulation of the surfaces bounding the units (Figure 1A).

The user can select different geostatistical algorithms such

as Multiple-point statistics (MPS; Mariethoz et al., 2010)

or Sequential Gaussian Simulations (SGS; Deutsch and

Journel, 1992). This step handles erosional events where

older and previously simulated surfaces are partially eroded

by younger ones. It also allows some units not to be

deposited (i.e., hiatus). Moreover, inequality data are used

to account for incomplete information provided by a

borehole that did not reach a certain unit or when there is a

hiatus in a stratigraphic sequence.

• The units are then filled with litho-facies (e.g., gravel,

silt, clay, etc.) using 3D categorical simulations methods

(Figure 1B). Again, the user can chose among MPS or

Sequential Indicator Simulation (SIS; Journel, 1983; Journel

and Isaaks, 1984). The litho-facies models can be different

for every unit and the simulations are conditioned by

borehole data if available.

• Finally, the facies are populated by continuous

petrophysical properties such as hydraulic conductivities,

porosity, or electrical resistivity using SGS (Figures 1C,D).

The parameters are defined separately for the different

litho-facies.

An important feature of ArchPy is that the different

hierarchical levels only depend on the higher ones (for example,

facies only depend on the stratigraphic unit simulations). This

feature allows to consider the geological representation of the

underground at different level of fidelity.

Finally, ArchPy allows defining stratigraphic sub-units. This

option is not used in the present paper but allows simulating

complex stratigraphies when needed. By operating as described

above, a large number of stochastic simulations can be obtained

using ArchPy. They are all conditioned by optional borehole

data and geological concept (the stratigraphic pile).

2.1.2. Low-fidelity models

The proposed inversion approach is divided in two main

steps: low-fidelity and high-fidelity. The objective of using

computationally inexpensive low-fidelity models is to reduce the

dimension of the parameter space in which we need to solve the

inverse problem with the computationally costly high-fidelity

models. Low-fidelity models consist of simplified models. LFMs

neglect the small and medium-scale variability of the properties
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FIGURE 1

Two dimensional example of an ArchPy simulation with the three simulation steps. (A) Simulation of units. (B) Simulation of facies. (C) simulation

of the resistivity field. (D) Simulation of the permeability field.

by assuming that the stratigraphic units have a completely

homogeneous facies with a unique property value for each

unit. The value is drawn from a given uniform distribution

in each layer. So, it can vary between the models, but not

within one. This step is crucial as it prevents the inversion

algorithm from being over-confident, in order to mitigate our

assumption that the units are homogeneous. It also allows

having a more complete exploration of the parameter space and

plausible realizations. The LFMs are generated using the ArchPy

package. They correspond to the first hierarchical modeling step

(Figure 1A) and are homogeneously filled.

An important aspect to note is that it is not the petrophysical

field that is inverted at this stage. The parameters of interest are

the altitude of the surface(s) delineating the main stratigraphic

units. By doing so, we significantly reduce the number of

unknowns while still working on a simplified geologically

consistent model. Moreover, LFMs are solely evaluated on the

geophysical data, as the geophysical forwards are much faster

than the groundwater ones (around 15 times faster).

2.1.3. High-fidelity models

The high-fidelity models (HFMs) are also generated with

ArchPy. These models depend on the LF ones. All the surfaces

obtained via the LF inversion step are used to generate the

next level of hierarchical simulations (heterogeneous litho-

facies and properties). The HFMs are more realistic subsurface

models than LFM and are closer to the geological concept. They

present heterogeneous facies distributions, with high property

contrasts even within a unit (see example on Figures 1C,D).

These complete fields will then be inverted. The number of

models is not necessarily the same in the two steps (LF and

HF). This allows more flexibility, as it is expected that the

two problems may not require the same number of models to

converge properly. Generally, we expect that we will have more

HF than LF models, since the second problem is more difficult

and have to integrate more data. Therefore, the same surfaces

can be used multiple times and be associated to different facies

and parameter distributions.

2.2. Inversion algorithm

The general strategy for the multi-fidelity inversion is to

employ the same ES-MDA algorithm (Emerick and Reynolds,

2013) successively for the low fidelity and high fidelity geological

models (Figure 2) but on different parameters. For the low

fidelity, the algorithm will update only the geometry of the

surfaces bounding the stratigraphic units, while for the high

fidelity models, it will update the complete model including

geometry and parameter fields (resistivity and hydraulic

conductivities). The two steps are coupled because the ensemble

of surfaces obtained from the low fidelity inversion step are

used to initialize the generation of the ensemble of high fidelity

models used in the second step.

On both fidelities, the ES-MDA inversion algorithm is

applied on a set of N members {mpr
i , ...,m

pr
N } representing the

prior. To ensure that the parameters are multiGaussian, we

applied a normal score transform on the prior models (Deutsch,

2002, p. 44–48). This step was not needed when performing
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FIGURE 2

General workflow of our approach. The two main steps are

di�erentiated: one for the low-fidelity part; two for the

high-fidelity part.

the inversion on the low-fidelity models, since the surfaces

are generated using Sequential Gaussian Simulation (SGS) and

are by definition multiGaussian. The parameters are updated

iteratively on the basis of the observations of the state variables to

form a new conditional distribution of parameters. Updates are

done, for each member i, according to the following equation:

mk+1
i = mk

i + K · (dkobs,i − g(mk
i )) (1)

where k is the iteration step, K the Kalman matrix (or

Kalman gain), and dk
obs,i

− g(mk
i ) is the mismatch between the

observed measurements and the predictions computed by the

forward operator g using the current parameters. In order to

stochastically account for the errors in the measurement, dk
obs,i

is given by

dkobs,i = dobs +
√

αk+1C
1/2
err zd,i with zd,i ∼ N(0, 1) (2)

with Cerr being the expected error matrix and zd,i being drawn

from a normal distribution. Compared to ES, the data will be

assimilated multiple times in ES-MDA. For this reason, it will

tend to overestimate the confidence given to the data (Emerick

and Reynolds, 2013). To avoid it, a parameter α > 1 is added

to inflate the Gaussian noise. Because of that, the parameters

covariance reduction will be limited at each iteration. The

inflation factor needs to be fixed such as the following condition

is satisfied:

Niter∑

k=1

1

αk
= 1 (3)

where Niter is the number of iterations of ES-MDA. The alpha

coefficient was kept unchanged through the iterations, equals

to the number of iterations. Emerick (2016) has shown that

varying them do not lead to a significant improvement in the

convergence of the algorithm. The α factor is applied when

calculating the Kalman gain, such as

K = (CkMD(C
k
DD + αk+1Cerr)

−1)LM (4)

where CkMD is the cross-covariance matrix between the vector

of parameters m and the approximated vector of predicted data

g(m) for the ensemble. CkDD is the autocovariance matrix of the

predicted data g(m). LM is the localization matrix. As shown in

Anderson (2001), Wen and Chen (2005), and Evensen (2009),

with a limited amount of members, fortuitous long-range

correlation can happen. It is necessary to filter them out before

applying the Kalman update. To do so, the Kalman gain matrix

is multiplied element-wise using a localizationmatrix (Chen and

Oliver, 2011). The purpose is to influence only the parameters

located within a certain distance from the observation points

during the update. The localization matrix has the same size

as the Kalman matrix and its values vary between 0 and 1. It

was only used in the HF step of the inversion, and was set as

a uniform matrix of ones for the hydrogeological observation.

We did that since the expected radius of parameters effect on

a point was difficult to properly estimate. For the geophysical

data, it was calculated using the correlation function proposed

by Gaspari and Cohn (1999), with anisotropy in the distance

calculation. Figure 3 shows an example of a localization matrix

on resistivity parameters for an observation point. Further away

is the observation point, weaker will be the contribution of the

Kalman gain on the parameter.

2.3. Test cases

2.3.1. Conceptual model

To illustrate and test the proposed methodology, we only

consider in this paper 2D vertical profiles. Note that the

extension to 3D models is straightforward. The domain size is

500 m long for a depth of 50 m, with a cell size of 1 × 1 m. The

resulting model consists of 25,000 cells.
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FIGURE 3

Example of localization matrix LM for one geophysical observation point using a length of 250 m.

FIGURE 4

Schematic representation of the geological concepts C1 and C2, with their associated regional stratigraphic pile.

Two different cases, C1 and C2, were defined as illustrated in

Figure 4:

• Case C1 is the simplest. It considers only two stratigraphic

units: one aquifer unit (unit 1) and an aquitard (unit 2). In

this situation, the most important feature to identify during

the inversion process is the depth of the transition between

the two units for each position x.

• The case C2 is more complex, as it includes a possibly

discontinuous aquitard with a variable thickness within

the main aquifer formation that can be divided into

two sub-aquifers. This case can be modeled with four

stratigraphic units in ArchPy (see the stratigraphic pile of

C2 in Figure 4). The complexity of the problem is increased,

as it is now also necessary to estimate, for each location

x, the absence or presence of the intermediate aquiclude

formation, as well as its depth and thickness in the latter

case. A total of three surfaces must be inverted.

The global conceptual models are inspired from a realistic

situation: the Upper Aare Valley in Switzerland. An upper fluvial

deposit layer of a few dozen meters overlays a thick lacustrine

clay layer. The geological context of the area is briefly described

in Schorpp et al. (2022) or Graf and Burkhalter (2016). The

upper fluvial deposit may show locally few superficial clay

layers. Our synthetic model is a simplified version of this real

case. Concerning the geological simulations, for both cases,

we assume that no borehole information is available. Thus, all

geological simulations are unconditional.

For the low-fidelity models (cases 1 and 2), the surfaces

are simulated with SGS and the stratigraphic unit domains are

defined. Then, an electrical resistivity value is drawn uniformly

between 100 and 400 �m in the log space for the aquifers and is

taken constant and equal to 10 �m for the aquiclude. For cases

1 and 2, we generated an ensemble of 100 LFM to initiate the

ES-MDA algorithm. For HFMs, property simulations required

two additional steps. The surfaces delimitating the stratigraphic
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units were taken directly from the ensemble of results of the

LFM inversion. The aquifer units (units 1 and 3 in Figure 4)

were supposed to be composed only of gravel and sand with

a proportion of 70% of gravel and 30% of sand. Sequential

Indicator Simulations were used to simulate the position of these

facies. The aquiclude units are assumed to be composed only

of the clay facies. The different facies are then populated with

the desired properties using SGS. The simulation parameters are

given in Table 1. For both cases, we generated a total of 500

HFMs based on the 100 optimized LFMs. This implies that there

are 500 members for the 2nd step ES-MDA.

2.3.2. Physical forwards

During the inversion, two distinct physical forward models

are used: one geophysical forward and one hydrogeological

forward. The geophysical one is a 1D Time Domain Electro-

Magnetic forward. The code used is the software AarhusInv

(Auken et al., 2015). It has the advantage of taking into account

the complete geometry, waveform, and filter that correspond

to the geophysical equipment of interest. We use a distinct

ground-based source-receiver configuration. All the parameters

of the emitters and receivers correspond to the Aarhus towed

time domain EM equipment (tTEM) (Auken et al., 2019). Two

distinct moments (high and low moments) are simulated in

order to increase the sensitivity of the equipment to shallow

variations of the underground while preserving the depth of

investigation. When the propagation depth of the method

goes beyond the limit of our resistivity model, the last layer

is considered infinite. Gates, complete waveform, and exact

geometry used can be found in Auken et al. (2019) and Neven

et al. (2021). We consider one sounding every 5 m (Figure 5),

which corresponds to the acquisition rate of the instrument at

normal driving speed.

The second physical forward is a transient groundwater

model based on the MODFLOW 6 code (Langevin et al., 2017;

Hughes et al., 2017) interfaced with the FloPy package (Bakker

et al., 2016). We consider the propagation and attenuation of a

periodic perturbation on the upper right corner of the model

(Figure 4). The river level at his location changes daily following

a sinusoidal curve. This can mimic either tidal or daily discharge

variations. The river is assumed to be connected to the aquifer

with a conductance of 10−2 [m2s−1]. A second signal comes

from a uniform recharge varying in time at the top of the

model. We assume a no-flow boundary on the other sides of

the model. Heads are recorded at 52 observation points in the

model (Figure 5). The simulation lasts for 10 days, with a time

step of 15min. However, since most of the signal comes from the

upper right corner, we expect a decreasing contribution of the

observations to the inversion toward the left. Since the aquifer is

supposed to be heterogeneous and of fluvial origin, we consider

that the geological heterogeneity below the river bed can be

modeled using the same parameters as the aquifer. Our synthetic

TABLE 1 Geostatistical parameters used by ArchPy to generate the

geological models.

Stratigraphic surface model

Unit 2 3 4

Variogram type Spherical Cubic Cubic

Mean [m] −17 −20 −38

Range x and y [m] 50 150 80

Sill [m2] 1 20 20

Litho-facies model

Unit 1 3

Range x[m] 30 30

Range z [m] 8 8

Sill [m2] 0.1 0.1

Resistivity model

Facies Mean Range Range Sill

[log10[�m]] x [m] z [m] [log10[�
2
m
2]]

Gravel 2.6 10 2 0.05

Sand 2 10 2 0.05

Clay 1 20 4 0.01

Hydraulic conductivity model

Facies Mean Range Range Sill

[log10[m/s]] x [m] z [m] [log10[m
2/s2]]

Gravel −2 10 2 0.05

Sand −4 20 4 0.05

Clay −7 15 15 0.01

The variogram type used for all the litho-facies, resistivity, and hydraulic conductivities

models are exponential.

model does not consider the river bed as a special compartment

and does include any transient effect on the conductance of the

river bed.

The computing time needed for the two forward models is

drastically different. Geophysical forward takes about 2 s per

model, when the transient hydraulic forward needs 30 s. The

data used for the inversion are generated on a synthetic reference

model and disturbed with Gaussian noise.

3. Results

To better understand how the proposed methodology

performs, we first present the results of the intermediate step
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FIGURE 5

Location of the geophysical and hydrogeological observation points. The river is located at the position (500,0).

(low-fidelity step) before providing detailed results after the final

high-fidelity step.

3.1. Low-fidelity

For case C1, the number of ES-MDA iterations was set to 2

for the low fidelity step. The computing time was about 3 min

on a personal computer. The mean residual decreased by 48%

after one iteration and 62% after two iterations with respect to

the unconditioned prior. Figure 6A shows the prior distribution

for the position of the bottom of the aquifer for Model C1: it

follows a normal distribution with an average depth of 38 m and

95% (2σ ) of the simulated surfaces are between−26.8 and−49.2

m depth. This figure also shows the results of the inversion step:

the average surface (solid black line) over the 100 members of

the ensemble, the 95% confidence interval (gray shaded area),

and the reference (in red). We see that even with a relatively

small number of iterations and a small ensemble size, the ES-

MDA algorithm converges rapidly to a plausible solution, even

with the high simplification of the model. The reference surface

is almost always within the predicted uncertainty range.

For case C2, Figure 6B shows the three average surfaces

of 100 members. The computing time was about 3.5 min on

a personal computer. In general, the inversion manages to

correctly predict the depth of the transition and has identified

the presence of the clay layer in the middle of the aquifer.

If we compare surface 3 with its equivalent in the C1 model,

we can denote that the corresponding uncertainty associated is

much larger, even if the surfaces are exactly similar in terms

of parameters and prior. This behavior is probably due to the

presence of additional layers which imply some variations in

the average resistivity above this surface that are much larger

than in Case 1. Another interesting thing to denote are the fact

that the surfaces 1 and 2 in the last 100 m of the model are

superimposed. Where the lower surface equals the upper one,

this last then follows the lower surface and becomes one with

it. This is a complex hierarchical principle, because a whole set

of parameters suddenly have no effect on the model residual.

ES-MDA as correctly identified this logic from the set of prior

models. It illustrates that using ES-MDA with geological priors

could help reaching complexity in the inversion not seen so far.

3.2. High-fidelity

For cases C1 and C2, 15 iterations were performed. The total

run time was about 8 hours on a personal computer, mainly

due to solving the transient hydrogeological forward problem.

Figure 7A shows the average electrical resistivity and hydraulic

conductivity (Figure 7D) over the ensemble of models at the

end of the high-fidelity step. The corresponding uncertainties

are shown in Figures 7B,E, while the reference model is shown

in Figures 7C,F. No weighting based on the residual is used for

the calculation of the mean model. The lower clay layer shows

little uncertainty for both parameters. This is probably due to its

very low resistivity and hydraulic conductivity within the range

of possible values, whichmakes them easily identifiable. Another

factor is probably that this layer was already well resolved during

the low-fidelity step, because of its monofacies characteristic.

However, we denote an important uncertainty on the exact

depth of the transition on both parameter fields. It is only

slightly updated compared to the uncertainty estimated after the

low-fidelity step.

The aquifer layer presents much higher variability for both

parameters. First, we can denote that both fields seem spatially

correlated. ES-MDA has correctly identified the correlation

infused by the facies affiliation of the parameter field. More

resistive zones are associated with more permeable areas,

whereas less resistive zones are associated with less permeable

sand. The uncertainty on the hydraulic conductivities is higher

than the one associated with the resistivity, probably because the

geophysical method is an active one, whereas our hydrological

scenario is passive and extremely diffuse. Consequently, it is a

more difficult problem to solve for the algorithm. This can also

be denoted in Figures 7G,H.

Two High-Fidelity ES-MDA inversions were performed

using one single dataset at a time. Not using the joint inversion

approach has only a limited effect on the resistivity, compared

to the joint inversion, even if some of the simulations can be
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FIGURE 6

Low-fidelity inversion results for models C1 (A) and C2 (B) over 100 members and two iterations each. The model C1 has only one surface, and

the model C2 has three surfaces. The shading areas correspond to 2 σ .

marginally less noisy. On the other hand, inverting the hydraulic

conductivities only shows a clear decrease in terms of the quality

of the inversion. The mean simulation tends to converge to a

hydraulic conductivities value intermediate between the sand

and the gravel facies values. As mentioned above, this is expected

because of the aquifer’s high heterogeneity and the method’s

diffuse aspect. The only area clearly resolved is the upper right

corner where the oscillating river limit is set. Since these cells

control how the signal gets into the aquifer, they have a strong

influence on all the observation points and are consequently

easier to resolve for the ES-MDA algorithm.

Case C2 is more complex because the middle clay

layer creates additional spatial variability and discontinuities.

However, the same number of iterations as for case C1 were

performed. Figure 8A shows the result of the geophysical

data inversion only using a classical inversion based on a

deterministic Newton-Gauss minimization using AarhusInv

(Auken et al., 2015). Due to the diffusive nature of the

geophysical method, the resulting model is significantly

smoother than the reference (Figure 8C). The result of the ES-

MDA inversion shows much sharper boundaries (Figure 8B)

thanks to the embedding of the geological prior in the inversion

method and the multi-fidelity approach.

Figure 8D shows the results of the ES-MDA inversion

on the hydraulic conductivities only. Unlike model C1, this

result shows a better identification of numerous discontinuities

in the field of hydraulic conductivities. We interpret this

difference as follows: the contrast of hydraulic conductivities

being sharper in case C2, more information can be captured

by the hydrogeological data. This result confirms that the

poor identification of the spatial distribution of the hydraulic

conductivities for case C1 was simply the result of a lack of

information in the hydrogeological data set.

Another interesting result is the comparison between the

classic ES-MDA “monofidelity” approach and the multifidelity

approach. In a classic ES-MDA approach, data assimilation

is done directly on the whole parameter fields, with no LF

step. In other words, the classic ES-MDA inversion is only

the HF, with the difference that the starting models are drawn

in the full space of the prior and not in the reduced space

constrained by the ensemble of LF models. Figures 9A–C

and Figures 9D–F compare the results of the classic ES-MDA

inversion and the multifidelity one. For both parameters, we

can first denote that the simulations are visually more noisy

than multifidelity simulations. The boundaries between the

bodies are better defined in multifidelity. The continuity of

the geological structures is also better established. The same

number of iterations was performed on both. Figure 9G shows

the mean residuals in relation to the computation time. The

two iterations of the LF took only about 3.5 min. We can see
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FIGURE 7

High-fidelity results for case C1. (A) Reference resistivity field, (B) mean model of resistivity, (C) resistivity uncertainty, (D) mean model for an

application of the ES-MDA algorithm only using resistivity data, (E) permeability reference, (F) mean model of permeability, (G) permeability

uncertainty, and (H) is the mean model for an application of the ES-MDA algorithm only using hydrological data.

a slight increase in the residual between the last LF iteration

and the first HF iteration. But the absolute value is much

lower than the monofidelity one. In terms of computing time,

it is interesting to note that even if the absolute number of

forward calls and of ES-MDA loops is the same, the multifidelity

is faster. The geophysical forward is almost not affected by

the complexity of the model to simulate. However, the direct

transient hydrological problem can show significant computing

time variations depending on the hydraulic conductivity field.

The first iterations are significantly slower, due to more complex

models with high and abrupt hydraulic conductivity contrasts,

for example. These results show that the use of the multifidelity

approach tends to produce more realistic models, geologically

speaking, with a shorter or equivalent computing time.

3.3. Predictions

To further test the predictive capacity of the approach, we

consider an additional hydrogeological scenario. We implement
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FIGURE 8

High-fidelity results for model C2. (A) Reference field for resistivity. (B) Resistivity field from a deterministic inversion. (C) ES-MDA inverted

resistivity field. (D) Reference field for hydraulic conductivities with are well and the simulated steady-state flow line. (E) Mean model for an

application of the ES-MDA algorithm on hydraulic conductivities only.

a well at position x = 250 m reaching a depth z = −35

m. The well is only screened along the last meter. Taking into

account an hourly pumping rate of 36 m3/h, we calculated the

path and travel time needed for the pollution introduced in the

river to reach the well of water production. Such scenarios and

questions are common for various applications in hydrogeology.

Figure 8E shows the reference path, going from the upper right

corner river to the well in 37.5 days (advective time). The same

computation was conducted for all prior and posterior models,

as well as for all models obtained using the classical ESMDA

joint inversion. The results of the flow path computations are

shown in Figures 10A,B,D. The reduction of the uncertainty

on the envelope of the possible flow paths is clear between the

prior distribution and the results of the two inversions. The two

inversions provide similar results, with a proper estimation of

the flow path compared to the reference. The classic ESMDA

inversion tends to show a narrower uncertainty. The distribution

of the transit times of a pollutant between the river and the

well are displayed on Figure 10C. The ES-MDA multi-fidelity

ensemble predicts an arrival time of the pollutant between 35.75

and 87.1 days (10–90%interval) after injection. The prior gives a

range between 21.5 and 10,000 days (10–68% interval) with 32%

of the models predicting that the pollutant will not reach the

well. The classical (mono-fidelity) ESMDA inversion ensemble

predicts an arrival of the pollutant between 30.50 and 48.01 days

(10–90%interval). Again, both inversions perform well, with a

narrower time range for the classical ES-MDA inversion.

4. Discussion

The proposed multi-fidelity ES-MDA inversion has

successfully identified sharp and complicated geological models.

When a Bayesian MCMC algorithm may take one or a few

weeks to converge and generate an ensemble of realizations

matching the data, the proposed approach only needs a few
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FIGURE 9

(A–F) Comparison between the inversion model resulting from a classic ES-MDA inversion, the multifidelity ES-MDA inversion, and the reference

model for both the hydraulic conductivities and resistivity fields. (G) The residuals vs. the computation time for the classical ESMDA

(monofidelity) and the multifidelity model.

hours. Although several limitations still exist. First of all, our

reference model was generated using the same covariance

models as the prior. As shown by Juda et al. (2022), the choice

of an erroneous geostatistical prior can drastically decrease the

realism and convergence rate of the inversion algorithm. This

choice was straightforward in our synthetic approach but could

be trickier when applying the method to real data sets. The

solution requires properly analyzing all available field data to

identify the required geostatistical parameters. If data are not

sufficient to constrain the prior model, a possible solution would

be to use published data from analog sites and generate a broad

ensemble of models using different priors. The issue would then

be to have a sufficient number of members to cover the whole

prior parameter space and ensure that the ES-MDA algorithm

would not create models that would be too far from reasonable

geological models.

Another limitation of the inversion or data assimilation

process is that we considered the noise in the data to be

uncorrelated. This assumption is commonly used to treat each

residual data point independently. In the synthetic case, this

assumption is valid but could become problematic on real and

strongly correlated data noise. Finally, the ES-MDA inversion

(both in high- and low-fidelity) is not bounded to generate

models that remain within the prior. It can be an advantage in

the case of an uncertain prior, but it can also become a challenge

if the algorithm generates physically impossible parameters.
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FIGURE 10

(A,B) Flow lines for the prior and posterior multifidelity ensemble of model C2. (C,D) Distribution of the travel time from the river to the well and

Flow lines for the posterior monofidelity ensemble of model C2.

The groundwater model used for the synthetic case C1 is not

very informative as illustrated by the poor results obtained with

hydrogeological data alone (Figure 7). Indeed, since the river

is the only varying boundary condition applied to the model,

only hydraulic conductivities close to the river are inferred with

reduced uncertainty. This suggests that a large ensemble of

hydraulic conductivity distributions is compatible with the data

and that it is difficult for ES-MDA to approach the reference.

Increasing the size of the ensemble could extend the possibilities

and improve the results. However, the computational cost

would also increase significantly. It is likely that using different

hydrogeological situations, such as including pumping tests or

tracer tests, would improve the identifiability of the hydraulic

conductivity. Nevertheless, our results strengthen the advantage

of using a joint inversion: the geophysical data help infer most

of the subsurface structures and the spatial distribution of

hydraulic conductivities. This contribution of geophysics is due

to the fact that the different physical parameters are spatially

correlated via the underlying litho-facies.

The main contribution of this paper is to propose to split the

ES-MDA algorithm in two steps using a multi-fidelity strategy.

We show that starting with the LFMs accelerates the inversion

procedure significantly. It allows one to quickly delineate the

main structures of the subsurface and quantify uncertainty.

However, as it relies on a simplified version of the model,

it cannot reproduce the reference in some places (Figure 6).

This is a consequence of using homogeneous units (in terms

of properties); thus, it is not possible to account for some

important local variations of facies, and these have a significant

impact on the geophysical data. Using different homogeneous

values among the different members (or models) of the initial

ensemble mitigates this effect by enlarging the uncertainty and

allows one to identify the depth of the true surface accurately

almost everywhere (Figure 6). However, it is clear that the

uncertainty that we propagate in the second step of the inversion

has a significant impact on the results. For example, if we

consider the high value of the surface at around 330 m for

case C1 (Figure 6A). The true surface is barely contained within

the range of uncertainty, it means that the majority of the

models considered the surfaces higher than the reference. As

a consequence in the second step, ES-MDA compensates by

predicting mostly “gravel” (high resistivity/permeability) just

above this location, where normally there should be a relatively

large area of “sand” (low resistivity/permeability, Figure 7). We

then understand that small initial errors can have major impacts

and that we should be careful with the final models. However, it

should also be mentioned that the generated geological models

are totally unconstrained. It is certain that incorporating more

geological knowledge (such as borehole data) into the models

would have helped to detect and solve this kind of inconsistency.

Our hydrogeological scenario involves 13 multilevel

piezometers uniformly distributed over 500 m length. Even if

some field sites show similar or even higher density of data,

in a real application the density of piezometric information

could be lower. The consequence will be a higher uncertainty

associated with the permeability field. A preliminary sensitivity

analysis on our synthetic models showed that removing two

piezometers either close to the source of the signal or far from

it have drastically different effects on the final uncertainty. This

is simply due to the difference in the amount of information
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carried by the two data series. In addition, in our synthetic

example, we considered rather simple boundary conditions

(such as a sinusoidal variation of the river level) without any

uncertainty. In practice, it would be straightforward to cope

with more complex boundary conditions, such as time-varying

water levels. For the uncertainty on the boundary conditions,

the proposed approach would be to include these boundary

conditions as parameters within the ESMDA inversion, this

would result in a higher level of uncertainty for the overall

aquifer characterization.

Finally, we think that the approach proposed in this

paper could be applied to a wide range of problems. We

illustrate here the multi-fidelity idea using a simpler geological

model and a faster forward operator at the same time.

However, many other combinations could be tested: for

example, the low-fidelity model could correspond to a steady-

state hydrogeological model and the high-fidelity model could

be the full transient model. Another possibility could be

to use only a few geophysical observation points for the

low-fidelity step and a complete detailed data set for the

high-fidelity step. One could also group geological units to

simplify the geological architecture during the low-fidelity

step.

5. Conclusion

The results presented in this paper demonstrate that ES-

MDA, multi-fidelity, and ArchPy, all together, can constitute

a potentially powerful framework for performing geologically

consistent inversions. The proposed approach allows integrating

in a consistent and stochastic manner different types of data

and thus reducing the global uncertainty on groundwater

models. The use of the multi-fidelity approach on such a

problem has proven to be more efficient in infusing prior

geological knowledge into the inversion. This has resulted in

more realistic geological models while being faster. Future work

includes the application of the presentedmethodology to real 3D

field data.

Several main conclusions can be drawn from this research:

• ES-MDA is an efficient tool to get an ensemble of plausible

hydrogeological models in a multi-fidelity framework.

• Hierarchical multi-fidelity helps to keep models

geologically consistent during the inversion process

while improving the quality of the models.

• Hydrogeophyiscal joint inversions can be decomposed

and improved within a multifidelity and hierarchical

framework.

• ArchPy’s models are useful priors to investigate subsurface

uncertainty.
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