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Projecting hydrologic change
under land use and climate
scenarios in an agricultural
watershed using agent-based
modeling

David Dziubanski† and Kristie J. Franz*†

Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA, United States

Watershed systems are changing due to human activities within the landscape

and shifting precipitation patterns, and quantifying the coupled e�ects of

these two factors is necessary for anticipating future hydrologic response.

In this study, we use a model that combines an agent-based model (ABM)

with a semi-distributed hydrologic model to assess how projected changes in

precipitation and temperature a�ect streamflowwhen simultaneously considering

how those variables impact the land use decisions that also influence watershed

response. We use a flood-prone watershed which is characteristic of many

agriculturally-dominatedwatersheds in the central Midwest US. In the ABM, farmer

agents make decisions that a�ect land use based on factors related to profits,

past land use, neighbor influence, and internal behavior. A city agent aims to

reduce urban flooding by paying farmer agents a subsidy for allocating land to

conservation practices that reduce runo�. We run the model for the 2018–2097

period using the Representative Concentration Pathway (RCP) 4.5 and RCP 8.5

climate scenarios and di�erent decision-making options. The model reveals that

under future precipitation, which becomes increasingly intense leading to more

in-field flooding, farmers increase conservation land by up to 60%. This land

conversion results in a 4–7% decrease in mean 95th percentile discharge relative

to scenarios where conservation land is held constant at the historical mean. If

farmers are allowed to modify their internal behavior and preferences, the mean

95th percentile discharge decreases further (up to 16%). Using the assumption

that land owners are willing to adapt their personal preferences to mitigate the

negative e�ects of climate change on their land and external incentives exist to

do so, upstream runo� mitigation practices could reduce downstream impacts

from more frequent intense precipitation. However, farmer agents converted,

on average, <10% of their land to conservation even when this variable was

unrestricted. By the end of the century, precipitation has the dominant influence

on discharge, given the significant changes in projected precipitation and the

limited land conversion.
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1. Introduction

The hydrology of many river basins across the world is

continually changing due to a combination of climate change

and human interventions (Christensen et al., 2004; Naik and

Jay, 2011; Steffens and Franz, 2012; Frans et al., 2013). In

2008, Milly et al. argued that increasing anthropogenic change

of Earth’s climate is altering precipitation patterns, which is

in turn affecting runoff (Milly et al., 2008). However, human

alterations of the natural hydrologic system, such as river channel

modification, urbanization, and agricultural practices, are also

changing watershed behavior (Turner and Rabalais, 2003; Cruise

et al., 2010; Carpenter et al., 2011; Chelsea Nagy et al., 2012;

Sivapalan et al., 2012; Montanari et al., 2013). Understanding

the respective impact of climate change vs. human practices,

and their combined effect, remains a challenge because of the

difficulty of projecting the dynamic behavior of each system into

the future.

Precipitation extremes are increasing across the United States,

and are expected to further increase under future climate (Kunkel

et al., 1999; Gutowski et al., 2007; Karl et al., 2009; Groisman

et al., 2012; Zhang et al., 2013; Wuebbles et al., 2014; Prein et al.,

2017). Villarini et al. (2013) studied precipitation trends across

the Central U.S. using data from 447 rain gauges located in a

region stretching from Minnesota to Louisiana. They found a

statistically significant increasing trend in the frequency of heavy

rainfall events for 90 stations, particularly over northern states, with

three stations showing a decreasing trend. In turn, the changing

precipitation patterns are leading to changes in flooding. One study

found that 34% of 774 stream gaging stations in the central US

recorded an increased frequency of flood events over the last 50

years or more (Mallakpour and Villarini, 2015). Only 9% of stations

showed a decreasing frequency. With the increased frequency of

extreme precipitation expected to continue (Janssen et al., 2014;

Wuebbles et al., 2014; Karmalkar and Bradley, 2017; Prein et al.,

2017), so too will the potential for flood risk in many regions of

the U.S. (Milly et al., 2002; Arnell and Gosling, 2016; Naz et al.,

2016).

Since hydrologic changes arise from both climate and human

factors, a number of recent hydrologic studies have placed

importance on trying to decipher the relative contributions

of these factors on changes in river discharge (Tomer and

Schilling, 2009; Wang and Cai, 2010; Naik and Jay, 2011;

Frans et al., 2013; Ye et al., 2013; Ahn and Merwade, 2014).

These studies use a variety of techniques, such as modeling

and statistical methods (e.g., linear regression), water balance

approaches, trend analysis, and Budyko analysis and have shown

that a significant percentage of the recent changes in streamflow

can be attributed to human-induced changes. For instance,

Ahn and Merwade (2014) found significant human impacts to

streamflow at 85% of stations in Georgia. Schilling et al. (2010)

determined that ∼30% of the increase in water flux observed

in the Mississippi river basin over the last 100 years can be

attributed to dramatic increases in soybean acreage since 1940.

On the other hand, Frans et al. (2013) found climate to be

a dominating factor (>90%) in runoff change in the Upper

Mississippi River Basin. Despite variations in the amount of

hydrologic change attributable to land use, these and other studies

(O’Keeffe et al., 2018; Kwak and Deal, 2021; Ross and Chang,

2021) make clear that both climate and human factors need

to be considered when evaluating climate mitigation and water

management strategies.

In this study, we use the agent-based hydrologic model of

Dziubanski et al. (2020) to assess how changes in precipitation and

temperature affect streamflow when simultaneously considering

how those variables impact the land use decisions that also

influence watershed response. We use the same representative

watershed of Dziubanski et al. (2020), which is characteristic of

flood-prone, agriculturally-dominated watersheds in the central

Midwest US. Five climate simulations of temperature and

precipitation for the 2018–2097 period from the North American

CORDEX program (Mearns et al., 2017) are used to drive

the model under two primary climate scenarios: representative

concentration pathways (RCP) 4.5 and RCP 8.5 (Van Vuuren

et al., 2011). Social-hydrologic models, such as the Dziubanski

et al. (2020) model, allow the natural and social systems to co-

evolve within one computational framework (Sivapalan et al.,

2012; Montanari et al., 2013) allowing the model user to control

and observe the impact of external and internal factors on

system outcomes. Taking advantage of the capabilities of agent-

based modeling, we run the model under the climate scenarios

using the following decision-making scenarios: (1) farmer agents

are allowed to change land use to/from conservation through

time, but their decision behavior remains stationary, (2) farmer

agent are allowed to change land use through time and their

decision behavior may change through time, and (3) land

use remains unchanged at the historical mean throughout the

simulation. The model output is used to explore the following

research questions:

1) How might farmers in a Midwestern US landscape change land

use practices in response to future climate, assuming current

agro-economic conditions and incentive programs?

2) What are the combined and individual impacts of human

activities and climate on changes in streamflow?

2. Materials and methods

The modeling system is comprised of natural system models

that produce annual peak streamflow, in-field flooding, and crop

yield, and an agent-based model (ABM) of agricultural and urban

decision-making (Figure 1). The ABM includes two primary agents

(farmer and city) that interact through conservation contracts in

which the city pays the farmer to implement conservation practices

that reduce runoff and flooding. Farmer agent attributes and farm

land characteristics vary stochastically throughout the watershed,

which when combined with climate conditions, make the human

impact component uncertain and unpredictable both spatially and

temporally. The agent (social) and natural systems within the

model dynamically interact and influence the external climate

and economic (government and market) systems (Figure 1).

Model details and validation can be found in Dziubanski et al.

(2020). This methods section provides an overview of key model
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FIGURE 1

Flowchart of the socio-hydrologic model.

components and describes functions that have been added since the

prior study.

2.1. Economic system

The market module provides information about forecasted and

realized crop prices and production costs that agents use in their

decision making. Crop price projections for 10 years into the future

are calculated annually based on historical crop prices and error

estimates of U.S Department of Agriculture (USDA) crop price

forecasts. The 10-year forecast is developed using the following

equation (Dziubanski et al., 2020):

CropPriceForecastt+n = CropPricet+n

+

(

ErrorCropPrice
100 · CropPricet+n

)

(1)

where CropPriceForecastt+n is the forecasted crop price for year

t + n (t is the current year, 1 ≤ n ≤ 10), CropPricet+n is the

historical crop price for year t+n, ErrorCropPrice is the error based on

CropPricet+n. Twelve years of USDA crop price forecasts for 2001–

2012 were analyzed against realized crop prices to form the error

functions used in the market module:

ErrorCropPrice = A·Price2 + B · Price+ C
(2)

where A, B, and C are coefficients from the regression. There are 12

error equations in the market module, and the error equation with

a starting crop price closest to the current year’s crop price is used

to formulate the 10-year forecast. The market module also annually

calculates production costs taking into consideration variability in

crop insurance costs as a function of past yields, and land rental

rates based on crop prices.

2.2. Social system

2.2.1. Farmer agent module
The farmer agent is characterized by two primary state

variables, “conservation mindedness” and risk aversion attitude

(McGuire et al., 2013; Prokopy et al., 2019). “Conservation

mindedness” is represented through a conservation parameter

(Consmax), which indicates the degree to which the farmer agent

is willing to adopt on-farm conservation practices, a concept

presented by McGuire et al. (2013). Consmax represents the

maximum fraction of land a farmer is willing to put into

conservation and ranges from 0.0 to 0.1, or 0 to 10% of the

farmer’s land (Table 1). The maximum value of 10% is based on

the runoff reduction practice available to farmer agents in this

model, in which 10% of the total farm plot area is converted

to prairie vegetation planted in strips (e.g., native prairie strips)

perpendicular to the primary flow direction within the farm

plot (Helmers et al., 2012; Hernandez-Santana et al., 2013; Zhou

et al., 2014). The secondary state variable is risk-aversion, which

describes the willingness of the farmer agent to change land use

under uncertainty (Prokopy et al., 2019). High risk averse farmers

are more likely to maintain the same land use, even as crop

prices decline. In addition to conservation mindedness and risk

aversion, farmer agents’ decisions are modified by future crop price

projections, past profits, and neighbor decisions.
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TABLE 1 Primary agent model parameters in decision-making equations.

Agent model
parameters

Description Range used Theoretical
range

Wrisk−averse Weight placed on farmer agent’s decision based on previous land use 0.1–0.43 0.0–1.0

Wfutures Weight placed on farmer agent’s decision based on future crop price 0.07–0.24 0.0–1.0

Wprofit Weight placed on farmer agent’s decision based on past profit 0.07–0.34 0.0–1.0

Wcons Weight placed on farmer agent’s decision based on his/her conservation goal 0.18–0.37 0.0–1.0

Wneighbor Weight placed on farmer agent’s decision based on his/her neighbors’ decisions 0.05–0.35 0.0–1.0

Consmax Farmer’s conservation goal, used to describe the farmer’s conservation mindedness 0.0–0.1 0.0–0.1

X Number of previous years a farmer agent takes into account for his/her land decision 1–5 ≥1

Y Number of future years a farmer agent takes into account for his/her land decision 5–10 ≥1

ConsGoallower City agent’s conservation goal at the 75th percentile of inflation adjusted cash-rent 0.01 0.0–0.1

ConsGoalupper City agent’s conservation goal at the 25th percentile of inflation adjusted cash-rent 0.05 0.0–0.1

A farmer agent decides how much land to allocate into

conservation, Dt , for the current year t based on the following

equation (Dziubanski et al., 2020):

Dt = Wrisk−averse [Ct−1 : t−X]+ Wfutures

[

Dt−1 + δCfutures :Y

]

+Wprofit

[

Dt−1 + δCprofit :X

]

+ Wcons [Dt−1 + δCcons]

+Wneighbor

[

Cneighbor

]

(3)

where Ct−1 : t−X is the mean total amount of land allocated to

conservation during the previous X years, Dt−1 is the prior

conservation decision (total amount of land the farmer would have

liked to implement in conservation) in year t − 1, δCfutures :Y is

the decision based on crop price projections for Y years into the

future, δCprofit :X is the decision based on themean past profit of the

previous X years, δCcons is the decision based on the conservation

goal of the farmer, and Cneighbor is the weighted mean conservation

land of the farmer agent’s neighbors (Table 1). Parameters X and

Y represent the number of prior or future years the farmer agent

considers in the decision making. Decision weights (Table 1) alter

how each of the five components factor into a farmer agent’s

decision and are assigned individually to a farmer agent such that:

Wrisk−averse +Wfutures +Wprofit +Wcons + Wneighbor = 1 (4)

The decision components for past profit and future crop prices

are based on a partial budgeting approach, which takes into account

added and reduced income and added and reduced costs from a

particular land conversion (Tigner, 2006). The budget calculation

indicates the net gain or loss in income that a farmer agent may

incur from changing an acre of land to/from crop production or

conservation (Dziubanski et al., 2020). Yields, production costs,

federal subsidies, crop insurance, and the cost to establish and

maintain conservation land are considered. In addition, farmer

agent’s land is randomly assigned varied soil types, which influence

crop productivity, crop production costs, and opportunity costs.

Thus, farmers convert less profitable land to conservation first.

The past profits decision is based on outcomes that have been

fully realized for the previousX years and the amount ofmoney that

could have been earned per hectare of conservation land vs. crop

land. The future crop prices decision is based on a combination

of past performance information and projected future crop prices.

δCprofit and δCfutures can take on values between −100% and 100%

depending upon whether the farmer agent expects a higher revenue

from crops or conservation land. The methods used to calculate

δCprofit :X and δCfutures :Y are described in detail in Dziubanski

(2018) and Dziubanski et al. (2020).

The conservation goal (δCcons) decision is defined by

the Bernoulli distribution where the probability p of fully

implementing conservation land is a function of the agent’sConsmax

parameter and is computed by (Dziubanski et al., 2020):

p = 10 · Consmax (5)

The probability p scales from 0 at a Consmax of 0, to 1 at a

Consmax of 0.1 such that, a farmer agent with a Consmax of 0.05 will

have a 50% probability of fully implementing conservation land in

any given year based on their conservation decision.

The diffusion of conservation adoption due to the influence of

interpersonal interactions (Saltiel et al., 1994; Davis and Gillespie,

2007; Arbuckle et al., 2013; McGuire et al., 2013) is represented

by a probabilistic-based network that determines the value of

Cneighbor (Dziubanski et al., 2020). Agents connect only within their

subbasin. Each agent in a subbasin of n agents can make up to n−1

connections, where the number of connections that an agent makes

is randomly drawn from a binomial distribution (Newman et al.,

2002). Currently in the model, each possible connection is set to

have the same success probability of p = 0.5, indicating a 50%

probability of forming a connection with any one farmer. Once a

farmer agent initiates a connection with another farmer agent, they

are both assigned a ConnStrength value that is randomly chosen

from the uniform distribution: U (0, 1). The probability that a

farmer agent will exchange land use information with the other

farmer agent during any given year is described by the Bernoulli

distribution with p = ConnStrength (Granovetter, 1973). If the

choice of connection is a success for both farmer agents (i.e., both

farmer agents “draw” a 1), they share information; however, if the
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choice of connection is a success for only one farmer agent, then

the agents do not share information.

2.2.2. City agent module
The city agent is defined by a conservation goal parameter

(ConsGoal) that specifies the amount of new conservation land that

the city agent would like to implement in order to reduce urban

flooding. First, the city agent calculates flood damage based on the

maximum discharge event for the year (Dziubanski et al., 2020).

The city agent then uses that flood damage value to calculate a new

conservation goal, Gt , for the following year, t as:

Gt = Gt−1 + (Atot − Ctot) · P (6)

P = Pnew · FDam (7)

Pnew =
ConsGoal
FDmax

(8)

where Gt−1 is the unfulfilled hectares in conservation from the

previous year, Atot is the total land area in the catchment, Ctot

is the total number of hectares currently in conservation, P is

the percentage of new production land added into conservation,

Pnew indicates how much land to add into conservation based

on the flood damage FDam for year t − 1, and ConsGoal is the

new percentage of conservation land to be added at maximum

flood damage.

The city agent’s conservation goal if maximum flood damage

occurs fluctuates based on land cash rental rates, and varies between

parameters ConsGoallower and ConsGoalupper (Table 1). During year

t, the city agent’s conservation goal is calculated as a linear function

of the current year’s cash rental rate:

ConsGoal = m
(

CashRentt
)

+ b (9)

wherem represents the rate of change of conservation goal per unit

change in inflation-adjusted historical cash rent (i.e., cash rental

rates from the start of the simulation to year t − 1, adjusted for

inflation to the current year t):

m =
ConsGoalupper− ConsGoallower

CashRentIAlower− CashRentIAupper
(10)

And the intercept b is represented by:

b = ConsGoallower −
ConsGoalupper− ConsGoallower

CashRentIAlower− CashRentIAupper

· CashRentIAupper
(11)

CashRent_IAlower is the 25th percentile of inflation-adjusted

cash rents, CashRent_IAupper is the 75th percentile of inflation-

adjusted cash rent, andCashRentt is the cash rent of the current year

t. When cash rental rates are low, the city agent’s conservation goal

increases due to cheap land prices. On the other hand, when cash

rental rates are high, the city agent’s conservation goal decreases

due to expensive land. Adjusting historical cash rental rates for

inflation to the current year t is performed using the Bureau of

Labor Statistics Consumer Price Index. As an example, cash rental

rates for year t − 10 are adjusted using the equation:

CashRentIAt−10 = CashRentt−10 ·
CPIt

CPIt−10
(12)

2.3. Natural System

2.3.1. Hydrology module
The hydrology module runs on an hourly timestep and

simulates runoff and streamflow in a semi-distributed manner

using user-defined subbasins. The runoff for each subbasin is

calculated using the SCS curve number (CN) method and

converted to subbasin discharge using the SCS unit hydrograph

(SCS-UH) method. Channel flow is routed downstream using the

Muskingum method (Mays, 2011). Each subbasin’s landcover is

described by a single area-weighted CN, which changes during

the simulation when farmer agents modify their agricultural land

between production and conservation. Model parameters are the

subbasin area, time lag, and model timestep (for the SCS-UH), and

Muskingum X, Muskingum K, and the number of segments for

each river reach. Because the primary purpose of the hydrology

model is to simulate annual peak flow for calculating flood damage

from high intensity precipitation events, a constant baseflow is

specified for each subbasin and snowmelt is ignored. The module

requires input of hourly precipitation (mm/h), and output is

discharge at the watershed outlet (m3 s−1). Themethods used in the

hydrologymodule are the same as those employed in an application

of the U.S. Army Corps of Engineers’ Hydrologic Modeling System

(HEC-HMS) (Scharffenberg, 2013) by the City of Ames, Iowa for

flood forecasting. The model was previously calibrated by Schmieg

et al. (2011), therefore, realistic parameters were available for the

watershed under study.

For agricultural land, CN values are set to 82 for 100% row

crops, and 72 for the prairie strips conservation practice (10%

native prairie strips, 90% row crops) based on values found by

Dziubanski et al. (2017). Urban areas are set to a CN of 90 [based on

standard values for residential areas with lot sizes of 0.051 hectares

or less, soil group C, USDA-Natural Resources Conservation

Service (USDA-NRCS), 2004]. A hypothetical CN of 15 was used

for pothole depressions described in the next paragraph.

Because the study area is characteristic of the poorly drained

prairie pothole region of the north-central US, a pothole function

was introduced to account for crop death due to in-field flooding.

Three pothole profiles with varying depth and area are specified,

named Type1, Type2, Type3, with profiles varying by area

and depth (Table 2). Each pothole profile is described by the

parabolic equation:

y = a
(

x− h
)2

+ k (13)

where the vertex is represented by (h, k), and a is a positive

coefficient that depends on the shape of the profile. The pothole

dimensions are chosen based on recent studies that have shown

how the median pothole size to be 0.16 Ha, with areas ranging

up to several hectares in sizes (Huang et al., 2011; Wu and Lane,
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TABLE 2 Dimensions of three pothole types used in the hydrology

module.

Type Depth (m) Radius (m) Coe�cient a Area
(Ha)

Type 1 0.3 25.37 4.66× 10−4 0.2

Type 2 0.9 35.89 6.99× 10−4 0.4

Type 3 1.5 50.75 5.82× 10−4 0.8

2016; Mcdeid, 2017) and observed pothole depths of 0.3–1.49m for

North Central Iowa (Upadhaya and Arbuckle, 2021).

To calculate flooding and crop death, the depth of ponding

for each pothole is continuously computed at the hourly time step

using the previous 24 h precipitation total (precip24hr, mm). Depth

of ponding (mm) is based on the equation (Edmonds et al., 2021):

depth = 0.7377 · precip24hr + 125.04 (14)

If an area within the pothole is flooded to a minimum depth of

a 12.7mm for a 24-h period or longer, complete crop death occurs.

The final crop yield within the pothole area is represented by:

yieldpothole =
(

1− Aflooded

)

· yieldsoil (15)

where Aflooded is the flooded area of the pothole and yieldsoil is

the normal crop yield for each soil type in the pothole when no

flooding occurs.

2.3.2. Crop yield module
Crop yields are modeled using a regression developed for

Iowa by Tannura et al. (2008), which takes into account monthly

precipitation and temperature:

yieldt = β0 + β1

(

yeart
)

+ β2

(

September through April precipitation
)

+ β3

(

May precipitation
)

+ β4

(

June precipitation
)

+ β5

(

June precipitation
)2

+ β6

(

July precipitation
)

+ β7

(

July precipitation
)2

+ β8

(

August precipitation
)

+ β9

(

August precipitation
)2

+ β10

(

May temperature
)

+β11

(

June temperature
)

+ β12

(

July temperature
)

+β13

(

August temperature
)

+ εt

(16)

Based on the mean error of the regression for Iowa over the

1960–2016 period, a correction factor of+0.395 MT/ha was added.

Because each farmer agent’s land is comprised of different soil types

with different productivity, adjustments and stochastic variability

are applied to the calculated yield (yieldsoil) for a specific soil type

(Dziubanski et al., 2020).

2.4. Model timeline

The model proceeds as follows: in January, the farmer agent

calculates his/her preferred land division between production and

conservation (Figure 2). In February, the city agent contacts farmer

agents in random order to establish new conservation contracts

if an unmet conservation goal remains or to renew any expiring

contracts. A new 10-year contract is established if the farmer agent

wants to add additional conservation acreage. At this time, expiring

contracts can be renewed at the same number of hectares or less,

or ended. Any newly acquired conservation acreage is subtracted

from the city agent’s conservation goal established in January. The

city agent continues to contact farmer agents until its conservation

goal is met. If the conservation goal is not reached in a given

year, the goal rolls into the next year. Prior to May, the farmer

agent establishes any newly contracted conservation land on the

historically poorest yielding land first. No further decision making

occurs during May through August; however, during this time,

a maximum discharge event occurs. In September, the associated

flood damage cost is calculated by the city agent and used to

determine how much land to allocate into conservation. If no

flooding occurred, the conservation goal remains unchanged. In

October, the farmer agent harvests his/her crop, and calculates

yields and profits for that year.

3. Model setup

The watershed in the model is based on the Ioway Creek

watershed located in Central Iowa, USA (Figure 3). The Ioway

Creek watershed is located within the Des Moines lobe, which

is characterized by relatively flat and hummocky topography

and poorly drained soils [Prior, 1991; USDA-Natural Resources

Conservation Service (USDA-NRCS), 2015]. Prairie pothole

depressions are a major feature in the region; they are prone to

flooding, particularly during heavier rainfall in the months of May

and June (Miller et al., 2009). Approximately 70% of the watershed

is in row crop agriculture, with one major urban center (Ames,

IA) at the outlet of the watershed. In the hydrology module, the

watershed is represented through 14 subbasins and hydrologic

parameters are taken from Dziubanski et al. (2020).

3.1. Model initialization

A total of 100 farmer agents are implemented in the model with

approximately seven farmer agents allocated to each subbasin. Each

farmer agent manages∼121.4 hectares of agricultural land with up

to 8 different randomly assigned soil types. The percentage of each

soil type is chosen from a uniform distribution, with the constraint

that each soil type must encompass at least 0.1 Ha. In addition, each

farmer agent’s land is randomly characterized by up to 10% pothole

land of Type1, Type2, and Type3, with the total acres of pothole

land chosen from the uniform distribution U(0Ha, 12.14Ha). The

upper value 12.14 Ha is based on each farmer agent having a total

of 121.4 Ha of land.

Dziubanski et al. (2020) calibrated the ABM to this study

region to reproduce the historical range and variability of land

enrolled in the federal Conservation Reserve Program (CRP)

for central Iowa (CRP is similar to the program offered by the

city agent). The parameters found in that study are used here

to assign values to farmer agents. Each farmer agent’s Consmax
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FIGURE 2

Annual timeline of agent decisions and actions in the model.

parameter is randomly chosen from the Gaussian distribution

N (0.06, U (0.005, 0.015)), based on the optimal mean value of

0.06 for Consmax. Because the standard deviation of Consmax is

unknown, a random value is chosen from the uniform distribution

U (0.005, 0.015) to represent the standard deviation. If the chosen

Consmax is above or below the range 0.0–0.1 (Section 2.2.1),

then Consmax is automatically set to either 0.1 or 0.0. Decision

weights (Wrisk−averse, Wfutures, Wprofit , Wcons, Wneighbor) are

initialized for each farmer agent from the Gaussian distribution

N (x, U (0.005, 0.015)), where the mean x is chosen from the

uniform distribution U (x1, x2) . The possible upper and lower

bounds (x1, x2) of each decision variable are based on the

previously calibrated values specified in Table 1. For example, the

mean ofWrisk−averse could be anywhere in the range 0.1–0.43. Once

the mean value x is chosen, the above Gaussian distribution is used

to initialize the decision variables for all 100 farmer agents.

The city agent is located at the outlet of the watershed (i.e., the

most downstream subbasin). The ConsGoallower and ConsGoalupper
parameters of the city agent are set to 0.01 and 0.05, respectively

(Table 1).

3.2. Model input

Historical crop prices ($/MT), crop production costs ($/Ha),

cash rental rates ($/Ha), and federal government subsidy estimates

($/Ha) from the years 1970–2016 are used to drive the agent-

based model. Federal crop subsidies are based on 16 years of

historical estimates (2000–2016) (Hofstrand, 2018). Due to relative

long-term stability in crop prices, it is assumed that federal crop

subsidies from 1970 to 2000 are at a similar level to 2000–2005 and

existed during the entire simulation period. All economic data was

obtained from Iowa State University Agricultural Extension and

Illinois FarmDoc.

Hourly precipitation and average daily temperature from

the climate projections of the North American Coordinated

Regional Climate Downscaling Experiment (NA-CORDEX) are

used for future simulations, and historical 1970–2016 data is

used for historical simulations. Data was obtained through

FIGURE 3

Ioway Creek watershed, land cover, and subbasin used in the

hydrology module.

the National Center for Atmospheric Research climate data

gateway and the Earth System Grid Foundation. Five climate

simulations are used, with varying combinations of global and

regional models, as well as grid spacing and emission scenarios

(Table 3) to represent a range of possible future temperature

and precipitation. Of the five simulations, MPI.22.rcp85 and

MPI.44.rcp85 have the warmest and wettest conditions by 2100.
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TABLE 3 Climate simulations used in this study.

Global climate model
(GCM)

Regional climate
model (RCM)

Spatial resolution Scenario Abbreviation

CanESM2 CanRCM4 0.44◦ rcp4.5 CanESM2.44.rcp4.5

CanESM2 CanRCM4 0.44◦ rcp8.5 CanESM2.44.rcp8.5

HadGEM2-ES WRF 0.22◦ rcp8.5 HadGEM2.22.rcp8.5

MPI-ESM-LR RegCM4 0.22◦ rcp8.5 MPI.22.rcp8.5

MPI-ESM-LR RegCM4 0.44◦ rcp8.5 MPI.44.rcp8.5

Each climate simulation was bias corrected using kernel density

distribution mapping (KDDM) (Mcginnis et al., 2015). The KDDM

technique calculates the probability distribution function (PDF)

for each dataset, then uses trapezoidal integration to convert

the PDFs to the corresponding cumulative distribution functions

(CDF). With this technique, the historical climate simulations

are bias corrected using historical data. That correction is then

applied to the future climate simulations. The bias correction

was conducted using hourly stage IV precipitation data (2002–

2016) and daily mean temperatures (2000–2015) computed from

hourly temperature data from the Ames, Iowa Automated Surface

Observing System (ASOS).

3.3. Scenario analysis

Simulations are conducted for the first half and second half of

the 21st century using each climate scenario, with four different

model configurations, and the 1970–2016 historical economic data

(Table 4). The limited economic data time period required that the

future simulations be divided into two 47-year periods (2018–2065

and 2050–2097). Applying the same economic conditions to each of

the different climate scenarios and time periods allows for analysis

of the climate effects on the outcomes of interest.

In model configuration 1, farmer decision-making is turned

on, but the conservation land for each farmer agent is constrained

by their ConsMax parameter (Table 4, row 1). This causes the

preferences of the farmer agents to remain fixed through time

as they cannot implement more conservation land than their

ConsMax parameter allows, even if it would be economically

beneficial. In model configuration 2, the ConsMax parameter

of each farmer agent is allowed to change through time if

the conservation decision becomes greater than his/her current

ConsMax parameter (Table 4, row 2). This allows the farmer

agents to becomemore conservation-minded over time in response

to conditions.

In model configuration 3, farmer decision-making is turned off

and conservation land is kept at the mean observed conservation

land for the 2006–2016 period (Table 4, row 3). This simulation,

in which future conditions are influenced only by the changing

climate, is used to evaluate the impact of climate on streamflow

and agent behavior in simulations when compared to model

configuration 2. The unconstrained, dynamic simulations represent

a combination of climate and human influence. Subtracting the two

simulations (human impact = constant − unconstrained) isolates

the impact of the agents on the hydrologic outcomes. Using this

information, the percent contribution from the human impact and

the climate impact is computed.

Finally, model configuration 4 uses historical climate data

(1970–2016) with the farmer decision making turned on, but

conservation land constrained by the ConsMax parameter (Table 4,

row 4). The future simulations were analyzed against this historical

simulation for changes in the annual 95th percentile discharge,

conservation land, and the 10-year flood.

4. Results

4.1. Land use under future climate analysis

Under the constrained scenario (model configuration 1,

Table 4) where farmer agents are allowed to modify their land

use but are constrained by their ConsMax parameter, the mean

95th percentile discharge decreases on average by 6.5% relative to

the constant scenario (model configuration 3) where conservation

land is kept at the 2006–2016 mean (Figure 4, red). This 6.5%

decrease from the constant scenario corresponds to the ∼40–50%

increase in conservation land from the historical mean (Figure 5,

red). The historical mean 2006–2016 conservation land in the

watershed was 3.7%, while the farmer agents implement 5.8% under

future climate. Under almost all climate simulations, particularly

during 2050–2097, farmer agents are implementing, on average,

the maximum conservation land that his/her ConsMax parameter

allows in the constrained scenario.

For the constrained scenario, there is a slightly larger decrease

in the mean 95th percentile discharge by the end of the 2050–

2097 simulation period compared to the 2018–2065 period,

particularly for the MPI simulations (Figures 4H, J, red). While

the amount of conservation land generally increases and becomes

more stable throughout both simulation periods, conservation land

is more variable in the 2018–2065 period (Figure 5, red). Individual

simulations show larger magnitudes of change for the 2018–2065

period, generally following changes in crop prices.

The unconstrained scenario (model configuration 2) where

farmer agents are allowed to modify their land unconstrained

by their ConsMax parameter, results in the mean 95th percentile

discharge decreasing by 16% more on average compared to

the constant scenario (Figure 4, blue). Under unconstrained

conditions, conservation land increases by 80–120% relative to the

constant land use scenario (Figure 5, blue). In addition, farmer

agents transition from an initial mean ConsMax parameter of
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TABLE 4 Model configurations used in scenario analysis.

Model
configuration

Configuration
name

Farmer land
use decision

Conservation
land

Economic
conditions

Climate conditions

1 Constrained Constrained Dynamic 1970–2016 2018–2065 2050–2097

2 Unconstrained Unconstrained Dynamic 1970–2016 2018–2065 2050–2097

3 Constant Constant (farmer

off)

Constant at

historical level

1970–2016 2018–2065 2050–2097

4 Historical Constrained Dynamic 1970–2016 1970–2016

FIGURE 4

Means (solid lines) and ranges (shaded areas) of percent change in 95th percentile discharge for the constrained (red) and unconstrained (blue)

scenarios relative to the constant scenario for 2018–2065 (A, C, E, G, I) and 2050–2097 (B, D, F, H, J).

0.06 to a mean ConsMax parameter of 0.067–0.09, depending on

the model iteration. Thus, the farmer agents never implement

on average more than 9% land conservation in any iteration

of the model, which is below the theoretical maximum defined

by Dziubanski et al. (2020). This percentage is also significantly

lower than the highest conservation goal set by the city agent.

Under the wetter conditions of 2050–2097, the city agent has a

goal of converting over 80% of the watershed to conservation

during certain simulations. While this amount of land conversion

is unrealistic, it reflects the magnitude of the flood mitigation

challenges facing the city.

The range in percent conservation land produced by the

various model iterations is larger under the unconstrained

conditions (Figure 5), and smallest under the wettest climates (i.e.,

RCP8.5 and the 2050–2097 period). For example, for constrained

HadGem.22.rcp85 simulations (Figures 5E, F, red), farmer agents

decrease conservation land during the 2030–2035 period from 50%

to 10%, but the same decrease is not present around 2062–2067

even though the economics (i.e., crop prices, production costs,

etc.) are identical for those years. This smaller amount of land

use change may be due to the wetter climate in the second half

of the century leading to more in-field flooding and lower crop

yields. If yields drop due to climate conditions, economic changes,

such as increased crop prices, may be insufficient to motivate the

farmer agent to take land out of conservation, particularly when

less profitable land is taken out of production first. As a result

of the greater amount of conservation land, the increase in the

mean 95th percentile discharge is mitigated to a slightly greater

degree. A clear example occurs for the HadGEM simulations,

where the change in the 95th percentile discharge for 2062–2067

is up to 30% lower compared to only 0–15% lower for 2030–2035

(Figures 4E, F).
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FIGURE 5

Means (dashed lines) and ranges (shaded areas) of percent change in conservation land for the constrained (red) and unconstrained (blue) scenarios

relative to the constant scenario for 2018–2065 (A, C, E, G, I) and 2050–2097 (B, D, F, H, J).

4.2. Climate and human impact analysis

The watershed transitions to a higher flow regime (Figure 6)

due to a wetter climate (Figure 7) starting around 2050, particularly

under the RCP8.5 trajectory. Considering the constant land

use scenario (model configuration 3), the mean 95th percentile

discharge increases by 18% and 30% under the RCP4.5 and RCP8.5

trajectories, respectively, for the 2018–2065 period compared

to mean 1970–2016 95th percentile discharge (Figure 6). The

increase is larger during the 2050–2097 period, with average

increases of 30% and 75% under the RCP4.5 and RCP8.5

trajectories, respectively.

The CanESM2.44.rcp45 simulation shows the smallest changes

in 95th percentile discharge, with most changes ranging between

±50% for both periods (Figures 6A, B). The CanESM2.44.rcp85

suggests significantly more variable flow in the future (2050–2097),

with the 95th percentile flow 25–50% lower than the historical

mean during certain periods and up to 200% higher during

other periods, particularly during the latter half of the century

(Figure 6D). Under the MPI.22.rcp85 and MPI.44.rcp85, changes

in the mean 95th percentile flow are small in the first half of the

century, and larger during the second half of the century (mean

95th percentile flow increases by 80–93% for the 2050–2097 period

relative to the 2018–2065 period for the constant land use scenario)

(Figures 6G–J). This increase in flow corresponds to the trends in

precipitation present in the MPI simulations (Figures 7G–J). Total

summer precipitation (April-August) increases by 160% under

both MPI simulations by 2100 relative to historical observations.

In the latter half of the century, the difference between climate

models increases. The MPI model is significantly wetter than the

HadGEMmodel. Under the HadGEM simulation, flow is increased

from 2045 to 2065, but from 2065 to 2085, peak flow is not

significantly changed from the mean historical 95th percentile flow

(Figures 4E, F). While the HadGEM model suggests that total

summer precipitation will increase by 130% beyond 2040, this

does not translate to consistent increased 95th percentile flow

(Figure 7E). The MPI simulations, particularly the MPI.22.rcp85,

show a transition to more intense 1-day precipitation beyond 2070,

which combined with the increase in total summer precipitation,

results in the >200% increase in mean 95th percentile flow

(Figures 6H, J, 7H, J).

The effect of land use conversion (i.e., human impact)

on decreasing peak streamflow can be seen in the difference

between the constant and unconstrained scenarios. Under

the RCP8.5 trajectory, the unconstrained scenario shows an

average 16% increase in mean 95th percentile flow vs. a

29% increase under the constant scenario for the 2018–2065

period (Figures 6C, E, G, I). A similar result is observed for

the 2050–2097 period, with a 55% increase in mean 95th

percentile flow under the unconstrained scenario compared to the

larger 75% increase under the constant scenario (Figures 6D, F,

H, J).

The impact of human activities relative to climate on mean

peak discharge is examined using the constant scenario to indicate

climate impact, and the difference between the unconstrained and

constant scenarios to indicate the human impact (Figure 8). During
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FIGURE 6

Percent change in 95th percentile discharge for the constant (red) and unconstrained (blue) scenarios compared to the mean 1970–2016 95th

percentile discharge. (A, C, E, G, I) depict change for 2018–2065 and (B, D, F, H, J) depict change for 2050–2097.

the 2018–2065 period, the human systemmore often has the greater

influence on the 95th percentile discharge. The human system

under the CanESM2 andMPI simulations, has up to an 80% impact

on flow during certain periods, particularly when 95th percentile

discharge is not significantly different from the historical (such as,

2040–2060) (Figures 6, 8A, C, G, I). TheHadGEMmodel is the only

simulation that deviates from the other models in the study, with a

dominant climate impact from 2045 to 2065 (Figures 8E, F).

All simulations indicate climate as having the dominant

influence on discharge variability during the 2050–2097 period,

particularly the CanESM2.44.rcp45 simulation and both MPI

simulations (Figure 8). Approximately 60–90% of the change in

mean 95th percentile discharge can be attributed to climate under

the MPI scenarios during the latter half of the century, while

only ∼20% impact comes from the human system (Figures 8H, J).

Likewise, the climate impact under the CanESM2.44.rcp45

simulation is 60–80% (Figure 8B).

4.3. Flood frequency analysis

There were seven 10-year flood events (defined using

1965–2018 observed discharge for the Ioway Creek watershed)

present in the historical simulation (model configuration 4), which

equates to an observed frequency of 0.14. This corresponds well

with the actual observed frequency of 0.12 (6 years) for the 1970–

2016 period (Figure 9). The 10-year flood event becomes more

frequent in all future climate and land use scenarios, increasing

up to 0.5 for the 2018–2065 period (Figure 9A), and up to 0.67 for

the 2050–2097 period (Figure 9B). The constant land use scenario

produces the greatest increase in the 10-year flood frequency, while

the unconstrained scenario results in the lowest increase due to the

implementation of more conservation land.

The influence of land use onmitigating the increased frequency

of the 10-year event is greater in the wettest scenarios (i.e.,

MIP.22.rcp85 and MPI.44.rcp85). The climate projections for

which the human and climate impact were found to be more

equal (Figures 8C–F), also the overall driest scenarios, result in the

least differences between in the 10-year event frequency among

the various land use configurations (Figure 9 CanESM2.44.rcp85

and HadGem.22.rcp85). In all cases, the impact of increased

conservation land is not enough to substantially reduce the

frequency of the 10-year flood under future climate. Under theMPI

simulations, the human system reduces the number of years with

flooding by 4–5. However, this reduction is small in comparison

to the overall increase to more than 24 10-year flood during the

2050–2097 period.

5. Discussion

5.1. Land use under future climate

We used an agent-based model of a representative agricultural

watershed to explore the response of a couple social-hydrologic
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FIGURE 7

Trends in total precipitation (A, C, E, G, I) and maximum 1-day precipitation (B, D, F, H, J) for the summer months of April-August for the observed

time series (gray) and climate simulations (black).

system to increasing climate extremes and to understand the

relative influence of climate and land use on hydrologic outcomes.

We found that wetter future conditions lead farmer agents to adopt

more conservation than under historical climate conditions. This

land conversion lessens the degree to which the peak discharge

increases. The range of simulated conservation land and 95th

percentile discharge is much lower for scenarios in which more

restrictions are placed on farmer decision making (constrained). In

contrast, farmer agents indicate a willingness to go beyond their

preset ConsMax when they are allowed to modify the maximum

amount of land they can convert and these unconstrained scenarios

result in greater uncertainty in modeled outcomes. However, the

farmer population maxes out at a ConsMax of 8–9% by the end

of 2050–2097, never reaching the maximum theoretical ConsMax

value of 10% that we have defined for the model. This result would

potentially be different with different economic factors, which in

our case appear to be insufficient at motivating further adaptation.

While the adoption of conservation land by the farmer agent

decreased the mean 95th percentile discharge by a notable amount,

the impact of the climate system on peak discharge outweighs that

of the human system by the end of the century.

A number of our findings can arguably be extrapolated

beyond the watershed studied to parts of the Midwest US where

precipitation frequency and intensity are expected to increase

(Janssen et al., 2014; Wuebbles et al., 2014), and rain-fed row

crop farming is prevalent. Under analysis of CMIP5 model output

conducted by Wuebbles et al. (2014), the Extreme Precipitation

Index (Kunkel et al., 1999) for the North Central U.S region

rises from about 0.4 and 0.6 for the 2016–2025 period to 0.6 and

1.9 for the end of the century under the RCP4.5 and RCP8.5

trajectories, respectively. Prein et al. (2017) drew similar conclusion

about precipitation trends for the North Central U.S., with extreme

precipitation increasing during the winter and summer months,

and moderate precipitation decreasing during the summer. The

precipitation used in this study shows that the intensity of

1-day maximum precipitation may increase by 50–100% during

certain periods (e.g., MPI.44.rcp85, 2080–2100) with precipitation

intensity increasing mostly during the months of May-July. Early

summer increases in precipitation amount and intensity would

contribute to early crop flooding and lower crop yields.

One of the primary drivers of land conversion in our

simulations was lower yield due to the wetter climate. Yields

produced by the model are 25% (2018–2065) and 30% (2050–2097)

lower under the RCP4.5 scenarios compared to historical climate.

This decrease in yield is even more substantial under the RCP8.5

scenarios, with a 27% and 42% decrease during the first and second

half of the century, respectively. The trend of decreased yields in

the future is supported by a number of studies (Schlenker and

Roberts, 2009; Hatfield et al., 2011; Rosenzweig et al., 2014; Xu et al.,

2016). Xu et al. (2016), who used the Agro-IBIS model driven by

CMIP5 climate output, found yield to decrease by 13–42% under

RCP4.5 and 17–50% under RCP8.5 for Iowa. Similarly, crop yields

are shown to decrease by 30–46% by the end of the century in a

study conducted by Schlenker and Roberts (2009). Farmers may
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FIGURE 8

Percent of total impact on the 95th percentile discharge from the human system (black) and the climate system (red). (A, C, E, G, I) depict 2018–2065

and (B, D, F, H, J) depict 2050–2097.

FIGURE 9

Frequency of maximum annual discharge exceeding the 10-year event discharge over the 47 year simulation period for 2018–2065 (A) and

2050–2097 (B).
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need to find alternative sources of revenue under future climate

if crop prices are not modified in response to yield declines in

this region. In the case of this ABM, the farmers’ only option is

to implement more conservation land, guaranteeing a payment for

the converted land. However, even in the unconstrained scenario,

the mean ConsMax of the farmer population never exceeds 0.09

(or 9% of the watershed). This indicates that under climate change,

row crop farming in the region of study could remain profitable

relative to conservation incentives. Future studies should explore

the impact of alternative conservation programs and increased

monetary incentives.

5.2. Climate and human impacts on
streamflow and flooding

As shown by our results and demonstrated by a number of

studies (Cherkauer and Sinha, 2010; Frans et al., 2013; Naz et al.,

2016; Teshager et al., 2016), increasing precipitation amount and

intensity can be expected to lead to increases in discharge and

more frequent floods across the Midwest U.S. Using CMIP5 data

with the VIC model for HUC8 basins through 2050, Naz et al.

(2016) found that runoff from most subbasins in the Midwest will

increase by 6–30% during the March-May period. Additionally,

their study shows that 95th percentile discharge increases by at

least 5% for all subbasins in the region, with many subbasins

showing an increase of 15–20% or more. A study by Cherkauer

and Sinha (2010), which also used the VIC model to simulate

watersheds in Illinois and Wisconsin, reports that seasonal average

peak flows increase by ∼10–20% for spring and summer under

three climate scenario, with some watersheds showing a 20–30%

increase. Similar to Cherkauer and Sinha (2010), in this study,

the 95th percentile discharge increased by 29% for the 2018–2050

period when constant land use was used. By comparison, under the

unconstrained scenario, when farmer decision making is turned on

and land use varies in response to intrinsic and extrinsic factors,

the increase in the 95th percentile discharge is only 16%. This

results in a significantly smaller increase in large discharge events

and illustrates the importance of considering the human system in

hydrologic analyses (Montanari et al., 2013; Srinivasan et al., 2017).

Models that incorporate a human system component provide an

opportunity to explore multiple possible situations and solutions

for better planning.

Although some streamflow mitigation may be realized through

changes in the human system (i.e., land management), our finding

is that climate could account for 60–80% of the changes seen in

discharge by the latter half of the 21st century. While not every

study has found that discharge will increase for the Midwest Corn

belt region (Milly et al., 2002; Chien et al., 2013), several studies

of observed data suggest that the potential for flooding across the

Midwest is increasing and that much of that change is a result

of changing precipitation patterns rather than land use changes

(Tomer and Schilling, 2009; Steffens and Franz, 2012; Frans et al.,

2013; Ryberg et al., 2014; Gupta et al., 2015; Mallakpour and

Villarini, 2015). Tomer and Schilling (2009) for instance, found that

climate has been the primary driver in changing discharge since the

1970s for four watersheds in Iowa and Illinois. The 1970s was a

period of transition away from land use that included small grain

and pastures to predominantly row crop cultivation, which is the

land use modeled in our study. Other studies confirm that changes

in precipitation have largely dominated changes in streamflow for

watersheds in Iowa and Minnesota throughout the last century

(Steffens and Franz, 2012; Frans et al., 2013; Gupta et al., 2015).

Rogger et al. (2017) points out that many studies of land use and

climate impacts on streamflow at the larger scale indicate climate to

be the major driver in changing streamflow, whereas studies at the

smaller field scale show a large impact from land use change. Thus,

further work is needed to understand how land use change effects

scale up to the size of a larger watershed or region, and in particular,

how these scaling effects may be different in models that consider

the human system as dynamic and changing. Further refinement

of the social, economic, and natural systems of the model could

be made to allow for consideration of alternative strategies. Future

work exploring alternative economic and social scenarios would

enhance and refine our results and support planning through

exploration of alternative scenarios.
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