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Introduction: Integrated water management (IWM) involves a range of policies,

actions, and organizational processes that go beyond traditional hydrology to

consider multifaceted aspects of complex water resource systems. Due to its

transdisciplinary nature, IWMcomprises input fromdiverse stakeholders, eachwith

unique perceptions, values, and experiences. However, stakeholders fromdi�ering

backgroundsmay disagree on best practices and collective paths forward. As such,

successful IWM must address key governance principles (e.g., information flow,

collective decision-making, and power relations) across social and institutional

scales. Here, we sought to demonstrate how network structure impacts shared

decision-making within IWM.

Methods: We explored a case study in Houston, Texas, USA, where decision-

making stakeholders from various sectors and levels of governance engaged

in a participatory modeling workshop to improve adoption of nature-based

solutions (NBS) through IWM. The stakeholders used fuzzy cognitive mapping

(FCM) to define an IWM model comprising multifaceted elements and their

interrelationships, which influenced the adoption of NBS in Houston. We applied

grounded theory and inductive reasoning to categorize tacit belief schemas

regarding how stakeholders viewed themselves within the management system.

We then used FCM-based modeling to explore how unique NBS policies would

translate into more (or less) NBS adoption. Finally, we calculated specific network

metrics (e.g., density, hierarchy, and centrality indices) to better understand

the structure of human-water relations embedded within the IWM model.

We compared the tacit assumptions about stakeholder roles in IWM against

the quantitative degrees of influence and collectivism embedded within the

stakeholder-defined model.

Results and discussion: Our findings revealed a mismatch between stakeholders’

external belief statements about IWM and their internal assumptions through

cognitive mapping and participatory modeling. The case study network was

characterized by a limited degree of internal coordination (low density index),

high democratic potential (low hierarchy index), and high-e�ciency management

opportunities (high centrality index), which transcended across socio-institutional

scales. These findings contrasted with several of the belief schemas described by

stakeholders during the group workshop. We describe how ongoing partnership

with the stakeholders resulted in an opportunity for adaptive learning, where the

NBS planning paradigm began to shift toward trans-scale collaboration aimed at

high-leverage management opportunities. We emphasize how network analytics

allowed us to better understand the extent to which key governance principles

drove the behavior of the IWM model, which we leveraged to form deeper
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stakeholder partnerships by identifying hidden opportunities for governance

transformation.

KEYWORDS

fuzzy cognitive mapping (FCM), network analysis (NA), participatory modeling (PM),

density index, hierarchy index, centrality index, adaptive management, water governance

and management

Introduction

Integrated water management involves a range of policies,

actions, and organizational processes that go beyond traditional

hydrology to consider multifaceted aspects of complex water

resource systems. Within this context, water governance provides

the overarching framework that guides the management of water

resources. As Bakker and Morinville (2013) described, water

governance is the vehicle “through which community interests

are articulated, their input is incorporated, decisions are made

and implemented, and decision-makers are held accountable in

managing water resources.” As such, successful management must

address key governance principles, including collective decision-

making, information sharing, consensus building, and power

relations (Pahl-Wostl et al., 2013; Al-Saidi, 2017).

Due to its transdisciplinary nature, integrated water

management comprises input from diverse governmental and

non-governmental stakeholders, each with unique perceptions,

values, and experiences. Hence, collaboration across multiple

sectors, levels of governance, and authority levels is necessary to

facilitate information and resource flows and to effectively integrate

aspects such as economic prosperity, environmental/ecosystem

health, and social well-being into water resource management.

However, the inequitable representation of stakeholders can hinder

the success of integrated water initiatives (e.g., Green et al., 2013;

Bradford et al., 2017; Wamsler et al., 2020). The governance

of such systems is challenging due to the many tradeoffs that

must be negotiated, which can trigger conflict, stall progress, or

deplete resources. Indeed, top-down, centralized management

is poorly suited for overcoming such tradeoffs (Pahl-Wostl

et al., 2013). Instead, opportunities for joint action can improve

governance potential by facilitating the diffusion of knowledge

and resources in decision-making spaces (Bodin and Crona,

2009). Moreover, collaborative governance has been shown to

improve communication, reciprocity, and trust among different

stakeholder types (Olsson et al., 2004; Hahn et al., 2006), thereby

balancing some of the complex tradeoffs associated with integrated

water management.

Despite the potential advantages, collaborative decision-

making may fail and, conversely, hinder the desired policy

objective(s) due to disproportionate levels of influence embedded

within the management system (e.g., Lieberman, 2011; McGinnis,

2013; Baldwin et al., 2018). To address this challenge, principles

of the complex adaptive system (CAS) theory can be applied to

integrated water management (e.g., Geldof, 1995; Rammel et al.,

2007; Giacomoni et al., 2013). CAS theory provides a framework

for understanding how natural, social, and infrastructural elements

interact in a nonlinear fashion. In CAS, the outcome of any

one variable depends on the actions and dynamic behaviors

of all other variables linked within the system. This creates a

highly decentralized control structure, resulting in asymmetries

in the ability of stakeholders to influence systemic change.

These asymmetries may, thus, either promote or hinder effective

problem-solving, depending on the structure of the integrated

management system (da Silveira and Richards, 2013; Turnhout

et al., 2020).

Different governance approaches can have varying impacts on

integrated water management. For example, top-down governance

may result in a mismatch between the collective wishes of the group

and the chosen policy initiative(s), leading to potential conflict.

The extent of this mismatch depends on the power dynamics

within the system and the willingness of influential stakeholders

to accommodate dissenting opinions (Lieberman, 2011; Ricart

and Rico-Amorós, 2022). Conversely, top-down approaches may

be beneficial for managing common-pool resources. In this case,

strong governance can be used to disperse resources among

disparate parties, thereby reducing potential overuse and/or

depletion (e.g., Dinar et al., 1997; Schlüter and Pahl-Wostl, 2007).

Thus, it is important to consider not only the collaborative

potential but also the distribution of power (i.e., influence) within

complex management systems, as this can impact the intended

policy objective(s).

Within the growing literature on natural resource governance,

network analysis is emerging as a useful technique for mapping sets

of decision-making stakeholders and identifying their connections

with each other and with the systems they seek to shape (Bodin

and Crona, 2009). For instance, network analysis has been

used to identify the capacity of water managers to overcome

coordination challenges through strategic interventions and

improved collaboration across multiple decision-making scales,

social sectors, and levels of governance (Stein et al., 2011; Pahl-

Wostl et al., 2020). By using statistical tools to measure linkages

between a plurality of system variables (e.g., Knoke et al., 1996),

network analysis can provide insights regarding the levels of

influence contained within network elements and how such

influence spreads among key variables. These insights can help

define responsibility in complex decision-making processes and

develop a set of common rules regarding how to shape the system

through strategic policy intervention, thereby limiting conflict and

promoting democratic collectivism.

Network analysis is an application of graph theory (Euler, 1953)

used to define and analyze network structures and the interactions

of their components (Newman, 2003; Majeed and Rauf, 2020).

Using graphs (or networks), researchers can deduce insights about

complex systems from a topological perspective by examining the

proximity of network components to one another. In contrast to

system dynamics, which is used to model the evolution of a system

over time, network analysis focuses on mapping the complexity
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of a system’s internal structure (Oliva, 2004). Networks represent

system components as a structural pattern of nodes (vertices)

and edges (links) to depict critical relationships between disparate

elements (Omidshafiei et al., 2020). Nodes can represent attributes

of biophysical processes or systems, as well as human or social

features, such as institutions, policies, or individual perceptions.

Edges represent the interdependence between each pair of network

nodes and can be defined by binary or weighted values describing

the strength of their connection.

Networks have been used extensively across the physical and

social sciences (Barabási, 2013). In ecology, network analysis has

been used to investigate habitat connectivity (Minor and Urban,

2008; Zetterberg et al., 2010; Dilts et al., 2016) and to explore

the collective experiences of decision-making stakeholders (Tan

and Özesmi, 2006; Kontogianni et al., 2012; Misthos et al., 2017).

Network analysis has been used in water resources engineering

to optimize water distribution and sewer systems (Pagano et al.,

2019; Meijer et al., 2021) and to map the evolution of water trade

networks (Oliva, 2004; Suweis et al., 2011; Dalin et al., 2012).

Networks have also been used to understand connectivity among

physical components of the hydrologic cycle (Sivakumar, 2015). In

the social and political sciences, connective structure has been used

to better understand conflict resolution (Hamouda et al., 2006; He,

2019; Amini et al., 2021) and social interactions in decision-making

spaces (McAllister et al., 2014; Turnbull et al., 2018; Blacketer et al.,

2022). In natural resources governance, network analysis has been

used to examine power dynamics (Stein et al., 2011; Suweis et al.,

2011; Nabiafjadi et al., 2021) and collaborative capacity (Ogada

et al., 2017; Pahl-Wostl et al., 2020) across social and institutional

scales. Within socio-hydrology, network analysis is gaining traction

as a promising tool for mapping human-water systems through

the lens of node-node connectivity (Bertassello et al., 2021; Frota

et al., 2021; Es’haghi et al., 2022). Such studies underscore the

importance of network analysis as a tool for understanding

complex systems, whereby researchers may collaborate with diverse

stakeholders to capture the interdependence between the humans

making the decisions and the physical processes they seek

to shape.

In this study, we demonstrate how network analysis can be
used to gain insights into the structure of complex decision-making

systems. More specifically, we investigate the network structure
encoded within the collective mental map of relevant stakeholders

involved in integrated water management to understand group
power dynamics and identify opportunities for effective water

governance. We employ metrics such as network density
and centralization to uncover valuable information about the

behavior of human-nature systems and how understanding

network structure can reveal opportunities for effective water

governance. Our work builds on Castro (2022a) study, where

fuzzy cognitive modeling (FCM) was used to construct mental

models that depicted tradeoffs between competing objectives

in managing nature-based solutions (NBS). Here, we illustrate

how the management structure impacts key water governance

principles, including collective decision-making, information

sharing, consensus building, and power relations. We conclude

by discussing how network analytics can support integrated water

management by assessing levels of collaboration and influence

embedded within the decision-making system.

Illustrative case study

Here, we build upon an existing study by Castro (2022a)

regarding the complexities of integrated water management, where

a participatory modeling workshop was used to elicit an FCM

model of interacting factors associated with the adoption of NBS

in Houston, Texas, USA. Causal thinking was used to capture

how the local socio-institutional context influences NBS decisions.

The workshop resulted in a graphical representation of system

variables and feedbacks (i.e., fuzzy cognitive map) according to

the shared experiences of the stakeholder group. This exercise

promoted dialogue across varying sectors and levels of governance

to develop a robust, shared understanding of how integrated water

management is structured in Houston.

In this section, we provide a brief background to the case study

workshop and summarize how the FCM was derived in Castro

(2022a). We extend the aforementioned study by highlighting

general stakeholder beliefs about how the management system

functions within the local context. We use FCM-based scenarios

to explore how unique NBS policies would translate into more

(or less) NBS adoption, according to the underlying dynamics of

the management system. Next, we discuss how network analytics

can be used to identify levels of collaboration and influence in

integrated water management. Here, we detail the primary network

metrics used in the case study (e.g., density, hierarchy, centrality).

Finally, we convert the FCM into a node-link network and assess

the structure of human-water relations embedded within the

graph. In the Discussion section, we consider how these unique

case study characteristics (stakeholder beliefs, policy efficacy,

network structure) combine to reveal important perceptions and

opportunities in NBS planning.

Case study background

As climate change and urbanization have challenged traditional

stormwater management, communities are increasingly using

NBS within water resource planning (Slater and Villarini, 2016;

Hettiarachchi et al., 2018; Marsooli et al., 2019). NBS approaches

utilize natural design characteristics to slow themovement of runoff

and increase infiltration capacitance for stormwater abatement and

pollution control. By increasing the amount of green space in

an urban environment, NBS have been associated with multiple

co-benefits, including improved air quality, urban heat island

abatement, recreational opportunities, social capital, physical

health, and biodiversity (Cohen-Shacham et al., 2016; Nesshöver

et al., 2017). Despite these benefits, NBS uptake has been limited

in many communities (Slater and Villarini, 2016). This is due,

in part, to complex social and institutional barriers (e.g., public

education, financial incentives, institutional fragmentation, land

acquisition/planning) which hinder the translation of NBS interest

into mainstream practice (Frantzeskaki et al., 2019; Raška et al.,

2022).

Houston was selected as an ideal case study due to its

long-standing challenges related to NBS and socio-environmental

challenges, including urban flooding, poor air and water quality,

communal health, and heat island effects (Hopkins et al., 2022).

Despite increasing public interest in green space, Houston remains
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FIGURE 1

Cohort of stakeholders engaged in the case study workshop,

categorized into three primary scales: local (e.g.,

neighborhood-scale activists), municipal (city-scale planners), and

regional (e.g., county-scale managers). The “*” symbol indicates

decision-making stakeholders (i.e., actors) with authority to act

decisively within the system to influence NBS development.

one of the most impervious cities in the United States (Nowak

and Greenfield, 2012), with a low uptake of urban greening

initiatives (Young, 2011). Local governance is driven by socio-

political forces that promote rapid urban growth (e.g., powerful

business elites, pro-development economics, lack of zoning) while

limiting public regulation and city-wide planning. Consequently,

Houston development has been characterized by a laissez-faire

philosophy that has arguably exacerbated socio-environmental

stresses, particularly in marginalized communities (Vojnovic,

2003).

Stakeholder workshop

To better understand the role of local governance on

integrated water management, our case study approached NBS

planning as a complex system involving social constructs

interlinked with hydro-environmental considerations across a

variety of social, institutional, and governmental scales. Many

management systems are multi-scalar in nature, from grassroots

organizations to regional decision-makers, which necessitate

democratic collaboration and knowledge-sharing for effective

governance (Leck and Simon, 2013). As such, the stakeholders

selected for this study encompassed the cross-scale nature

of integrated water management, extending beyond traditional

administrative and geographical boundaries (Gerlak, 2014). As

shown in Figure 1, a total of 11 stakeholders from various social

and institutional sectors participated in the workshop, representing

entities commonly impacted by (and involved in) Houston-area

urban greening.

Deriving a fuzzy cognitive map
The workshop in Castro (2022a) was designed to reveal

key perceptions of NBS challenges, management opportunities,

and their inter-relationships, including how stakeholders view

themselves as agents of change. The workshop was used to derive a

model of social and physical variables describing NBS management

through the lens of FCM (i.e., fuzzy cognitive modeling). FCM

is a common approach for mapping complex governance systems

and projecting their future response to policy interventions (e.g.,

Giordano et al., 2005; Kafetzis et al., 2010; Kaleeswari et al., 2018;

Schramm et al., 2020). In FCM, decision-making stakeholders

elicit a composite illustration of the system they seek to shape

using cognitive maps, which are schematic representations of the

world as perceived by humans (Ahmad and Azman Ali, 2003).

Cognitive maps provide a means for capturing the subjective

knowledge of individuals, which fosters an awareness of internal

assumptions regarding how the system operates. In FCM, variables

are interconnected by causal feedbacks, where a change in one

variable triggers a similar magnitude of change in all causally

interrelated variables (Axelrod, 1976; Puccia and Levins, 1991;

Kontogianni et al., 2012; Gray et al., 2014). In directed fuzzy maps,

causal feedbacks are defined by polarity, where a positive (“+”) sign

indicates causality between variables moving in the same direction,

and a negative (“–”) sign indicates causality between variables

moving in opposing directions.

In integrated water management, cognitive maps often

combine abstract elements (e.g., human agency, cultural norms

and values) and physical constructs (e.g., landscape characteristics,

ecosystem processes) with feedbacks derived from tacit (rather than

empirical) knowledge. In such instances, FCM provides a useful

means for defining the structure of mental maps where detailed

scientific datasets are not available, but where we have the local

knowledge of people who have co-evolved and adapted with the

systems they seek to shape (Özesmi and Özesmi, 2004). In seeking

to utilize stakeholder knowledge, we must be able to represent

varying levels of experience through some common construct.

In FCM, imprecise relationships are identified using linguistic

statements of relational strength (e.g., low, medium, high) and

translated into semi-quantitative values according to fuzzy logic

(e.g., low= 0, high= 1) (Kosko, 1986; Gray et al., 2014).

The FCM case study workshop was facilitated by guiding the
stakeholder group through a series of interactive scripts (e.g.,
Hovmand et al., 2011) to help participants identify and understand
causality within the local NBS management system. Stakeholders
were asked to discuss various challenges, opportunities, and

exogenous factors associated with NBS uptake throughout greater-

Houston. Key themes from this discussion were documented

in real-time and used to guide the development of cause-

effect relationships within regional NBS management. During the

workshop, the stakeholders were asked to identify a comprehensive

set of variables involved in NBS adoption according to the group’s

collective experiences. The stakeholders were then asked to identify

all causal connections between the variables and to define their

general strengths, which triggered a series of discussions regarding

the underlying dynamics of the management system. As the

stakeholders communicated, the workshop facilitator drew system

variables (nodes) and their weighted relationships (links) on a

shared virtual whiteboard, which was refined in real-time to capture
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FIGURE 2

Composite fuzzy cognitive mapping (FCM) model, derived from the stakeholder workshop session. The model describes key variables which can

influence the adoption of NBS in Houston and their interrelationships. Source: adapted from Castro (2022a).

the group consensus. Areas of uncertainty and conflict were also

noted by the facilitator. The feedbacks were weighted using fuzzy

logic: low strength (±0.25), medium strength (±0.50), and high

strength (±0.75).

The diagram was reviewed for accuracy by local NBS
policymakers who were not involved in the workshop, and

minor modifications were suggested. The map was optimized
accordingly and shared with all workshop participants for final

input and validation. The resulting FCM model contained 19

causal variables connected by 37 causal links, as shown in

Figure 2. Of the 19 nodes in the network, the stakeholders

identified 9 as management opportunities (i.e., within the scope of

stakeholder influence) for increasing the adoption of NBS. Other

dimensions represented within the map included social challenges

and exogenous system variables, which were outside the scope of

direct stakeholder influence.

Identifying embedded belief schemas
During the case study workshop, we observed that stakeholders

had unique belief schemas about their role within the NBS

management system. Belief schemas are used here to describe

general ways of thinking about the universe and the nature of “self ”

within it. Such analogical thinking reveals tacit ideas about culture,

context, and values, which may be difficult to characterize through

formal logic. In this study, we categorized these belief schemas

using grounded theory and an inductive approach. Later, in Table 1,

we summarize some of the group-thinking nuances which were

observed during the workshop. We noticed a general tendency

for “more powerful” stakeholders (as perceived by rank/title) to

drive formal topics of discussion (i.e., jurisdictional authority,

institutional collaboration), while “less powerful” stakeholders

tended to emphasize socio-environmental factors (i.e., climate

change, social welfare). Throughout the workshop, we observed

a mixture of silo mentality (individualism) and eagerness to

collaborate (collectivism) during different periods of the exercise.

In the Discussion section, we compare these tacit assumptions

about stakeholder roles within the system against quantitative

degrees of influence and collectivism, as revealed by network

analysis and FCMmodeling.

FCM-based scenario analysis

To date, participatory FCMs have been used for “what-if ”

scenario building to estimate many possible futures of the system

by altering one (or more) constituent variables (e.g., Jetter and

Schweinfort, 2011; Mourhir et al., 2015; Singh and Chudasama,

2020). In this study, FCM-based scenario analysis was used to

better understand how a change in local policy would impact

NBS adoption. The FCM model in Figure 2 was simulated by

“activating” unique management nodes and assessing the amount

of relative change in all system components. FCM-based scenarios
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quantify dynamic interactions between system components using

neural processing and formalized activation rules, which iterate

over discrete steps until the system converges to equilibrium

(Nápoles et al., 2017). The activation rule used here is based on

Kosko (1986), defined by

S
(t+1)
i = f









S
(t)
i +

∑N

j ≡ i

j 6= i

S
(t)
j wij









(1)

where S(t+1)
i is the value of variable vi at step (t + 1), S(t)i is the

value of variable vi at step t, S(t)j is the value of variable vj at step

t, wij is the weight of the edge relationship between variable vi and

causally-connected variable vj, and f is a threshold function used to

normalize values at each time-step (Gray et al., 2015).

A total of nine management scenarios (i.e., policy options)

were examined. For each scenario, the edge relationships (wij) were

weighted as previously defined [i.e., low strength (±0.25, 25%),

medium strength (±0.50, 50%), high strength (±0.75, 75%)]. The

activated node was “clamped” to amaximum strength of+1.00 (i.e.,

100%), which represents a continually high state throughout the

simulation (Gray et al., 2015). All other nodes within the system had

an initial value of 0 (i.e., no change at the start of the simulation).

After each model stabilized at step t = T, the changes in end-state

values for all system variables were graphed as relative percentages

(i.e., Si = STi − S0i ). The end-state values were obtained using

a standard application of Mental Modeler (mentalmodeler.org), a

web-based, entry-level platform for graphing and simulating FCMs

(Gray et al., 2013).

The importance of network structure

To understand how well the network facilitates transmission of

stakeholders’ collective ideas and resources throughout the system

and their propensity for shared decision-making, we analyzed the

network structure of the FCM in Figure 2 using properties of

density and centralization.

Network density
Density describes the activity level among network nodes

according to the richness of internal coordination. The extent of

node-node communication between network links is defined as

the proportion of overall connective potential (Sandström, 2008).

A high density value means the network exhibits strong levels

of integration, where the activity of each node depends mainly

upon the joint activities of all other nodes within the system.

In management networks, a large degree of density may lead to

greater opportunities for group communication and adaptation

through democratic pathways. When considering the application

to water management, density helps us understand how well the

network facilitates transmission of stakeholders’ collective ideas

and resources throughout the system and their propensity for

shared decision-making. As demonstrated in Figure 3A, a low

density network has few ties between nodes, thereby limiting

the possibilities for collective action and communication among

disparate stakeholders. Conversely, a high density network contains

many connections between nodal elements (Figure 3B), thereby

A B

C D

E

FIGURE 3

Schematic of network topologies representing: (A) low density of

relations (low density index); (B) high density of relations (high

density index); (C) low levels of cohesiveness (high hierarchy index);

(D) high levels of cohesiveness (low hierarchy index); (E) degree of

centrality, where the blue (central) node exhibits the strongest level

of influence (high centrality index).

increasing collaborative opportunities and facilitating the potential

for pooled resource governance.

Network centralization
Network centralization describes the extent to which activity

levels (i.e., management processes) are dominated by a small

number of nodes (i.e., decision-makers and/or physical system

variables) (Sandström, 2008). Assessing network centralization

helps us better understand the proportion and types of nodes

with causal influence in the system (Özesmi and Özesmi, 2004).

Centralization may be described in two ways: (1) globally, by

the degree of cohesion within the network (aka hierarchy index),

or (2) locally, by the level of influence within individual nodes

(aka centrality index). Overall cohesiveness describes the extent to

which the network “groups together” rather than being divided into

distinguishable subgroups (Bodin and Crona, 2009). Cohesion can

also be portrayed by the magnitude of stakeholders who, if removed

from the network, would disconnect the overall group (Moody and

White, 2003). As demonstrated in Figure 3C, removal of the single

top node would divide the network into two separate subgroups

with no connective pathways between them. Many governance

structures contain a low degree of cohesion (and thus, a high

degree of hierarchy), where system behavior is governed primarily

by top-down influences. Such networks limit the potential for

collective action, particularly when dominant system stakeholders

are unable (or unwilling) to engage with stakeholders at lower

levels. Conversely, a bottom-up network, as shown in Figure 3D,

presents more opportunity for collaboration between nodes,

thereby facilitating a high degree of information exchange among
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A B

FIGURE 4

Schematic of (A) composite fuzzy cognitive map describing causality of NBS management; (B) topology of nodes and links describing connective

structure in the network.

multiple stakeholder types (i.e., levels of governance, industry

sectors, or social scales).

Local centrality is used to rank the influence of individual nodes

on all other variables and, thus, on the overall network structure.

Dominant nodes influence the processes and patterns observed in

group decision-making, which is particularly important when the

group comprises agents from disparate backgrounds and different,

potentially conflicting, views of effective management decisions.

Therefore, it is important to identify local centrality to understand

how units are ranked in relation to one another. As shown in

Figure 3E, the most central node (in blue) is positioned with

the ability to influence all other nodes within the network and

thus contains a high level of influence on the overall system

behavior. Management nodes with high centrality tend to influence

flows of information (and resources) more so than others, thereby

serving as high-leverage points for systemic change and providing

a bridge between otherwise disconnected stakeholders and/or

physical system variables (Bodin and Crona, 2009).

The concepts of density and local/global centralization

are complementary measurements that refer to different but

related components of the network’s connective structure. This

connectivity underpins the function (and effectiveness) of different

management processes within the decision-making system. By

analyzing the relationship between structure and process, we

can better understand management complexities and identify

interactions that may enhance (or inhibit) governance outcomes.

The specific structural metrics used in this study (density

index, hierarchy index, and centrality index) are defined in the

following sections.

Key structural metrics
Density index

The density index (aka clustering coefficient) describes how

connected or fragmented variables are within a node-link network.

Through a topological lens, this metric describes the closeness

of specific nodes and edges relative to the whole network

(Heckmann et al., 2015). It is defined as the number of direct

(actual) connections between nodes divided by the total number

of possible connections within the network. When applying the

density index to integrated water management, this metric elicits

stakeholder perceptions of overall collaborative potential. A high

density index suggests that the network contains many pathways

for communication and collective action. The density index is

defined by

D =
C

N (N − 1)
(2)

where D is the density index, C denotes the total number of

connections within the system, and N denotes the total number

of variables (Koskoff et al., 1986). [Note: In systems where all

variables can have a causal effect on themselves, the denominator in

Equation 2 is represented byN2.] A completely linked graph would

have D = 1, where all points are connected to all other possible

points. A completely unlinked graph would be described by D = 0

(Özesmi and Özesmi, 2004).

Hierarchy index

The hierarchy index describes the tendency of network nodes

to fall within well-defined levels connected in a centralized

fashion. This index reveals how systematic pathways are

organized for change according to inherent variable strengths

and their connectivity with other network nodes. Like the density

index, hierarchy can help identify the potential for stakeholder

collaboration in a management network (Mourhir, 2021). A

low hierarchy index suggests the network is democratic, with

strong pathways for integrated participatory management. A

high hierarchy index suggests the network is hierarchical, where

systematic change is only possible through top-down solutions.

The hierarchy index is expressed by

h =
12

(N − 1)N (N + 1)

∑

i

[

od (vi)−
(
∑

od (vi)
)

N

]2

(3)
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where h is the hierarchy index, N defines the total number

of system variables, and od (vi) is the outdegree strength of each

variable, i, in influencing other system variables in an outward

direction (Weir andMacDonald, 1984). The outdegree is calculated

as the cumulative strength of all connections (wij) exiting each

variable, such that od (vi) =
∑N

j=1 wij. A fully hierarchical network

is depicted when h = 1, and a completely democratic network

corresponds to h = 0 (Özesmi and Özesmi, 2004). A network can

exhibit a high level of hierarchy despite few central connections, so

long as the connections carry relatively large weights (Kosko, 1986).

Centrality index

The centrality index describes how connected a variable is to

other variables in the network. This index is calculated for all

variables in the network and used to rank the comparative influence

of nodal elements on system behavior. Centrality is characterized

according to the cumulative strengths of all connections entering

and exiting a variable. The centrality index is defined by

ci= od (vi)+id (vi) (4)

where ci is the centrality index for variable i, od (vi) and

id (vi) define the outdegree and indegree strength of each variable

(i.e., the cumulative strength of connections pointing outward or

inward from each variable node), such that od (vi) =
∑N

j=1 wij,

id (vi) =
∑N

j=1 wji, and wij is the absolute value of all connection

weights exiting variable i and connecting to variable j (Özesmi and

Özesmi, 2004).

The centrality index was calculated for each node to better

understand the influence of individual variables within the overall

network. The connective strengths associated with each node (vi)

were defined by indegree [cumulative strength of connections

pointing toward a node, id (vi)] and outdegree [cumulative strength

of connections pointing away from a node, od (vi )].

Converting the FCM to a network

To analyze the structure of the stakeholder-defined

management system, we mapped a simple node-link graph

(network) from the composite FCM model. Each FCM variable

was converted into a single network node, and each FCM

connection was converted into a weighted network link. As

shown in Figure 4, the network represents collective knowledge

about NBS management in Houston by providing a visual

illustration of how the network concepts (nodes) are connected

via directed feedbacks (links). From Figure 4B, we computed

key network metrics (i.e., density index, hierarchy index, and

centrality index; Equations 2–4) and validated them using the

Mental Modeler FCM software (Gray et al., 2013). The Mental

Modeler platform contains a set of built-in algorithms for

identifying fundamental characteristics of the network structure

(e.g., node-link connectivity, in/outdegree strength, variable

type), which were used to estimate the density, hierarchy, and

centrality indices.

Results

Embedded stakeholder beliefs

When a diverse group of actors engage in cognitive mapping,

the results may vary widely depending on embedded stakeholder

beliefs of system complexity and how variables interact (Levy et al.,

2018). In Table 1, we summarize the stakeholder beliefs observed

during the case study workshop, which we use to identify dominant

schemas that may be leveraged and transitioned toward a more

effective management structure.

E�ectiveness of management strategies

We demonstrate in Figure 5 how different management

strategies rank in comparison to one another for shifting the end-

goal variable (i.e., NBS adoption) in a positive direction. The

relative magnitudes in Figure 5 reveal the efficacy of unique policy

actions in the case study model. Since the model is dynamic,

rather than linear, a shift in one variable does not necessarily

trigger a proportional shift in all other variables throughout the

system. For example, management nodes for “Local Funding” (LF)

and “Advocacy and Leadership” (AL) are located similar graphical

distances from the NBS node in Figure 2 (i.e., both LF and AL

pass through EG with a positive relationship strength of +0.25,

and EG connects directly to NBS with a positive relational strength

of +0.75). However, we can expect a much stronger state shift

toward NBS when activating node LF (Si_LF =64%) in comparison

to AL (Si_AL =39%) due to their respective locations within the

overall management system and the behaviors of all causally-

connected variables throughout the FCM simulation. Similarly, we

may note a weaker propensity for “Educational Outreach” (EO) to

achieve the intended management goal (Si_EO = 8%), due likely

to the inability of EO to trigger a strong state shift in any of

the other system variables which influence NBS (i.e., short blue

bars within the positive region of Figure 5, top-left graph). The

visualization provided by Figure 5 can be used to quickly assess the

effectiveness of management strategies toward the intended end-

goal using semi-quantitative metrics of connectivity, as defined

by the stakeholders themselves. These results allow us identify

paradoxes between the stakeholders’ internal assumptions (as

defined by the FCMmodel) and their external belief statements (as

summarized in Table 1).

Primary network characteristics

The primary network composition is defined by the index

characteristics in Equations 2–4, which are summarized in

Table 2. The case study network was characterized by limited

internal coordination (low density), high democratic potential

(low hierarchy) and high-efficiency management nodes (high

centrality index) which transcended across socio-institutional

scales. In applying Equation 2 to the management network

map, the case study group described a largely unconnected

network with a low density index (D = 0.102). This indicates
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TABLE 1 Summary of belief schemas observed during the case study workshop.

Variable Definition Belief schema

Educational Outreach Outreach programs targeted at improving community
perception and understanding of NBS functionality.
Includes media reporting and citizen involvement in the
selection, planning, funding, and maintenance of local NBS.

While stakeholders recognized the importance of educational outreach
to promote investment in NBS, they also believed that NBS are
insufficient in addressing stormwater issues in their local context,
which is characterized by flat topography and high-intensity storms.
The group maintained that the primary function of NBS is to reduce
stormwater peak volume, while socio-environmental benefits are less
important.

Incentives Programs Strategic incentives for improving local NBS development.
In recent years, a voluntary incentives program was
developed for local green infrastructure. The program
included integrated development rules, property tax
abatements, awards and recognitions, and increased speed of
project permitting.

Several participants expressed concern that local parties viewed the
local incentives negatively due to the program’s voluntary nature (i.e.,
not mandated) and a lack of direct financial gain for land developers.

Advocacy and Leadership Staffing for NBS outreach and trans-institutional
partnerships. Designated champions with resources to
implement change. A central NBS department that is
integrated across socio-institutional levels.

Participants acknowledged the need for improved advocacy and
leadership. However, there was a tendency to assign responsibility to
other entities (i.e., silo mentality), rather than acknowledging an
opportunity to improve cross-scale support among the entities
represented within the workshop.

Social Equity Clear frameworks developed to build capacity in vulnerable
and marginalized communities.

While the stakeholders agreed that social equity was an important goal
in NBS adoption, the group ultimately struggled to understand how
(and to what extent) NBS improves social equity. Some stakeholders
worried about the potential for ‘green’ gentrification, while others
insisted that community resilience would be improved with enhanced
urban greening.

Technical Training Design and maintenance guidelines for engineering,
environmental consulting, and planning. Includes
supporting local NBS expertise through certifications (e.g.,
LEED), workshops, trainings, and staff retention programs.

We observed varying perspectives on the adequacy of current NBS
technical training and local guidelines. While some stakeholders
demonstrated a silo mentality and claimed proficiency in NBS
technical training, others argued that local guidelines lacked coherency
and emphasized traditional stormwater drainage (gray infrastructure)
over hybrid (green-gray) approaches.

Visualization of Co-benefits Demonstrating how NBS benefits extend beyond stormwater
quantity and quality to include socio-environmental health
and well-being components. Highlights the integrated nature
of NBS to impact the observer’s life and/or neighborhood.

The beliefs embedded within this system variable are characterized by
a general tendency to devalue all NBS co-benefits, except for flood
reduction. Some stakeholders emphasized that improving visualization
of co-benefits would naturally improve community buy-in. Others
believed that local residents are primarily interested in protecting their
homes from flooding and would not acknowledge other co-benefits,
such as crime reduction, social capital, recreation, air quality, meeting
space, mental/physical health, noise pollution, tourism, jobs, food, etc.

Population Growth
Local Development

Increase in local population, resulting in changes in land-use
type and impervious coverage through local development
Reduced land space and ‘building-up’ through new land
development. Increases tax revenue while reducing natural
pervious coverage.

While the stakeholders realized the need to increase the local tax base,
the group preferred converting open space into new development
rather than assigning large swaths of land for NBS improvement. The
group struggled to identify opportunities for integrating small-scale
NBS within new development (i.e., green roofs, bioswales, raingardens)
and insisted that large-scale NBS (e.g., detention/retention ponds)
reduces viable land for economic growth. These beliefs highlight the
pro-growth mindset and lack of land-use zoning which is prevalent in
the local society.

External Laws and
Regulations

State and federal level requirements to implement NBS
within development practices. Includes funding and/or
regulatory mandates to prove multiple co-benefits of NBS
beyond stormwater mitigation.

There was significant discussion regarding how strong external laws
and regulations were essential to the success of NBS management. The
stakeholders believed that top-down mandates would trigger a positive
response in all other system variables. The group highlighted that other
metropolitan areas saw an increase in NBS due to federal regulations
for ‘combined sewer overflows’ (CSO), which may be improved with
NBS. However, combined sewers (sanitary+ stormwater) are not
common design elements within the local context. The stakeholders
assumed that a top-down governance scheme would produce similar
effects at the local level, despite a unique physical and
socio-institutional setting.

Climate Change Intensification of extreme climate effects, including urban
heat islands, air pollution (ozone), greenhouse gas emissions,
and rainfall patterns (leading to flooding).

When discussing the reduction of greenhouse gasses, air pollution, and
urban heat islands, the stakeholders believed that such topics are not a
primary concern for local residents, despite Houston being one of the
hottest and most polluted cities in the USA. While the stakeholders
agreed there exists a direct relationship between vegetation levels and
climate effects, they believed that local NBS adoption is primarily
driven by a desire to reduce flood risk.

(Continued)
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TABLE 1 (Continued)

Variable Definition Belief schema

Habitat Growth
Maintenance Programs

Vegetation overgrowth from unmaintained NBS projects,
triggering swamp-like conditions.
Improved oversight and implementation of NBS
maintenance on a regular schedule. Includes designated
maintenance funding and defined responsibility for each
NBS project. Requires partnership between developers,
contractors, and public residents for long-term stewardship
of NBS systems.

The group maintained that local residents view habitat growth as a
nuisance due to ongoing complaints of unmaintained NBS projects
that festered mosquitoes, rodents, invasive species, and unsightly
aesthetics. This contrasts the general NBS literature, where urban
greening improves habitat connectivity and ecological health, which is
generally viewed as a positive co-benefit.
There was some debate regarding how much increased maintenance
would improve NBS potential. Some stakeholders insisted that local
NBS maintenance was satisfactory, and yet the general public remained
disinterested; others believed that local maintenance could be
improved to reduce propensity for vegetative overgrowth, reducing
NBS functionality and increasing the risk of unwanted
habitat intrusion.

Community
Buy-in
Political Will

Improved acceptance by local neighborhood advocates and
developers to implement NBS projects voluntarily.
Partnerships and dialogue between civil groups and
institutional taskforces to promote widespread NBS.
Transition from reliance on traditional engineering (gray
systems) to hybrid (green-gray) approaches. Increase of
institutional urgency and inter-agency cohesion for
NBS projects.

The group maintained that local community buy-in would not
improve due to negative NBS perceptions (e.g., inability to mitigate
high-intensity rainfall, and habitat overgrowth nuisance). The
stakeholders struggled to believe that community buy-in levels could
improve through soft management approaches alone (i.e., advocacy,
outreach, visualization).
The stakeholders also believed that local constituents directly impact
political will and that policy urgency for NBS initiatives will not
improve without the general public’s clear acceptance and
championship of urban greening.

System variables were defined by the stakeholder group as summarized in Castro (2022a), Supplementary Table S3. [Note, only those variables which contained elements of uncertainty or

disagreement by the stakeholder group are included in this table].

FIGURE 5

FCM-based scenario outputs, where unique management variables (shown in each chart title) were activated, and changes in the end-state value for

all system variables were graphed as a relative percentage (1Si). The shifts in magnitude for nature-based solutions (i.e., the goal variable for this

system) are shaded in green (1Si_NBS). ID, Increased Development; ELR, External Laws and Regulations; PG, Population Growth; CC, Climate Change;

EO, Educational Outreach; NBS, Nature-based Solutions; TT, Technical Training; PP, Pilot Projects; EG, External Grants; IP, Incentives Programs; AL,

Advocacy and Leadership; HG, Habitat Growth; CB, Community Buy-in; SE, Social Equity; PW, Political Will; VC, Visualization of Co-benefits; MP,

Maintenance Programs; LF, Local Funding; LLR, Local Laws and Regulations.
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TABLE 2 Summary of key characteristics in the network structure.

Total
components (N)

Total
connections (C)

Connections per
component
(C/N)

Density index (D) Hierarchy index
(h)

Centrality index
(ci)

19 35 1.842 0.102 0.019 See Table 3

that stakeholders observed only 10.2% of all potential network

connections in NBS management practice. Since density describes

the proportion of all possible connections present within the

map, the causal relationships between stakeholders and the

social/physical constructs of the system were described with a thin

level of interconnectivity. This low density index suggests that the

stakeholder group perceived limited pathways for collaboration and

a system with many functions outside their control. While the

density index reflects the overall proportion of ties (connections)

present within the network, the hierarchy index extends a step

further to consider the actual weights of connectivity exiting

each network node. Per Equation 3, the low hierarchy index

(H = 0.019) suggests that the stakeholders described a largely

decentralized network with many collaborative pathways across

socio-institutional scales.

The centrality index for each node is summarized in Table 3.

The management nodes were further defined by their scale(s)

of socio-institutional influence (L—local, M—municipal, R—

regional), as perceived by the stakeholder group, in order to

explore the balance of power (i.e., influence) and collaborative

potential within the management network. For reference, the

relative efficiencies of all management nodes (per the FCM-based

scenario analysis) are also noted in the table.

Discussion

Collaborative potential

Cohesion within the network, as described by network density,

may influence the willingness and ability of stakeholders to share

knowledge and work with one another. The density of relations

provides insight into the extent of possible joint actions available

between differingmanaging stakeholders and across related sectors.

When a greater number of ties exist, the potential for collaborative

engagements is improved, which could aid in reducing resource

conflicts by facilitating common pool opportunities. Indeed, the

literature on natural resources governance supports a positive

relationship between network density and joint action when

integrated management teams work together to foster an increase

in relations (links) among multi-disciplinary elements (nodes)

(Bodin and Crona, 2009). Here, we observed a low density

index, which suggests the stakeholder group perceived limited

pathways for collaboration and a system with many functions

outside their control. For the participatory researcher, this insight

allows continued engagement with the group to elicit deeper

levels of trans-scale collaboration. Such engagement aids adaptive

governance, which applies collaborative and iterative learning to

foster self-organization around common goals (Huitema et al.,

2009) and is the most common approach for capacitance building

in the water literature (Jiménez et al., 2020).

Indeed, through ongoing engagement with this stakeholder

group, Castro (2022b) demonstrated a shift in NBS management

toward improved collective action. Through a series of informal

discussions with local policymakers, the FCM models were

simulated to demonstrate how the system performed in terms of

NBS policy effectiveness. During these engagements, our partners

noticed how the NBS system was largely driven by properties

of social equity, which was not originally identified as a feasible

management opportunity. Some of the stakeholders decided to

shift their planning paradigm to include properties of social

equity within NBS planning, which requires robust collaboration

among neighborhood groups, regional decision-makers, municipal

planners, and multi-scale engineers, sustainability experts, etc.

Local leaders requested assistance in developing a multifunctional

optimization scheme that sites NBS features according to spatial

properties of social deprivation, as demonstrated in Castro (2022b).

These results demonstrate that while some stakeholders may have

displayed an “us-vs.-them” attitude during the workshop (i.e., tacit

beliefs), the group indeed described a network where joint action

was possible by collaborating across multiple sectors and levels

of governance (i.e., embedded beliefs). In other words, the group

beliefs at the individual scale were not consistent with the network

relationships derived at the composite scale.

During the workshop, the stakeholders perceived themselves
as participatory observers with a limited role in influencing the

overall system. However, through adaptive learning, several key
stakeholders shifted to become leading agents of change. We

believe this shift was possible due to the underlying structure of
the management network. While the density index described a
network with limited connections, the hierarchy index described

a bottom-up governance scheme with many pathways for trans-

scale collaboration. A low degree of hierarchy emphasizes the

stakeholders’ willingness and capacity to work toward a common

goal by bridging network ties through strong outdegree relations

among multi-scale nodes (Bodin and Crona, 2009). As such,

the hierarchy index may provide a more accurate depiction of

collaborative potential within the network structure by considering

connective weighting, emphasizing the need to explore various

graph theory statistics when attempting to understand network

structure. Thus, we may deduce that the group’s perception of

the network at a high topographical level (i.e., density of links

and nodes) was deepened through the group’s characterization

of causal strength between elements (i.e., outdegree properties of

Equation 3).

Moreover, in comparing Table 3 and Figure 5, we observe

how the management opportunities with the greatest potential

for increasing NBS (i.e., ↑ Si_NBS) transposed many socio-

institutional scales (e.g., Local Funding, Political Will, Advocacy

and Leadership). Conversely, several nodes with high levels of

overall network influence (i.e., ↑ ci) were limited to a single

scale (e.g., Maintenance Programs, Local Laws and Regulations).
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TABLE 3 Centrality characteristics for 19 nodes identified within the case study network.

Network
node/variable (vi)

Indegree strength
[id (vi)]

Outdegree strength
[od (vi)]

Centrality index (ci) Management
opportunity (yes/no)

Socio-institutional
scale(s)

% NBS e�ciency
(1Si_NBS)

Educational Outreach 0.25 0.25 0.50 Yes L-M-R 8%

Incentives Programs 0.25 0.50 0.75 Yes M-R 12%

Advocacy and Leadership 0.00 0.75 0.75 Yes L-M-R 39%

Social Equity 0.50 0.25 0.75 No – –

Technical Training 0.25 0.75 1.00 Yes M 23%

Visualization of Co-benefits 0.50 0.50 1.00 No – –

Population Growth 0.25 0.75 1.00 No – –

External Laws and
Regulations

0.50 0.75 1.25 No – –

Climate Change 0.75 0.75 1.50 No – –

Habitat Growth 1.25 0.25 1.50 No – –

Local Funding 1.00 0.75 1.75 Yes M-R 64%

Community Buy-in 1.25 0.50 1.75 No – –

Increased Development 0.75 1.00 1.75 No – –

External Grants 0.50 1.50 2.00 No – –

Pilot Projects 1.00 1.25 2.25 Yes M-R 51%

Maintenance Programs 1.00 1.25 2.25 Yes M 44%

Local Laws and Regulations 1.50 0.75 2.25 Yes M 18%

Political Will 1.00 1.75 2.75 Yes L-M-R 59%

Nature-based Solutions 2.50 0.75 3.25 No – –

Nodes identified as management opportunities are categorized by their scale(s) of socio-institutional influence (L, local; M, municipal; R, regional).

Note: In this study, influence describes the extent to which activation of a specific node results in high (or low) activity levels throughout the rest of the network, while efficiency describes the degree to which nodal activation achieves the goal. For example, per this

Table, increasing local advocacy and leadership (ci_AL = 0.75) would trigger less response from the overall network vs. implementing more local laws and regulations (ci_LLR = 2.25); however, advocacy is much more efficient at triggering high activity in the NBS node

over time (Si_AL > Si_ LLR).
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As such, the ideal behavior of the management system (revealed

by dynamic FCM modeling) may not align with its underlying

structure (defined by stakeholders and revealed by network

analysis). This disconnect suggests that stakeholders’ intuition of

trans-scale system behavior may be biased toward the institutional

context within whichmanagement is embedded. Stakeholders must

identify all democratic opportunities (i.e., trans-scale partnerships)

and weigh them accordingly to shift the system toward an idealized

outcome. Conversely, identifying potential misconceptions in the

system can stabilize the system and translate disparate collectives of

trans-scale institutional participants into robust decision-making

agents. By anticipating such structural elements, and identifying

where asymmetries exist, we may form deeper partnerships with

stakeholder groups toward ongoing adaptive governance schemes.

In other words, by elucidating several structural elements of

the collective mental map, we could reveal paradoxes within

stakeholder thinking (i.e., limiting beliefs) that, when addressed,

served to build the momentum needed to shift the system trajectory

toward a successful outcome.

Spread of influence

While this study resulted in a positive opportunity to

improve NBS planning, we observed many paradoxes between

the stakeholders’ internal perceptions and their external belief

statements, particularly regarding the spread of influence

(i.e., power dynamics) throughout the system. For example,

as previously discussed, the management nodes with highest

efficiency transposed many socio-institutional scales. However,

the stakeholders maintained throughout the workshop that

NBS adoption would only improve with additional “Laws and

Regulations” (LLR) for urban greening. In other words, the

stakeholders believed (internally) that the system was most

effective through top-down governance. Yet the actual dynamics

of the system, as defined (externally) by the stakeholders

themselves, revealed optimal efficiency through bottom-up

initiatives. Similarly, the stakeholders believed that locals were

not interested in the social and environmental benefits provided

by NBS. Rather, due to the long history of flooding in Houston,

the stakeholders asserted that community outreach efforts should

focus on the stormwater abatement qualities of NBS. However, per

the FCM-based scenario analysis, policy initiatives which increased

“Visualization of Co-benefits” (VC) scored the highest degrees of

NBS efficiency.

We were curious to understand how the dominant leverage

points within the system (defined by network centrality) compared

with the most efficient management nodes (defined by policy

scenarios). In continuing the above example, we noticed how

the level of influence contained within the VC node (ci_VC =

1.00) was significantly less than the centrality of the LLR node

(ci_LLR = 2.25), although VC was more efficient than LLR.

The assumption that dominant nodal elements may lead the

overall system behavior is seemingly persuasive. This is because

the centrality index does not tell us how well a node might

influence a specific variable of interest (i.e., Si_NBS) but rather

its overall degree of influence in triggering flows of information

throughout the entire network. Understanding the impact of nodal

activation on a specific node requires scenario-based modeling.

Instead, we can use this information to quickly assess the

dominance properties of nodes across multiple institutional scales

and identify hidden power dynamics which may be hindering

system efficacy.

In applying this to integrated water management, central

actors must use their positioning within the network in a way

that has a favorable impact on the overall governance outcome.

For example, in our case study, local lawmakers and regulators

must be willing (and able) to engage in democratic concessions

and promote collective action initiatives throughout all scales of

NBS management to realize favorable policy outcomes, which is

theoretically possible due to the low hierarchy index described

by the group. As demonstrated in this study, collective hierarchy

(described in terms of overall influence via the hierarchy index)

is not necessarily related to the individual hierarchy (described

in terms of connective strengths via the centrality index). Rather,

extremes along these spectrumsmay coexist within the same group.

By exploring both the local and global centrality of the network,

we were able to aid in a mental shift away from traditional, top-

down governance structures toward a collective planning paradigm

comprising multi-scale opportunities.

When navigating through complex researcher-stakeholder
partnerships, network tools may be used as a first step
toward better understanding the structure of the stakeholder-
defined management system before engaging in governance

transformation. By understanding the network structure, we can

explore (and potentially address) paradoxes within management

systems which may be stuck and/or inefficient, despite well-

intended efforts. In our case study, the stakeholders expressed

tacit beliefs which appeared to conflict with the nature of the

collective model they had derived. However, the high heterogeneity

of governance actors engaged in the workshop led to robust

representation of causal influences, and the overall network

structure presented numerous democratic opportunities for trans-

scale cooperation.

Conclusions

Everything is, in some sense, intricately connected to

everything else, but it is clear that some things are more connected

than others (Tobler, 1970). Understanding how and why this

happens in complex systems, and what are the implications,

is central to addressing integrated water management across

socio-institutional scales. Participatory research and cognitive

mapping have become commonplace within water research for

defining complex dynamics from embedded human knowledge.

Cognitive maps offer two primary frameworks for assessing

collective knowledge: (1) Exploring the structure of the map to

capture types of information and their connective properties, and

(2) Investigating the dynamics of the map through cause-effect

relationships to construct rules of system behavior (Glykas, 2010).

To date, the latter paradigm has governed water resources case

studies; however, as we are transitioning beyond understanding

human-water phenomena to engaging deeply with stakeholders

for actionable change, we must be able to assess the structure
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of cognitive maps prior to using them for dynamic prediction

and/or management.

The premise of this study was that a small extension

of FCM-based scenario building (via network analysis) can

substantially improve our understanding of stakeholder perception

and cognitive structures. Network science allowed us to make

testable predictions about the properties of real-world networks

once their structures were specified. By examining the role

of knowledge and power within the management system, we

could reveal paradoxes within stakeholder thinking (i.e., limiting

beliefs) that, when addressed, served to build the momentum

needed to shift the system trajectory toward a successful

outcome. In essence, by identifying the stakeholders’ perception

of the system, per network topology, this exercise served as

a foundation for promoting flexibility (collaborative potential)

and catalyzing change (influential management) across socio-

institutional scales.

Water sector reforms have been criticized for not considering

the local context regarding policy implementation (i.e.,

management) and instead applying universal remedies which

can lead to resistance, conflict, and ultimate failure (Al-Saidi,

2017). When a diverse group of stakeholders engage in integrated

management, the results may vary widely depending on embedded

stakeholder beliefs and how variables interact. As such, the

performance of integrated water management depends on

complex relational dynamics embedded within the stakeholders’

collective experiences. This paper examined how such properties

can be identified prior to policy reform by conceptualizing key

interactions involved in water management through the lens of

network analysis. This research highlighted how we cannot impact

water governance without first describing and understanding its

structure. Network theory aided in identifying unseen phenomena

by emphasizing the normative role of stakeholder interactions in a

complex system and revealing underlying properties behind how

social decision-makers interact with, define, and influence a two-

way human-nature system. In other words, networks helped us to

understand, through their web of interconnected features, the core

relationships between disparate elements, thereby revealing key

organizational principles underlying a complex, integrated water

management system. We thus advocate a deeper incorporation of

management structure within participatory water research toward

achieving the principles of good governance.
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