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Eddy covariance measurements quantify the magnitude and temporal variability

of land-atmosphere exchanges of water, heat, and carbon dioxide (CO2) among

others. However, they also carry information regarding the influence of spatial

heterogeneity within the flux footprint, the temporally dynamic source/sink area

that contributes to the measured fluxes. A 25 m tall eddy covariance flux tower

in Central Illinois, USA, a region where drastic seasonal land cover changes from

intensive agriculture of maize and soybean occur, provides a unique setting to

explore how the organized heterogeneity of row crop agriculture contributes to

observations of land-atmosphere exchange. We characterize the e�ects of this

heterogeneity on latent heat (LE), sensible heat (H), and CO2 fluxes (Fc) using a

combined flux footprint and eco-hydrological modeling approach. We estimate

the relative contribution of each crop type resulting from the structured spatial

organization of the land cover to the observed fluxes from April 2016 to April

2019. We present the concept of a fetch rose, which represents the frequency

of the location and length of the prevalent upwind distance contributing to the

observations. The combined action of hydroclimatological drivers and land cover

heterogeneity within the dynamic flux footprint explain interannual flux variations.

We find that smaller flux footprints associated with unstable conditions are more

likely to be dominated by a single crop type, but both crops typically influence any

given flux measurement. Meanwhile, our ecohydrological modeling suggests that

land cover heterogeneity leads to a greater than 10% di�erence in fluxmagnitudes

for most time windows relative to an assumption of equally distributed crop types.

This study shows how the observed flux magnitudes and variability depend on the

organized land cover heterogeneity and is extensible to other intensivelymanaged

or otherwise heterogeneous landscapes.

KEYWORDS

land cover heterogeneity, eddy covariance, flux footprint, fetch rose, flux partitioning,

ecohydrological modeling, critical zone science, intensively managed landscapes
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1. Introduction

Agricultural landscapes dominate the US Midwest, influencing

ecohydrological responses where the root-soil-canopy-atmosphere

continuum act as an integrated system. In this region, small-
grain production was replaced about a century ago by maize and

soybean row crop agriculture. Today, a seasonal human-induced
reorganization of vegetation tomeet agricultural ecosystem services

determines their spatial distribution (Richardson and Kumar,

2017), and the region experiences seasonal transitions in land
cover every year. Specifically, row crop agriculture consists of

seed planting in early spring, rapid growth in early summer,
maturity in late summer, and harvest during autumn. During

July, the US corn belt is now 40% more productive than the

Amazonian rainforest (Foufoula-Georgiou et al., 2015) as a result

of steady agricultural intensification over the past two centuries.

In the Midwestern US, fertilization plays a critical role in

agricultural intensification. Fertilization refers to the process of

adding nutrients to the soil, such as nitrogen, phosphorus, and

potassium, to improve crop growth and yields. This high level of

fertilization is necessary to meet the demand for food and biofuel

production, contributing to the region’s agricultural productivity

and competitiveness. This dense vegetated land cover during the

growing season contrasts drastically with an almost bare landscape

of soil, roots, and litter left after harvest typically around mid-

October to November (NASS, 2010). During the growing season,

a patchy mosaic of different crops is the dominant landscape

feature, which partially hides other sources of heterogeneity such as

soil properties and micro-topographic variability (Le and Kumar,

2014). In this study we examine the effects of the “organized land

cover heterogeneity,” a term referring to the human-altered spatial

organization of the vegetation in the landscape. Our focus is on

the flux exchange between the landscape and the atmosphere,

observed through measurements at an eddy covariance tower

that encompasses the entire agricultural system, rather than just

individual plots or fields. The organized heterogeneity results from

human decisions regarding cropping patterns in the fields, crop

rotation practices, and planting and harvesting times, which are

distinct from naturally arising self-organized randomly distributed

heterogeneity. For example, in an intensively managed landscape

dominated by maize and soybean fields, such as that located

in Illinois, a 25 m tall flux tower sees hundreds of agricultural

plots in its contributing area that constantly shifts as a result of

wind speed, direction, and atmospheric stability and influences

its measurements of land-atmosphere exchanges of heat, water,

and carbon dioxide (CO2) (Kirby et al., 2008). We quantitatively

address one of the major challenges facing the interpretation

of eddy covariance measurements in heterogeneous landscapes:

Besides other sources of landscape heterogeneity, how can we

partition the contributions of the human-induced “organized

land cover heterogeneity” to the fluxes observed of a 25 m tall

eddy covariance flux tower? Further, we evaluate the relative

contribution of each crop type to the dynamics of the observed

fluxes.

Eddy covariance measurements require a homogeneous flow

field to provide an accurate integration of fluxes at the land-

atmosphere interface (Aubinet et al., 2012; Burba, 2013). However,

for a 25 m tall tower the dynamic upwind surface area where

the land-atmosphere exchange flux is generated, known as the

flux footprint, generally exhibits spatial heterogeneities and fluxes

from different sources mix at the observation point (Leclerc

and Foken, 2014). The use of footprint models for interpreting

micrometeorological observations is a common practice, but the

process of differential weighting within a temporally varying flux

footprint is a “well-known but frequently overlooked feature of

eddy covariance measurements” (Tuovinen et al., 2019; Chu et al.,

2021). Previous studies have related eddy covariance flux tower

observations to individual land use, mostly using a combination of

different measurement techniques at different scales. One approach

relies on in situ data, from nearby towers at which flux footprints

cover a specific vegetation type (Biermann et al., 2014; Chi et al.,

2019, 2020) or from flux chamber measurements (Tuovinen et al.,

2019). However, in highly heterogeneous systems with mixed

vegetation and soil wetness, it is known that there is a possibility

for a seriousmismatch between eddy covariance fluxmeasurements

and in situmeasurements for determining specific fluxes associated

with land cover classes (Alfieri et al., 2012; Wang et al., 2016;

Tuovinen et al., 2019). In our case, when tens of plots are located

inside the several square kilometer dynamic flux footprint, on-

site measurements might not be representative of the average

behavior of each land cover type inside the tower flux footprint,

which can potentially bias the conclusions of a study. Typically,

the use of in situ techniques, such as flux chambers, and remote

sensing including aircraft data are limited to study cases. Previous

studies have focused on extracting time series associated with

a plot near a flux tower. In that case, the time series for the

plot is obtained by extracting the observed fluxes when the plot

intermittently lies within the dynamically changing flux footprint.

For that purpose TOVI software (Licor, 2021), provides a set of

analytical tools to examine eddy covariance flux andmeteorological

datasets. It is particularly advantageous for sites located in the

upwind direction of the observing tower, as the area of interest can

be consistently monitored. However, it often requires additional

sources of information such as nearby towers or flux chambers,

to later recreate a full time-series for a plot. Previous studies have

also used a set of towers with overlapping flux footprints and

modeling results for the times when the towers do not see the

area of interest (Biermann et al., 2014). An alternative approach

to estimating the contribution of individual crops to the total

flux observed at the tower at each period is using a statistical

approach to deconvolve the contributions from different types of

vegetation (Tuovinen et al., 2019). However, we would require a

large amount of data to not lose resolution at times when the

flux tower only observes a small area of a certain field (e.g., if

the wind does not blow from a specific direction), otherwise, it is

not possible to get an estimation for a given field. To overcome

these challenges, we combine multiple sources of information to

synergistically inform the flux tower observations at the ecosystem

scale and to decompose the relative contribution of each of the land

cover types inside the flux footprint.

Our work is distinct from these previous efforts in that we
combine observations and ecohydrological modeling to disentangle
the contributions of different crop types to the observed fluxes
where organized landscape heterogeneity dictates their relative
contributions. In particular, it is distinct from and provides further

refinement to the approach by Chu et al. (2021), which proposes
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monthly footprint climatologies for Ameriflux sites, in that we

consider a structured heterogeneity inside the flux footprint whose

contribution is dynamically changing at every measurement time

step (15 min). When aggregating over time, the flux footprint

climatology blends the sources and sinks of the flux while

identifying the spatial extent and temporal dynamics of the areas

contributing to the observed fluxes at a tower site. We adopt a more

detailed perspective to analyze the relative contribution of each land

cover type inside the dynamic flux footprint at each observational

time step that results in clear identifications of the contribution to

the observation from each crop type. The distinctive contribution

of this study is to quantify the relative contribution of each land

cover type inside the flux footprint on the measured exchange of

water, heat, and CO2 fluxes at the land-atmosphere interface, which

is a critical aspect when accounting for fluxes’ sources and sinks

from agricultural landscapes (Masson-Delmotte et al., 2021). Using

the observations at the 25 m tall eddy covariance flux tower and

other available data sources in a complementary way, such as flux

footprint and ecohydrological modeling results, we can provide

a more informed interpretation of the behavior of the observed

fluxes with respect to their origin in the landscape. Our combined

framework can be used to study aspects of landscape heterogeneity

beyond what a tower could provide.

This paper is organized as follows: In Section 2, we describe

the Intensively Managed Landscape Critical Zone Observatory

(IMLCZO) study site (Wilson et al., 2018), and in Section 3, we

present the methods to account for organized land cover spatial

heterogeneity, including the considerations for the estimation of

the two-dimensional flux footprint and the description of the use of

the ecohydrological model to estimate the fluxes of the upwind area

sources. Results and discussion are presented in Section 4, where we

describe the ecosystem behavior at the study site as observed by the

flux tower. Then we explain the results of the flux footprint and the

ecohydrological modeling, and we analyze the seasonal and inter-

annual evolution of the flux contribution due to each crop type.

At the end of Section 4, we connect maize and soybean crop yield

at the study site to investigate CO2 flux dynamics. In Section 5 we

summarize the main findings and discuss some assumptions used

in this work that could be relaxed in future studies.

2. Study site

2.1. Description

We use hydrometeorological data and flux measurements from

a 25 m tall eddy covariance flux tower in the IMLCZO, located at

40.155N, 88.578W, Goose Creek Township, Piatt County, Illinois,

US (Figure 1). In the Upper Sangamon River Basin, both glacial

andmanagement legacies have shaped soils, topography, and native

land cover resulting in a low-relief landscape with poorly drained

soils (Anders et al., 2018; Kumar et al., 2018). Therefore, the use

of tile drains is a common practice in crop fields for subsurface

drainage (Wilson et al., 2018). The climate at the study site is

humid continental (Koppen climate classification Dfa) with warm

and humid summers and cold winters. Historically, maximum

precipitation occurs in late spring and early summer (i.e., April to

June) with an average of about 100 mm per month and long-term

observations have shown that Illinois has become wetter during the

crop-growing season (Mishra and Cherkauer, 2010).

In this agricultural landscape, vegetation dynamics are a strong

determinant of land-atmosphere fluxes and their seasonality in

the landscape. These dynamics are highly influenced by the

prevalent practice of crop rotation between maize and soybean

fields every one or two years, along with different intensities

of tillage (Wilson et al., 2018). The region has a return of one

harvest per year. Planting occurs from early April to late May,

and harvest occurs from late September to early November. Maize

is typically planted before soybean and harvested after, such that

it has a longer growing season (NASS, 2010). In this study, we

consider an April–March window as a “crop year” (e.g., April

2016 to March 2017 is denominated in this study as “crop year

2016”). Both crops have a peak vegetation cover with very dense

leaf area index (LAI) reaching 4 for maize and 6–7 for soybean

(Drewry et al., 2010). A distinctive feature of this agricultural

region is how the dense vegetation cover during the growing

season contrasts drastically with the almost bare landscape left after

harvest until the following spring season when planting occurs

(NASS, 2010) (Figure 2). Corn and soybean crops desiccate in the

field prior to harvest, leading to the cessation of photosynthesis.

After harvest, crop residues, i.e., mainly litter, stover, and plant

roots, remain on the surface and in the shallow soil layers

until the following spring when planting occurs (Warner et al.,

1989).

2.2. Instrumentation and data

Our 25 m-tall eddy covariance flux tower sees the combined

response of hundreds of different plots every 15-min in the

“patchwork quilt” landscape inside its several square kilometer

dynamic flux footprint. We use a set of detailed land cover maps

(NASS, 2018) to characterize the annually varying spatial land

cover type distribution. Although the underlying vegetation is non-

homogeneous, the tower is situated on terrain that is generally

flat in all directions for an extended distance upwind, making

the study site ideal to explore land-atmosphere flux dynamics

resulting from land cover changes in a human-induced agricultural

landscape. The eddy covariance tower has recorded data from

April 2016 to the present day. The high-frequency instruments that

estimate fluxes from the ecosystem are deployed at 25 m height

(Li-7500 Infrared Gas Analyzer manufactured by LiCor Inc., and

CSAT3 Sonic Anemometer manufactured by Campbell Scientific

Ltd) (see Supplementary material). These instruments sample at

10 Hz and are set to record 15-minute averages. They point

to the south-southwest, the prevailing wind direction (Figure 1).

However, constantly shifting wind directions with meteorological

conditions have implications for this study (described in detail

in Section 3). For more information on the variables used in

the analysis and instrumentation at this flux tower, see the

Supplementary material.
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FIGURE 1

Goose Creek flux tower location and components. (A) Location of the tower (green dot) and the intensity of maize cultivation [the red area

represents the corn harvested area fraction (high = red, low = light ivory); Monfreda et al., 2008]. (B) Fluxes measured by the 25 m tall eddy

covariance tower come from the underlying heterogeneous landscape consisting of a mosaic of maize and soybean fields, from a fetch that can

reach up to 10 km upwind from the tower. (C) The prevailing wind direction is from the southwest (4/23/2016–4/30/2019). The relative frequency

with which the wind blows from a particular direction is proportional to the spoke’s length, and colors indicate di�erent wind speed categories.

FIGURE 2

Panoramic view of the intensively managed agricultural study site. (A) During the growing season in July 2015, a row crop agriculture mosaic

dominates the landscape, masking features such as micro-topographic depressions and soil variability. The vegetated land cover connects the

heterogeneous ecosystem and the overlaying atmosphere during the growing season. (B) Right after harvest (October 2017) only litter remains over

the surface. “R" marks a common reference point between the two pictures [Photo credit: (A) AG and (B) LH].

3. Methods

Here we describe how we estimate the relative contribution of

different land cover types to land-atmosphere fluxes measured at

the flux tower. First, we use the wind data to obtain the variability

of the areal coverage by using a two-dimensional flux footprint

parameterization. Then we use a process-based ecohydrological

model to obtain the temporally varying ratio of the flux values

for different land covers. We use both the observed data and the

modeled ratio of fluxes to estimate the contribution of each crop

to the observed fluxes. From this, we can characterize the patterns

of magnitude and variability of fluxes. Knowing that the observed

fluxes at the ecosystem scale also carry the influence of the spatial

heterogeneity within the flux footprint, we deconvolve the signal

of the eddy covariance observation by quantifying the differential

weighting of the plots based on the land cover types inside its

dynamic flux footprint to find the relative contribution of each land

cover type on the observations.
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3.1. Estimation of two-dimensional flux
footprint

Latent heat (LE), sensible heat, (H), and CO2 fluxes (Fc)

estimated by the flux tower at any given time point correspond to

an uncertain origin on the landscape. This origin can be estimated

as the flux footprint, which is defined as the upwind landscape

area that contributes to the measured vertical flux or concentration

at a specific time (Vesala et al., 2008; Burba, 2013; Kljun et al.,

2015). In this study, we use the two-dimensional flux footprint

prediction model (FFP) proposed by Kljun et al. (2015), which

considers the effects of surface roughness, atmospheric stability,

and the crosswind spread of the footprint. For an agricultural

landscape, surface roughness length changes as a function of

vegetation height through the growing season. Also, atmospheric

thermal stability rapidly changes with air temperature and density

at a given pressure, impacting the vertical motion of air parcels. As

a result, the areal contribution associated with each land cover type

changes dynamically. The FFPmodel provides the width and shape

of the two-dimensional flux footprint at any given time, where the

source/sink area of the fluxes is located on the horizontal surface

(x, y), and the tower height in the vertical direction, z (Figure 3).

The FFP model assumes stationarity over the eddy-covariance

integration period (here, 15-min) and horizontal homogeneity

of the flow, but not of the scalar source/sink distribution. The

variability of roughness over corn and soybean crops, however,

can introduce potential errors in this assumption. These errors can

include inaccuracies in the estimation of flow parameters, such as

velocity and scalar transport.

When estimating the two-dimensional flux footprint, at each

time interval the observed fluxes have their origin in a different

combination of maize or soybean fields. To derive the source area

up to a certain percent of flux contribution, we define a set of five

contours (r) that define the areas that contribute 20, 40, 60, 80,

and 90% of the total flux estimated by the flux tower. At farther

locations beyond r90% that correspond to a contribution of 90%,

the contributions tail off, so we limit our study to r90% (we use r%
or r to represent percentage or equivalent fractional contribution,

respectively). The associated fetch changes direction and length at

every time step. In this context, the fetch is the distance from the

tower to a specific fraction of the flux contribution. For example,

the fetch for a 50% contribution (r50%) will be shorter than for a

90% contribution (r90%) (Burba, 2013).

We used the FFP model as a function on a loop in our

Python code to estimate flux footprints for each 15-min data

point from April 2016 to April 2019. Here we describe the inputs

required for the FFP model. The calculation of the boundary layer

height, blh, is based on the bulk Richardson number, Ri, method

(Vogelezang and Holtslag, 1996) which is suitable for convective

and stable boundary layer conditions and has been used in several

previous studies (Seidel et al., 2012; Lee and De Wekker, 2016).

We used the blh retrieved from the fifth generation reanalysis

dataset for the global climate and weather, ERA5 (ECMWF, 2018)

from the European Centre for Medium-Range Weather Forecasts

(ECMWF). Near-surface atmospheric turbulence is caused by

thermal and mechanical effects. Thermal turbulence is produced

by temperature gradients and buoyant forces, while mechanical

turbulence is generated by friction forces driven by wind shear,

and therefore both control atmospheric fluxes. To account for

atmospheric stability we calculate the Obukhov length, L (Foken,

2006), which is positive for stable and negative for unstable

atmospheric stratification, and becomes near-infinite in the limit

of neutral stratification. The standard deviation of the lateral

velocity fluctuations, σv, is estimated using the 15-minute root-

mean-square of the cross main-wind component, v, from the high-

frequency data at the flux tower. In footprint modeling, changes

in roughness are relevant when differences between land surface

covers are significant (e.g., at the same time because of different

vegetation types within the same footprint, or across the time as

a result of the sudden change between vegetation covered and

bare soil resulting from harvest). The displacement height (d),

representing the elevation of a non-vegetated surface required to

produce a logarithmic wind field equal to the observed one, is

estimated during the growing season as a function of average crop

height (d = 0.67 ∗ h) (Jacobs and Van Boxel, 1988; Stull, 2012).

The relationship between canopy height and Leaf Area Index (LAI)

has been established for maize and soybean (Gao et al., 2013;

Alekseychik et al., 2017). Hence, LAI was used as a proxy for

determining average changes in height. LAI data was obtained

from MODIS 8-day dataset with 500 m resolution (Myneni et al.,

2015) and fieldmeasurements of NormalizedDifference Vegetation

Index (NDVI) (Nguy-Robertson et al., 2012). We used LAI from

maize-only and soybean-only pixels near the tower to estimate h for

each crop and used the average value to compute the displacement

height d for the flux footprint model. A more comprehensive

approach could involve iteratively estimating d based on the crop

fractions within a footprint or the area surrounding the tower, but

we maintain this simple averaging approach. The measurement

height above the displacement height (zh) was calculated as zh =

z − d, where z = 25 m is the tower height.

3.2. Heterogeneity and flux partitioning
equations

Here we describe the approach to estimating the relative flux

contribution due to heterogeneous land cover. Analytically, the

distribution of a diffusive quantity in the lower layer of the

atmospheric boundary layer is described as an integral diffusion

equation. Therefore, the flux footprint relates the vertical eddy

flux η from a flux tower located at the origin (0, 0) and with

an observation height, zobs, to the spatial distribution of ground

source (or sink) fluxes F(x, y) at the ground (z = 0) at a upwind

distance (x) and crosswind (y) direction from the tower location

(Pasquill and Smith, 1983; Schuepp et al., 1990; Horst and Weil,

1992; Schmid, 1994; Vesala et al., 2008):

η(0, 0, zobs) =

∫
R

F(x, y) · ω(x, y)dxdy (1)

where R denotes the flux footprint and ω(x, y) is the relative

contribution to the flux at any location (x, y) (Kljun et al., 2015).

F(x, y) is the source (sink) flux from the surface at location (x, y),

with the same units as η, where η = η(0, 0, zobs). The observed flux
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FIGURE 3

Illustration of a two-dimensional flux footprint that captures the organized heterogeneity of the maize-soybean mosaic. The land cover data from

USDA 2016 (right) shows a mosaic of maize and soybean surrounding the flux tower. The density profile over the mosaic (orange) represents the

relative contribution of the flux footprint as a function of the upwind distance, denominated as the fetch (black dashed line). Here we consider

explicitly the dependence of the distance of the contributions from di�erent patches. The density profile shows that higher contributions come from

locations close to the tower, but not immediately underneath. In the two-dimensional approach (Kljun et al., 2015), the area defined by a set of

contours (r%) of an increased percentage of contribution (bottom) define the strength and location of the sources/sink areas that contribute to the

flux estimated at the tower. w is the weighted flux footprint contribution of each patch of area (a) defined by a given contour. Therefore, the flux

tower measurement is the combined response of the fields inside the flux footprint (left).

η is then the weighted integration of all the surface fluxes inside the

contour r90% of flux contribution and has units ofW/m2 for latent

heat flux, LE, and sensible heat flux,H, andµmol/m2s for CO2 flux,

Fc. This approach assumes horizontal homogeneity of the turbulent

flow field (Horst and Weil, 1992) and temporal stationarity, which

refers to the consistency of statistical properties during the 15-

minute integration period. Consequently, the relative contribution

of each field source or sink is a function of its location within the

flux footprint.

We assume that fluxes are the same within a given patch of

a crop, and there are n landscape patches that contribute to the

measured flux inside the flux footprint. To account for a measure

of surface heterogeneity, the source emission or sink rate for n

different sources (or sinks), Equation (1) is expressed as:

η =

n∑
i=1

Fi · wi (2)

where Fi is the ground level flux for patch i and wi is the weighted

flux footprint contribution of each patch of area ai. We further

aggregate these landscape patches and assume that the fluxes are

identical for patches of the same crop type. In other words, we

assume that the crop type is the only contributing factor to flux

variability in the region of the tower. We now use the subscripts

m and s to refer to maize and soybean, respectively. We consider

a given contour r, with area ar and weighting fraction wr . For

example, the region between the 60% and 90% contours has a wr =

0.3, or a 30% contribution to the total flux. Inside a contour, we

determine the total fraction of areas covered by maize and soybean

and denote as Am,r and As,r , where Am,r + As,r = 1. Then, we

determine the weighted contribution for contour r for the two crop

types as follows:

wm,r = Am,r · wr and ws,r = As,r · wr (3)

We can then compute the relative contribution from each crop

type over all the contours, denoted as φ, as follows, where the

summation is over all contours r:

φm =

∑
r

wm,r and φs =

∑
r

ws,r (4)

Our assumption that vegetation type is the dominant source of

flux variability could be relaxed if detailed characteristics of each

landscape patch were available. As described in the next subsection,

we use a multilayer canopy model to estimate the vegetation-level

fluxes (LE,H, Fc) for each crop type. Since these fluxes are modeled,

here denoted as Cm and Cs for maize and soybean, respectively,

their application to Equation (2) results in a total “modeled” flux

ηmod:

ηmod = Cmφm + Csφs (5)

Notice that the assumption of the linear sum of all the contributions

from the same type of vegetation inside each flux footprint takes
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into account the spatial distribution of the patches of each species

when using the 2D flux footprint model (Kljun et al., 2015) to

determine φm and φs. In other words, this approach takes into

account the dependence on the distance of each patch from the

measurement point. In addition to the previous assumptions,

model and observation errors exist. Therefore, we expect ηmod to

be different from the observed tower flux, η. Random errors due

to the nature of turbulence are inevitable, such as the intermittency

of turbulent transport, which increases as flux magnitude increases

(Aubinet et al., 2012; Vitale et al., 2019). Therefore, our aim is

not to validate our modeled results against flux observations, but

to merge flux tower observations with ecohydrological and flux

footprint modeling to improve the crop-specific estimates. Lastly,

we compute the partitions of the fluxes observed at the tower for

maize and soybean fields, respectively, as follows:

ηm = η ·
Cm · φm

ηmod
= η ·

Cm · φm

Cm · φm + Cs · φs
(6)

ηs = η ·
Cs · φs

ηmod
= η ·

Cs · φs

Cm · φm + Cs · φs
. (7)

Based on this, we combine the relative fluxes from a process-

based model with a two-dimensional footprint model to determine

both the fractional and actual contributions to the flux.

3.3. Ecohydrological modeling to simulate
maize and soybean behavior

We use an annual land cover product from the United States

Department of Agriculture (USDA) Cropland Data Layer (CDL)

at 30m spatial resolution (Figure 3) to determine the land cover

inside each flux footprint. Some fields see maize-soybean rotation

(i.e., maize and soybean in alternating years) while others see

maize-maize-soybean rotation (i.e., maize for two consecutive years

followed by a year of soybean). Generally, the land cover for a year

does not change until the planting season in the next year (i.e.,

starting around mid-April), and therefore we define a single land

cover from April through March of the next year, as a “crop year".

We use Equation (4) to compute the flux footprint contribution for

maize and soybean, φm and φs, respectively.

We use the well-tested and validated Multi-Layer Canopy

model, MLCan (Drewry et al., 2010; Le et al., 2012), to simulate

the flux response of maize and soybean, Cm and Cs, respectively,

under observed atmospheric drivers. MLCan uses a multilayer

discretization of the canopy and root zone, including a litter layer

on the soil surface, to simulate the below- and above-ground

ecohydrological processes for different vegetation types. At the leaf

scale, ecophysiological (photosynthesis and stomatal conductance)

and physical (leaf-boundary layer conductance and energy balance)

components are coupled to determine flux densities of CO2,

latent, and sensible heat, and then integrated into the canopy

scale. For an extended description of the model and its validation

for maize and soybean, we refer the reader to Drewry et al.

(2010). We compute the fluxes associated with maize and soybean,

which use C4 and C3 photosynthetic pathways, respectively. The

model is driven by above-canopy measurements of air temperature

(Ta)(◦C), barometric pressure (Pa)(kPa), global solar radiation

(i.e., incident shortwave radiation) (Rg)(W/m2), precipitation

(PPT)(mm), and vapor pressure deficit (VPD)(kPa) from April

2016 to March 2019. Annually, we calculated the mean Leaf Area

Index (LAI) in the vicinity of the tower from the period between

planting and harvest, using Normalized Difference Vegetation

Index (NDVI) measurements from the Moderate Resolution

Imaging Spectroradiometer (MODIS) 8-day dataset at a resolution

of 500 m (Myneni et al., 2015). Using the Cropland Data Layer

(CDL) for 2016 to 2019, we identified pixels around the tower

of a single crop, comprising an average of 25% maize and 23%

soybean fields. We refined LAI estimates for each crop type

using field measurements of Normalized Difference Vegetation

Index (NDVI) Nguy-Robertson et al. (2012) from the field on the

prevalent wind direction from the tower. LAI is assumed to be

zero during the non-growing season when no vegetation is on the

surface and only litter from the previous season’s crops remains.

Maize and soybean parameters for the model are provided in the

Supplementary material. MLCan simulations provide LE,H, and Fc
at 15 minute resolution for maize (Cm) and soybean (Cs). These

are then used to compute the total modeled flux and relative

contributions [Equations (5)–(7)].

3.4. Illustration of the role of organized
heterogeneity

At a single time step, we consider that the total contributions of

the flux footprint frommaize and soybean (φm and φs respectively)

are defined by the sum of their relative contributions (Figure 4),

as shown in Equation (4). As an illustrative example, we consider

three cases (Figure 4, Table 1) where φs = φm = 0.5 (Case A),

φs = 0.4 and φm = 0.6 (Case B), and φs = 0.6 and φm = 0.4 (Case

C). Case A corresponds to equal contributions from the two crops

as would be expected if the two were randomly distributed or the

organized heterogeneity incidentally reflected equal contributions,

like in the hypothetical case shown in Figure 4A. Cases B and

C reflect relatively larger contributions from maize or soybean,

respectively. For all three cases, assume that the modeled fluxes are

LEs = 120 W/m2 and LEm = 80 W/m2, and the tower observed

flux is η = 105 W/m2. For Case A this leads to a total estimated

flux nmod = 100 W/m2 (= (0.5)120+ (0.5)80). For Cases B and C,

we would estimate nmod as 96 W/m2 and 104 W/m2, respectively.

Since for all three cases, the observed flux at the tower is the same,

we can estimate the difference between η and ηmod (Table 1). In this

example, we see that the landscape heterogeneity of Case C leads

to the closest estimate to the flux measured at the tower. We can

also consider the percent difference in ηmod relative to the equal

contributions of Case A. Here, we see that Case B leads to a −4%

difference in LE, due to the higher contribution from maize, which

has a lower LE. The opposite occurs for Case C (Table 1).

This example also demonstrates that the change in the relative

contribution of fluxes due to two crop species can either increase

or decrease the total flux observed at the tower (η) relative to the

hypothetical case of a random distribution of crops. In other words,

an incremental change in flux observed at a tower could either
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correlate to a change in flux from the crops or a shift in relative

land cover contributions. This has significant implications for flux

tower data interpretation in a heterogeneous landscape.

4. Results and discussion

4.1. Flux footprints cover a wide range of
landscape areas

The size of the flux footprint strongly depends on the highly

variable atmospheric stability at the sub-hourly time scale. At

the annual scale or for observations over long periods, the

effect of the atmospheric stability on the footprint climatology,

an aggregation of footprints over several time steps, is weaker

(Kljun et al., 2015; Zhang and Wen, 2015; Tuovinen et al., 2019).

The climatological footprint for crop years 2016 (Figure 5A),

2017 (Figure 5B), and 2018 (Figure 5C) show the changes in

the average location of the surface source areas, where the

outer contour shows the upwind distance (fetch) for the 90% of

flux contribution, r90%. Figure 5 illustrates flux footprints under

neutral (Figure 5A), unstable (Figure 5C), and, stable (Figure 5E)

atmospheric conditions. Turbulent mixing plays an important

role in the magnitude of fields’ relative contributions, as the

weighting of fields farther away from the tower increases with

increasing stability. In general, the flux footprint size decreases

with decreasing zm/L (Section 3.1). Therefore, under unstable

conditions (Figure 5D) we can expect a smaller flux footprint than

under stable conditions (Figure 5F). We found that the average

distance to the flux footprint peak is 168m for unstable conditions

and 268 m for stable conditions (Figure 5G). The footprint is

wider as the standard deviation of the lateral wind fluctuations

increases and, therefore, the crosswind dispersion increases (Kljun

et al., 2015; Zhang and Wen, 2015). On average, the upwind

area described by r90% corresponds to 1.51 km2 for unstable

conditions and 3.17 km2 under stable conditions. Similarly, the

upwind distance to the contour described by the 90% of the

flux contribution for unstable conditions is closer than for stable

conditions, with 5.8 km and 9.2 km, respectively (Figure 5H).

While the 2D flux footprint provides the upwind source area

up to a certain percentage of flux contribution, the frequency of

the direction and length associated with the prevalent upwind

distance for the 90% of contribution (fetch) is not yet known.

Here we propose the fetch rose, a graph that shows the frequency

of the upwind distance (fetch) from particular directions over a

specified period (Figure 6). The fetch roses for crop years 2016

(Figure 6A), 2017 (Figure 6B), and 2018 (Figure 6C) for r90% have

a prevalent south-southwest direction in a 16-point compass.

While the dominant direction is south-southwest, other wind

directions are relatively equiprobable. We see that fetches over 10

km (Figure 6, orange to red) are rare relative to fluxes from 2.5

to 10 km (Figure 6, light blue to yellow) but fetches tend to be at

least 2.5 km. We also see that the longest fetches emanate from

all directions except north, such that distant fields from the north

hardly ever influence tower fluxes. The r90% fetch points toward the

prevalent direction 6% of the time on average from 2016 to 2019

(Figure 5D), and its length is 5–7.5km. The implications of these

results for partitioning flux contributions for each crop type due to

the flux footprint are discussed in the following subsections.

4.2. Flux contributions evolve due to
organized heterogeneity and
hydroclimatological drivers

We estimated the relative contribution of average daily fluxes of

maize and soybean (Figure 7) using the observed flux tower data.

LE, H, and Fc exhibit strong seasonality, where LE and H typically

peak between June-August, and Fc is negative during these times,

indicating the predominance of photosynthesis over respiration. LE

is always high relative to H, indicating that a greater portion of

available energy returns to the atmosphere as evapotranspiration

instead of a temperature change. Maize dominates in 2016 and

2018, and soybean dominates in 2017, which matches with Figure 5

maps, where most contours cover maize around the tower in

2016 and 2018. However, 2018 has the evenest distribution (e.g.,

time windows 16–21 for LE), and some time windows (16, a, b)

have a dominant soybean influence on LE and H, which might

correspond to a prevalence of distant soybean fields planted in

the SW direction, even though maize is planted in nearby fields.

In terms of flux footprint contribution, φ (Figure 7D), a larger

contribution from maize fields was observed in 2016 and 2018

when more fields were cultivated with maize in areas between

168 m and 268 m upwind from the tower. In 2017, soybean

was mostly planted in the same fields. However, both crop types

influence the magnitude of the observed fluxes. In terms of Fc
behavior across seasons, we observe that a strong release of CO2

flux, on the order of 2 µmolCO2/m2
· s into the atmosphere

occurs during planting (Figure 7C, numerals 1, 9, and 17). This

is followed by a much larger uptake of CO2, of approximately

4 µmolCO2/m2
· s, during the following two 6-week windows.

This can be explained by rising temperatures and soil moisture

that support heterotrophic respiration of existing biomass on and

in the soil. Agricultural practices that vary among fields, such as

spring tilling, can also spur soil respiration. During the peak of the

growing season, soybean fields in 2017 contributed more toward

a higher CO2 uptake (Figure 7C, numeral 11), which suggests that

soybean fieldsmay bemore effective for carbon sequestration, while

maize fields in 2016 and 2018 contributed more toward a higher LE

(Figure 7C, numeral 2 and 18), which could be attributed to factors

such as high temperatures or soil moisture deficits. Accordingly,

this 6-week window analysis shows that maize fields inside the flux

footprint contributed more toward daily LE and H than soybean

fields during the 2016 and 2018 growing seasons, whereas soybean

contributed more than maize in 2017. In 2018 however, we note

that the contributions are the most similar between the two crop

types (Figure 7D), where the prevalent wind direction can cause the

footprint to be composed of patches with a more equal distribution

of crop types (Figure 6C).

Next, we explore the seasonal dominance of a given crop type

in terms of the relative flux footprint contribution in magnitude, φ,

rather than area contribution. We calculated the difference in the

percentage of contribution for the two cases described in Section

3.4. First, for the hypothetical randomly distributed mix of plants,
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FIGURE 4

Conceptual illustration of the flux footprint responses of (A) a random land cover mosaic where maize and soybean equally contribute to the total

observed flux (φm = φs = 0.5), and (B) an organized heterogeneous land cover mosaic as observed at the study site.

TABLE 1 Comparison between the random and organized heterogeneous mosaic cases (Figure 4) toward the estimation of latent heat flux, η ≡ LE.

Case η(LE) φs φm LEs LEm ηmod η − ηmod Di� from A

(W/m2) (frac) (frac) (W/m2) (W/m2) (W/m2) (W/m2) (%)

A 105 0.5 0.5 120 80 100 5 0

B 105 0.4 0.6 120 80 96 9 −4

C 105 0.6 0.4 120 80 104 1 4

Case A refers to the “equal contribution assumption" (Figure 4A), whereas Case B (Figure 4B) and Case C are heterogeneous situations in which soybean and maize are more dominant,

respectively.

in a manner that does not reflect any particular spatial pattern,

where the relative contribution of the flux footprint for each crop

type is equal, φm = φs = 50%. We compare this hypothetical

random distribution to the observed contributions of each crop,

where φm and φs are temporally variable and one crop type tends

to dominate the footprint contributions. Specifically, the maximum

values for φm and φs are greater than 0.8 (Figure 7). In other

words, we want to find what crop is dominant in each window

resulting from a combination of fluxes associated with each crop

and the fraction they occupy in the flux footprint. To estimate

the contribution percentage of each crop, we first calculated the

average LE, H, and Fc for maize and soybean for the 6-week

windows, using Equations (5)–(7) and the corresponding φ for each

case. Then, we subtracted the results assuming a random (rather

than organized) distribution of crops from the heterogeneous

results (i.e., organized heterogeneity), to define the dominant

crop for each window. The 6-week averaged analysis shows the

difference between the percentage of the contributions for the

organized heterogeneous mosaic and for the hypothetical random

contribution case (Figure 8). While maize fields contributed more

to the observed LE and H in crop years 2016 and 2018, soybean

fields contributed more in the crop year 2017 (Figures 8A, B). The

largest contribution due to the land cover heterogeneity is observed

for CO2 flux (Fc) from June 1 to July 15, 2017 (Figure 8C, bar 10),

when on an average soybean fields contribution toward Fc is 24.5%

larger than the random case (Figure 8C).

Given that changes in flux observed at the tower could either

correlate to a change in flux from the crops or a shift in relative land

cover contributions, we analyze the latter based on atmospheric

stability conditions and the significance of the contributing areas

(Figure 9). Besides the overall high contribution due to maize

and soybean areas nearby the tower under unstable conditions,

maize and soybean show a different cumulative distribution

function based on stability (Figure 9A). Particularly under unstable

conditions, the flux footprint is smaller, and therefore there is

a higher probability of observing a single crop type (Figure 9A).

However, φ is always less than 100%, meaning that the contribution

comes from a mix of maize and soybean fields (Figure 9B). During

2016–2019 and for unstable conditions, is more likely for φm and

φs to greatly differ (e.g., phis < 10% and phim > 85%) (Figure 9B).

Our results show that stable conditions tend to homogenize the

relative percentage of contribution of the two crop types. Therefore,

under stable conditions the probability to see large differences

between φs and φm decreases.

Although the main purpose of this study is not to validate our

modeling results against flux observations but to merge flux tower
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FIGURE 5

Flux footprint plots with contours over the mosaic of maize (blue) and soybean (green) crops with the center at the flux tower. Each flux footprint

plot shows the source area defined by the contours of 20, 40, 60, 80, and 90% (outer contour) of the total flux contribution. The climatological (or

average) flux footprint for crop years (A) 2016 (i.e., April 2016 to March 2017), (B) 2017, and (C) 2018, correspond to the aggregation of all single

footprints over the year. A sample of single 15-minutes averaged flux footprints under (D) neutral (05/18/2016 06:00), (E) unstable (08/18/2017 12:00),

and (F) stable (12/19/2018 15:15) atmospheric conditions show the changes in size and location of the source area of the surface flux defined by the

dynamic flux footprint. Histograms of the 15-min FFP analysis for the upwind distance (fetch) to the (G) mode and to the (H) 90% of flux contribution,

illustrate the average behavior under stable (blue), unstable (orange), and neutral (green) atmospheric conditions over the 3 years of analysis. The

probability density function of the upwind (I) area and (J) distance of the 90% of flux contribution show di�erences based on wind direction.

observations with ecohydrological and flux footprint modeling

to improve the crop-specific estimates, we show here that our

modeling results of daily averaged fluxes for the 6-week windows

of analysis capture the seasonal behavior of the observations for

Fc and LE (Figures 10A, B, respectively). In Figure 10, we include

metrics that provide some quantitative information about the

goodness of fit of observed and modeled results for the daily

averaged data for the 6-week windows analysis, such as the Mean
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FIGURE 6

Fetch rose plots show the relative frequency in length and location of the upwind distance (fetch) to the 90% of flux contribution for crop years (A)

2016 (i.e., April 2016 to March 2017), (B) 2017, (C) 2018, and (D) for April 2016 to March 2019. We keep a fixed 15% maximum frequency to compare

the prevalent direction and frequencies across crop years. Using a polar coordinate gridding system, the fetch rose shows the frequency over a time

period by wind direction with color bands showing fetch ranges. The direction of the longest spoke shows the direction of the upwind distance with

the greatest frequency. The concentric circles are used to estimate the relative frequency of the fetch ranges. The fetch rose comprises 4 or more

radiating spokes that represent cardinal wind directions, such as the 16-point compass fetch roses presented here. The fetch rose diagram is based

on a wind-rose tool (Pereira, 2022) and the fetch for r90% of flux contribution (Kljun et al., 2015).

Absolute Error (MAE), the Root Mean Squared Error (RMSE),

the Mean Squared Error (MSE) and the Normalized Root Mean

Squared Error (NRMSE). MAE shows the average magnitude of

the difference between the observed and modeled results, in units

of the variable being measured. The RMSE and MSE estimate the

overall accuracy of the model across the range of the observed

results, while the NRMSE provides a normalized measure of the

RMSE, taking into account the range of the observed results. We

observe a better fit of the observed and modeled data comparison

for Fc than for LE across metrics, with Fc having a lowerMAE of 0.7

and a lower NRMSE of 0.13, compared to LE which had an MAE

of 11.42 and an NRMSE of 0.16. While modeling results tend to

slightly overestimate positive Fc during non-growing seasons and

match the overall negative Fc observed during the growing seasons,

we consider that these results are satisfactory for our purposes given

the complexity of the processes involved and the assumptions taken

in order to estimate the role played by the land cover heterogeneity

on the dynamics of the observed fluxes. If our main purpose were

to replicate eddy covariance observations at finer temporal scales

using a physically-based modeling approach, more processes and

sources of variability would need to be considered besides the crop

type influence studied here.

4.3. Organized heterogeneity and
hydroclimatological drivers explain high
2017 CO2 uptake

Here we use the results of the relative contribution analysis to

determine the relationship between the lowest crop yield and the

largest net CO2 budget observed in 2017, in comparison to 2016

and 2018. The USDA provides crop yields at the county scale for

Piatt county, Illinois (NASS, 2018) (Figure 11A), which we assume

is representative of yields at the study site. Here we determine how

the different contributions of maize and soybean inside the flux

footprint can inform the observations. Explicit dependence on the

distance of the contributions from different patches is considered.

From MLCan we obtain the net CO2 budget for each crop type

during the growing seasons (Figure 11B). Assuming that the CO2
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FIGURE 7

Seasonal evolution of average daily fluxes due to the relative contribution of maize (blue) and soybean (green) in 6-week windows, for (A) latent heat

flux, LE; (B) sensible heat flux, H; (C) carbon dioxide flux, Fc; and (D) relative flux footprint contribution, φ. Each stacked bar refers to a 6-week

average daily flux for each crop type. Dash vertical lines show the years of analysis. The relative contributions due to soybean and maize were

calculated with the method described in Section 3 using 15-minute data, from April 2016 to April 2019.

taken up is only used to produce dry matter (DM) and that the

weight per bushel of DM for maize is 25.4 Kg/bushel and 27.2

Kg/bushel for soybean (Murphy, 1981), we estimate the net CO2

budget per unit yield for each crop type. We make the simplifying

assumption that the CO2 taken up by plants is only used to produce

dry matter, and we did not consider any potential changes in

soil carbon storage. We acknowledge that this assumption may

not fully reflect the complex interactions between plants and soil,

where changes in soil carbon storage could potentially influence the

carbon balance. Therefore, we provide a rough estimate of the CO2

emissions or sequestration on a carbon basis. We assume a carbon

content of 45% for soybean and maize dry matter and converted

the kg CO2 / kg dry matter to kg CO2 / kg carbon, which represents

the amount of CO2 sequestered per unit of carbon contained in

the crops (Figure 11C). Given that the net CO2 during the growing

season is negative, more CO2 is taken up than released. The carbon

sequestered, which is measured kg CO2/kg C, and calculated by:

Carbon sequestration (kg CO2 / kg C)

=
Net CO2 during the growing season

weight per bushel of dry matter× crop yield× 0.45
. (8)

This provides a way to compare the carbon impact of soybean

and maize, and we observe that soybean has a larger CO2 uptake

than maize (Figure 11C). By using the area of the average 90% flux

contribution using the climatological flux footprint (Figure 11D),

we can provide a broad estimate of the amount of carbon that is

harvested from each crop within the flux footprint (Figure 11E):

Charvested (kg) = crop yield (kg/ha)× carbon content (%)

× area of the 90% flux contribution (ha) (9)

To estimate the total amount of CO2 sequestered by each

crop inside the flux footprint, we multiply the amount of

carbon harvested by the kg CO2/kg carbon value for each crop

(Figure 11F). Both the C harvested and CO2 inside the flux

footprint are larger for maize than for soybean across years, and

the highest C harvested and CO2 uptake from soybean fields

occurred in 2017 (Figures 11E, F). Given that soybean fields take

up more CO2, even in a drier, low-yield year, we see more

CO2 uptake for a year in which soybean is dominant inside the

footprint; Figure 11D). Also, CO2 release is muted from respiration

by the drier conditions, further skewing the net flux toward

high CO2 uptake. Therefore, we observe that the higher annual

net CO2 budget in the crop year 2017 is not only the effect

of hydroclimatological conditions but the particular contribution

of soybean fields, which play a significant role in the higher

uptake of CO2 observed that year. The combination of CO2

taken up by soybean fields and the drying that occurs due to the
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FIGURE 8

Seasonal evolution of the percent contribution due to organized heterogeneity in 6-week windows, for (A) latent heat flux, LE; (B) sensible heat flux,

H; and (C) carbon dioxide flux, Fc. These plots show the di�erence between the response of a heterogeneous land cover mosaic and a hypothetical

random assumption where φm = φs = 0.5. Dash vertical lines show the years of analysis.

FIGURE 9

Seasonal behavior of the relative flux footprint contributions due to maize and soybean fields from 2016 to 2019. The cumulative distribution of the

(A) area of 90% of flux footprint contribution and the (B) probability density curves of relative flux footprint contributions (φ) show the behavior of

each crop type under stable (blue and green, for maize and soybean, respectively) and unstable (red and orange, for maize and soybean, respectively)

atmospheric conditions.

high temperatures and lower rainfall, influence the overall higher

uptake of CO2 observed in 2017. These results show how multiple

sources besides the observed Fc (i.e., MLCan and flux footprint

modeling, as well as crop yield data), provide elements for an

informed interpretation of the influence of the organized land cover

heterogeneity on the behavior of observed land-atmosphere fluxes.

5. Summary and conclusions

This study illustrates the important role of the organized

land cover heterogeneity on the observed land-atmosphere fluxes

of heat, water, and CO2, where the observations come from

a flux tower that sees the intensively managed agricultural

landscape, instead of a single crop field. When the land cover

is heterogeneous, inconsistencies in data interpretation can arise

when only accounting for the vegetation type in the nearest

field, or alternatively assuming that multiple crop types contribute

equally to the observed flux. Area weighting based on the

relative distribution of crop areas will not work as the fractional

contribution from each crop changes with the dynamically

changing flux footprint. Therefore, our framework combines flux

footprint and ecohydrological modeling with flux tower data

to improve upon the understanding that could be obtained
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FIGURE 10

Di�erences between flux tower observations (red) and modeled (gray) daily averaged fluxes in 6-week windows, for (A) carbon dioxide flux, Fc, and

(B) latent heat flux, LE. The error bars show the standard deviation of the daily average over the 6-week period for the observed (red) and modeled

data (gray). The segmented line in red shows the behavior of the daily averaged observations, while the continuous black line similarly shows the

modeled data. Dashed vertical lines show the years of analysis. The Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), Mean Squared

Error (MSE), and Normalized Root Mean Squared Error (NRMSE), support the evaluation of the goodness of fit between observed and modeled data.

FIGURE 11

Relationship between crop yield, net CO2 during the growing season, and emissions or sequestration on a carbon basis. (A) Crop yields at Piatt

county are combined with (B) the net CO2 budget for each crop type during the growing seasons 2016–2018 estimated with MLCan, to calculate (C)

the carbon sequestered for soybean and maize. (D) The climatological flux footprint area for the 90% contribution is used to calculate (E) a broad

estimate of the amount of carbon that is harvested and (F) of the amount of CO2 sequestered by each crop inside the flux footprint.
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given any single information source. The observations reflect the

predominance of the crop fields within the flux footprint and we

determine their fractional weighted contributions to the observed

value resulting from the proximity to the tower.

Our approach to analyzing the relative flux contributions has

some limitations, many of which could be improved upon in

future studies. First, we consider that crops and soil components

are the primary sources of CO2 and that extremely low traffic

in the nearby farm roads and other local sources are negligible

contributors (the flux tower is strategically located away frommajor

highways). Determining the precise contribution of automobile

and mechanized farm equipment emissions to observed CO2 fluxes

is a challenging task. However, we assume that such emissions

are likely to have a negligible impact over our 6-week observation

periods. Although there may be a few days during the planting

or harvesting seasons when there is a significant activity within

parts of the flux footprint, the impact of this activity is relatively

small when averaged over all time points. For example, even

if there were significant farm work going on for 40-time steps

during a six-week window, out of a total of 4,032-time steps, the

impact of this activity would be minimal, even if the CO2 flux

was doubled during those time steps. Similarly, the contribution of

traffic on country roads to the observed CO2 flux is expected to

be negligible when averaged over a long period, given that most of

the roads are rural or far from the tower. Second, the estimation

of the flux footprint is not the only source of error, since tower

observations and the ecohydrological model also have errors and

as a result, they contribute some uncertainty to our estimations.

Third, we do not consider the variability in flux response across

multiple fields cultivated with the same crop, but we assume a

representative modeled flux. Specifically, we distinguish between

“maize” or “soybean” patches and ignore other differentiating

factors. In reality, all maize or soybean fields may not behave the

same due to differences in cultivars, soil type, microtopographic

variability, time of planting, etc. This assumption can be overcome

through a distributedmodeling approach if detailed data to support

such modeling is available. For example, given a detailed map of

soil texture or topography, the landscape could be divided into

more than two components that could be modeled and attributed

at higher resolution. Meanwhile, landscape attributes within the

flux footprint may be correlated with meteorological conditions

that define the footprint itself. In this case, it is challenging to

disentangle the influence of landscape heterogeneity versus weather

variables that also shift with wind direction. Further analysis can

include the implementation of the fetch rose for different stability

conditions. The fetch rose can provide a further look into the

spatial distribution of the contributing plots to match areas of

“well-drained maize” or “drier soybean” enabling testing of the

assumption that vegetation type is the dominant differentiating

factor between fluxes at different landscape patches. We anticipate

that our study could be extended to study other natural and human-

induced interventions on heterogeneous agricultural landscapes,

such as varying wetness conditions, LAI, or planting dates, or for

comparison with a remote sensing product. However, specifying

spatially variable precipitation at these resolutions could remain

a formidable challenge. This approach could also be applied

to model evaluation, in that the representation of landscape

heterogeneity should lead to an improved agreement between

model results and observations, relative to the assumption that

the tower measurements represent a single crop type or a

homogeneous contribution from multiple crop types. In general,

our method is relevant for the understanding of land-atmosphere

fluxes in heterogeneous landscapes and can be extended toward

the use of flux tower data as validation for models of these

fluxes.

Our analyses show that the fluxes observed at the 25 m

tall flux tower are the result of the combined action of (1)

hydroclimatological drivers acting on the ecosystem, and (2) the

difference in the fraction of maize and soybean in the flux footprint

due to the organized heterogeneity of the land cover. In other

words, the change in the flux observed at every time step (15

min) could either correlate to a change in flux from the crops or

a shift in relative land cover contributions within the footprint

due to wind, or both. For instance, we qualitatively demonstrated

that the change in the relative contribution of fluxes due to two

different land cover types can either increase or decrease the total

flux observed at the tower. Therefore, we quantitatively showed

that the spatial structure of the land cover, described here as

“organized land cover heterogeneity” and characterized by the

mosaic of crop fields, impacts the observed fluxes. Our focus on

the relative contribution of maize and soybean fields inside the

flux footprint shows the importance of an accurate description

of the land cover and the use of an accurate flux footprint

method. We recognize that it is equally important to accurately

simulate the flux response of each vegetation species under the

observed atmospheric drivers. All these are used to obtain the

variability of the areal coverage and the temporal variability of

the flux.

In an intensively managed agricultural landscape, where each

land cover patch is easily identifiable by crop type (i.e., maize

or soybean), we quantified the relative flux contribution of LE,

H, and CO2. At the study site, the cultivated fields where the

flux contribution peaks are mainly due to one crop type, which

explains the dominance in fluxes contribution given by maize-

soybean-maize for the 2016–2017–2018 crop years, respectively.

This combined analysis makes it feasible to investigate questions

regarding real and hypothetical land cover changes at an ecosystem

scale and quantify the effects of different vegetation types on

ecosystem fluxes.
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