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Long short-term memory (LSTM) networks have demonstrated successful
applications in accurately and e�ciently predicting reservoir releases from
hydrometeorological drivers including reservoir storage, inflow, precipitation, and
temperature. However, due to its black-box nature and lack of process-based
implementation, we are unsure whether LSTM makes good predictions for
the right reasons. In this work, we use an explainable machine learning (ML)
method, called SHapley Additive exPlanations (SHAP), to evaluate the variable
importance and variable-wise temporal importance in the LSTMmodel prediction.
In application to 30 reservoirs over the Upper Colorado River Basin, United States,
we show that LSTM can accurately predict the reservoir releases with NSE ≥ 0.69
for all the considered reservoirs despite of their diverse storage sizes, functionality,
elevations, etc. Additionally, SHAP indicates that storage and inflow are more
influential than precipitation and temperature. Moreover, the storage and inflow
show a relatively long-term influence on the release up to 7 days and this influence
decreases as the lag time increases for most reservoirs. These findings from SHAP
are consistent with our physical understanding. However, in a few reservoirs,
SHAP gives some temporal importances that are di�cult to interpret from a
hydrological point of view, probably because of its ignorance of the variable
interactions. SHAP is a useful tool for black-box ML model explanations, but the
hydrological processes inferred from its results should be interpreted cautiously.
More investigations of SHAP and its applications in hydrological modeling is
needed and will be pursued in our future study.

KEYWORDS

long short-term memory network, SHAP, deep learning, hydrometeorological factor,

temporal importance, reservoir release

1. Introduction

Reservoirs are natural or human-built lakes that are designed to collect, store, and

release water through water infrastructures such as dams in a timely manner. The

capability of managing water resources allows reservoirs to serve multiple functions,

includingmunicipal and industrial water consumption, hydropower generation, agricultural

irrigation, ecosystem productivity, flood and drought protection, and recreation (Yang

et al., 2021; Zhang D. et al., 2022). Furthermore, the reservoir water quality also plays

important roles in controlling the health of aquatic ecosystems and impacting drinking
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water resources and human health (Duan et al., 2013, 2015, 2016).

Thus, accurate and timely forecast of the reservoir’s daily release is

imperative for economic development, environmental protection,

and our nation’s security (Yang et al., 2016, 2020). Because of

complex engineering conditions and natural environment are

intertwined in the reservoir’s operations and functions, reservoir

release decisions are affected by many hydrological factors, such

as the reservoir storage and inflow. In recent years, climate change

and hydrological intensification have resulted in more frequent and

intensive natural hazards, such as heavy rainfall, severe flooding,

and extreme heat (Fan et al., 2022a). Therefore, the meteorological

and climate forcing playmore andmore important roles in affecting

the reservoir release decisions (Ehsani et al., 2017; Yang et al., 2017).

Since the time series observations such as inflow and storage

contain both natural factors and human operating management

experience, data-driven ML models have been increasingly being

applied in assist of the reservoir management (Chang et al., 2016;

Liu et al., 2017, 2019; Bozorg-Haddad et al., 2018; Uysal et al.,

2018; Niu et al., 2019; Zolfaghari and Golabi, 2021). Many studies

have explored the applicability of using the linear regression

models (e.g., ridge and lasso regressions) and decision trees-

based models (e.g., random forest, extreme gradient boosting tree)

to forecast the controlled reservoir releases (Zhang et al., 2018;

Rahnamay Naeini et al., 2020; Yang et al., 2021). In these ML

models, the interpretation of the prediction is straightforward

because these models have a transparent process and internal logic

to allow end-users to understand the mathematical mapping from

inputs to outputs. For example, we can use the weight in a linear

regression model to directly evaluate the relative importance of a

feature on the model prediction. In a decision tree-based model,

the interpretation of a prediction for an instance can be directly

visualized through the graphical presentation and the relative

importance of a feature in the prediction depends on the distance to

the root node of the tree. However, these ML models are incapable

of directly taking the temporal dependence into consideration if the

inputs and outputs are time series observations, resulting in a less

accurate prediction accuracy.

Long short-term memory (LSTM) networks (a variant of

recurrent neural network), take sequence data as inputs, and

support multiple parallel input sequences for multivariate inputs,

which enable it to effectively extract the information from inputs

within previous time steps, capture the temporal dependencies

between variables, and efficiently learn the relationship between

the multi-inputs and reservoir release (Yu et al., 2019; Lu et al.,

2021). Several studies have demonstrated promising results in

applying LSTM networks to predict the controlled reservoir release

from historical data, analyze the influencing factors, learn the

operation rules, and assist reservoir release decisionmaking (Zhang

et al., 2018, 2019; García-Feal et al., 2022). However, because

of LSTM’s recurrent structure and unique gating mechanisms,

the internal signals embedded in LSTM networks in terms of

states and gates demonstrate complex and interdependent features.

With this level of complexity, it is difficult to interpret the

variable importance and the variable-wise temporal importance

on the model prediction. Furthermore, LSTM models directly

learn the statistical relationship between input variables and

output observations, which neglects the physical constraints and

mass balance equations. Thus, despite the potential advantages

of accurately and efficiently simulating the reservoir release,

the lack of transparency of LSTM networks and process-based

implementation impede the reservoir operators to understand the

hydrometeorological influences on the reservoir release and make

further operation decisions.

Recently, there has been growing emphasis on building

explainable ML techniques to improve the comprehensibility of

processes being modeled, understand why a model generates

a certain prediction, and explore what features are the most

important drivers in the prediction (Shen, 2018; Reichstein et al.,

2019; Beven, 2020; Jiang et al., 2022; Lees et al., 2022; Lu et al.,

2022b). Most prominent of the explainable ML techniques are

the post-hoc methods that focus on explaining the output of a

complex model in terms of its inputs (Slack et al., 2020, 2021).

These methods are usually local, model-agnostic, and do not

depend on the underlying models (Murdoch et al., 2019). One

popular unified approach to interpret the trained ML models is

SHapley Additive exPlanations (SHAP), which is based on optimal

Shapley values from the game theory (Lundberg and Lee, 2017).

It integrates several existing approaches with a solid theoretical

foundation, guaranteeing that there is a unique solution for the

measurement of additive feature importance scores (Lundberg and

Lee, 2017; Sundararajan and Najmi, 2020; Fryer et al., 2021). SHAP

estimates the contribution by each feature to the prediction of a ML

model and provides local interpretations through the generation

of perturbations of a given instance in the data. While SHAP

is an instance-based explainer, we can also obtain global level

explanations through aggregations of local explanations (Lundberg

et al., 2020).

Several studies have explored the interpretability of ML models

using SHAP in hydrology applications. For example, Song et al.

(2022) trained the LSTM model for rainfall-discharge processes

using previous 1 year’s precipitation data at monthly scale from

seven meteorological stations and used SHAP to interpret the

LSTM model simulations. They found that the spatial-temporal

influence of precipitation on the spring discharge prediction based

on the SHAP analysis is consistent with the physical hydrology

explanation. Lin et al. (2021) used multi-layer perceptron neural

networks and LSTM to forecast the hourly streamflow with

previous 7 h streamflow and 10 h precipitation observations

and then applied SHAP to quantify the contribution of each

variable to the ML model prediction. They found that SHAP failed

to provide a definite conclusion with respect to the temporal

importance of input variables on the streamflow prediction.

Yang and Chui (2021) simulated the rainfall-runoff processes of

sustainable urban drainage systems at sub-hourly timescales using

XGBoost ML model. Despite the high prediction accuracy for the

discharge prediction, they found that the inferred hydrological

processes are not consistent with the physical realism through

the SHAP analysis (e.g., rainfall provides negative contributions

to the runoff). Therefore, despite the generality and convenient

usage, it is still not clear whether we can use SHAP to interpret

the modeling process of ML models and LSTM networks in

particular and obtain physically plausible explanations that can

correlate the right predictions with the involved hydrological

processes.
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To this end, we use SHAP to investigate how LSTM makes

predictions of reservoir release from hydrometeorological drivers

and explore the capability of SHAP to provide reliable and accurate

explanations for the hydrological processes being simulated by the

LSTM model. Specifically, we build an interpretable deep learning

model by coupling the LSTM network and SHAP for daily reservoir

release prediction in 30 reservoirs over the Upper Colorado River

Basin, United States. We investigate the influence on the reservoir’s

daily release decisions from hydrometeorological factors including

reservoir storage, inflow, precipitation, and temperature, as well as

their temporal influences.We believe that this study is an important

step to improve the understanding and trust of reservoir release

predictions fromML models and assist the reservoir operation and

decision-making.

The main contributions of this paper are:

• We apply LSTM networks for predicting reservoir releases

based on multiple hydrometeorological inputs and by

considering their long-term influence on the released flow.

• We identify the contributions of four hydrometeorological

variables and their temporal importance to the reservoir

release prediction from the SHAP analysis.

• We explore whether SHAP can provide physically plausible

explanations to the hydrological processes being simulated by

the LSTMmodel.

2. Materials and methods

In this section, we first describe the data generation. Next, we

introduce the LSTM and SHAP methods. Last, we will describe

experimental design, followed by the model evaluation statistics.

2.1. Study area and data

The Upper Colorado River Basin is comprised of four states,

including Colorado, New Mexico, Utah, and Wyoming. The vast

majority of fresh water contributed to the Colorado River Basin is

collected from the Upper Basin States, primarily through winter

snowpack and spring runoff. Influenced by climate change, the

water availability of the Upper Colorado River Basin faces many

challenges from the amount of snowpack in winter, the timing of

spring runoff, and the persistent drought. The reservoir systems in

the Upper Colorado River Basin provide water supply to nearly 40

million people till 2021 and serve multiple roles in managing water

resources, such as hydropower generation, flood control, irrigation,

as well as recreational attractions for skiing, fishing, and boating.

The reservoir inflow, storage, and release records in the basin can be

downloaded from the U.S. Bureau of Reclamation water operation

archive (https://www.usbr.gov/rsvrWater/HistoricalApp.html). In

this study, we consider 30 reservoirs in the Upper Colorado River

Basin based on the criterion that there are no more than 10 days

missing data in the record, which may significantly reduce the

prediction accuracy within this time period. Figure 1 shows the

locations of these 30 reservoirs. They are non-uniformly distributed

in the basin with a quite large difference in elevations. Table 1

summarizes the basic information of these 30 reservoirs including

their names, data record length, elevation and storage. As we can

see, the reservoirs have varying elevations and storage volumes.

Also, some reservoirs have a long record of data up to 30 years

and some have a relatively short record with only 13 years of data.

Moreover, the reservoir features, such as elevation and storage

affect the release patterns, which could also affect the prediction

performance. We discuss these factors’ influence in detail in

Section 3.

Besides the hydrological data of inflow and storage, we

additionally consider the influence of meteorological data on

reservoir releases. The daily average precipitation and temperature

data are retrieved from the AN81d dataset generated from

Parameter-elevation Regressions on Independent Slopes Model

(PRISM). The gridded PRISM has a spatial resolution of 4 km

(about 0.04 degrees) and merges surface measurement with an

elevationmodel (Daly and Bryant, 2013). Both PRISMprecipitation

and temperature data are retrieved from the overlapping pixels

of the corresponding study reservoirs in the period between

01/01/1982 and 12/31/2011 to match the reservoir data period

listed in Table 1. Considering that the 30 reservoirs have different

data lengths on inflow, storage, and release, for each reservoir, we

trim the precipitation and temperature data length to match its

reservoir data length to ensure these five data sequences have the

same periods for the machine learning tasks.

2.2. Model development

In this study, two hydrological variables, reservoir storage S

and inflow Q, and two meteorological forcings, precipitation P and

Temperature T, are considered as input variables to forecast the

reservoir release R. Let random Vector xk denote previous k days

of hydrometeorological observations:

xk =
[

St−1, St−2, ..., St−k,

Qt−1,Qt−2, ...,Qt−k, Pt−1, Pt−2, ..., Pt−k,Tt−1,Tt−2, ...,Tt−k

]

(1)

It is assumed that the relationship between the multi-inputs and

reservoir release can be learned through the ML algorithm from

observation data xk to Rt :

Rt = fθ
(

xk
)

(2)

Where f is a ML function learned by an ML algorithm and θ are

parameters of f .

2.3. Long short-term memory network

We use LSTM networks to simulate reservoir releases from

hydrometeorological observations and investigate their influences.

As a special type of recurrent neural networks, LSTM is structured

to learn long-term dependence in time series prediction. In

daily reservoir release modeling, we use previous t days of

hydrometeorological observations as inputs to predict release on

the current day. LSTM learns a mapping for the inputs over time to
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FIGURE 1

The 30 reservoirs (blue dots) in Upper Colorado River Basin are considered in this study. The figure is modified from Yang et al. (2021).

an output. Thus, it knows what observations it has seen previously

are relevant and how they are relevant to the prediction, which

enables a dynamical learning of temporal dependence.

The LSTM cell uses four functions and three of them are

acting as regulatory gates to control the information flow extracted

from the inputs. Furthermore, LSTM introduces an additional cell

state ct to add and store information and then transfer the stored

information to the hidden state ht . Specifically, LSTM first uses

a sigmoid (σ ) function ft that acts as a forget gate to decide

what information should be thrown away from the old cell state.

Then, it uses another two functions gt and it to decide what new

information should be stored in the cell state, where the hyperbolic

tangent (tanh) function gt first creates a vector of new candidate

values that could be added to the cell state, and a sigmoid function it
that performs as an input gate then decides which candidate values

need to be updated. Next, the two input functions are combined

with the forget gate to update the old cell state ct−1 to a new cell

state ct . Finally, LSTM uses the fourth function ot that acts as an

output gate to decide what parts of the cell state should be exported

to update the hidden state. And then we use the input information

saved in the hidden state ht to predict reservoir release y.

Mathematically, the learning process of LSTM networks can be

summarized below.

ft = σ
(

Wf xt + Uf ht−1 + bf
)

(3)

gt = tanh
(

Wgxt + Ught−1 + bg
)

(4)

it = σ
(

Wixt + Uiht−1 + bi
)

(5)

ct = ft × ct−1 + it × gt (6)

ot = σ
(

Woxt + Uoht−1 + bo
)

(7)

ht = ot × tanh
(

ct
)

(8)

y = Wdht + bd (9)

Where xt presents previous t days of hydrometeorological

observations, and y presents the reservoir release on the current

day.W andU are weight matrices and b is the bias vector that need

to be calculated during LSTM training.

2.4. SHapley Additive exPlanations (SHAP)

Understanding why a reservoir release prediction is made by a

LSTM model is useful for reservoir operators to build trust in ML

model forecasts andmake further operation decisions. In this work,

SHAP is adopted to quantify the contribution of each input variable

to the prediction for LSTM models. This local interpretation

method is based on the game theoretically optimal Shapley values,

which were designed to fairly distribute the payout among the

features in coalition games where each feature of the instance is

a "player" in a game and the prediction is the payout (Molnar,

2020). SHAP developed by Lundberg and Lee (2017) is a unified

approach to explain ML model predictions through integrating

several existing ML interpretation methods with Shapley values. To

produce an interpretable approximation of the original ML model,

SHAP uses an additive feature attribution method and defines the

output of the ML model as a linear function of binary variables.

Let f (x) be the original prediction model with input variables

x = (x1, x2, ..., xM), where M is the number of input features,

Frontiers inWater 04 frontiersin.org

https://doi.org/10.3389/frwa.2023.1112970
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Fan et al. 10.3389/frwa.2023.1112970

TABLE 1 The summary of reservoir information for the reservoirs considered in this study.

Initials Names Data start year Data length (years) Elevation (m) Storage (acre feet)

BSR Big sandy reservoir 1990 22 2,060 38,300

CAU Causey reservoir 1999 13 1,745 8,970

CRY Crystal reservoir 1982 30 2,251 26,000

DCR Deer creek reservoir 1987 25 1,653 152,000

DIL Dillon reservoir 1985 27 2,751 257,304

ECH Echo reservoir 1982 30 1,691 73,900

ECR East canyon reservoir 1992 20 1,749 49,500

FGR Flaming gorge reservoir 1982 30 1,828 3,788,900

FON Fontenelle reservoir 1990 22 1,976 345,360

GMR Green mountain reservoir 1982 30 2,406 153,000

HNR Huntington north reservoir 1999 13 1,774 5,420

HYR Hyrum reservoir 1999 13 14,27 18,685

JOR Jordanelle reservoir 1997 15 1,636 320,000

JVR Joes valley reservoir 1996 16 2,129 62,460

LEM Lemon reservoir 1982 30 2478 40,146

MCP Mcphee reservoir 1991 21 2,073 381,000

MCR Meeks cabin reservoir 1998 14 2,647 32,470

NAV Navajo reservoir 1986 26 1,801 1,397,495

PIN Pineview reservoir 1990 22 1,495 110,000

RFR Red fleet reservoir 1989 23 1,721 26,000

RID Ridgway reservoir 1990 22 2,101 85,000

ROC Rockport reservoir 1982 30 1,807 60,900

RUE Ruedi reservoir 1982 30 2,349 102,000

SCO Scofield reservoir 1996 16 2,338 73,600

SJR Silver jack reservoir 1992 20 2,725 13,520

STA Starvation reservoir 1982 30 1,700 167,310

STE Steinaker reservoir 1982 30 1,655 33,400

TPR Taylor park reservoir 1982 30 2,847 111,5000

USR Upper stillwater reservoir 1991 21 2,445 32,500

VAL Vallecito reservoir 1986 26 2,318 129,700

and g(x
′
) be the explanation model with simplified inputs x

′
=

(x
′

1, x
′

2, ..., x
′

M), the explanation model can be expressed as:

f (x) = g(x
′

) = φ0 +

M
∑

i=1

φix
′

i (10)

Where φ0 represents the constant value when all inputs are missing,

x
′
∈

{

0, 1
}M

, and φi ∈ R denotes the explanation in terms of

feature importance scores for the prediction f (x), known as Shapley

values. In explanation models, simplified inputs x
′
can be mapped

to the original inputs through a mapping function x = hx(x
′
).

As noted by Lundberg and Lee (2017), SHAP has a solid

theoretical foundationwith three desirable properties, guaranteeing

that there is a unique solution for Equation 10. Local accuracy

requires the explanation model to match the output of f (x) for

the simplified input x
′
to ensure that the output of the function is

the sum of the feature attributions. Missingness requires features

absent in the original input have no influence on the output to

ensure that the importance assigned to the absent feature is zero.

Consistency states that a model changes will not decrease the

marginal contribution of a feature value. The possible explanation

model that follows Equation (10) and satisfies the three desirable

properties is defined as:

φi(f , x) =
∑

z
′
⊆x

′

|z
′
|!(M − |z

′
| − 1)!

M!
[fx(z

′

)− fx(z
′

\i)] (11)
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FIGURE 2

The framework of investigating the hydrometeorological influences on reservoir releases in this study. First, a LSTM model is trained for the reservoir
release prediction and then the SHAP analysis is used to evaluate the variable importance and variable-wise temporal importance. Lastly, we assess
the physical reliability of the SHAP explanation.

Where |z
′
| is the number of non-zero entries in z

′
, and z

′
⊆ x

′

represents all z
′
vectors where the non-zero entries are a subset of

the non-zero entries in x
′
. fx(z

′
) = f (hx(z

′
)) = E[f (z)|zS] and S is

the set of non-zero indexes in z
′
.

Equation (11) shows that SHAP can provide explanations to the

ML models by assigning an importance value to each input feature

in the instance through evaluating the model using all possible sets

of features with and without that feature to be explained. Shapley

values can be approximated by different approaches, such as Kernel

SHAP, Deep SHAP, and Tree SHAP (Lundberg and Lee, 2017;

Lundberg et al., 2020). In this work, we use Deep SHAP to explain

the LSTM model predictions and assess the contribution of each

input variable to the prediction.

2.5. Numerical experiments

The framework of investigation of hydrometeorological

influences on reservoir releases consists of the following three

steps: In step I, we use the LSTM model to establish a nonlinear

predictive relationship between four hydrometeorological drivers

and the reservoir release for 30 reservoirs. In step II, we apply

SHAP to the trained LSTM models and determine the feature

importance of the hydrometeorological input variables and their

temporal importance in predicting reservoir releases. In step III, we

design experiments and use domain-specific knowledge to examine

feature contributions and their temporal importance determined

from the SHAP analysis. Figure 2 illustrates this framework briefly.

For each reservoir, we use 80% of its data record as a training

set to construct and calibrate the LSTM model, and then use the

rest of 20% of the data as a test set to evaluate the model prediction

performance. The data record is split sequentially and uses a unit

of years. For example, reservoir CRY has 30 years of data from

1982, then the first 24 years of data (i.e., 01/01/1982–12/31/2005)

are in the training period and the subsequent 6 years of data (i.e.,

01/01/2006–12/31/2011) are in the test period. The 80:20 ratio on

training-test data split was generally taken in machine learning

studies (Joseph, 2022), and it is also suitable for our problems

here. In the results, we demonstrate that the 80% training data

are able to learn the input-output relationship and the remaining

20% test data provide a good representative data set to evaluate the

model prediction performance under different meteorological and

reservoir management conditions.

LSTM models have several hyperparameters that need to be

determined before they can be used for prediction, such as those

parameters related to network architectures, learning rates, and

the look-back window size t of the input sequence. The t value is

particularly important (Zhang et al., 2019), which determines the

lag length of input observations used to generate the model output,

i.e., the t value represents the period over which the influence of

hydrometeorological inputs is taken into account to calculate the

reservoir release. We use 20% of the training data as the validation

set for the hyperparameter tuning. In this process, we consider

a set of possible values for each hyperparameter and evaluate

the model prediction performance for all the hyperparameter

combinations, and then select the set of hyperparameters giving

the best performance on the validation set. After the tuning, we

use the following hyperparameters for our LSTMmodel simulation.

In terms of the model structure, we use one hidden layer with

different numbers of nodes for different reservoirs. For example,

100 nodes for reservoir NAV with a long record of data, and 20

nodes for reservoir CAU with a relatively short period of data. For

all the reservoirs, the Adam optimizer with the batch size of 20

and the learning rate of 0.001 are applied and the training ends

at the epoch of 200. All the four input variables are scaled into

the range of [0,1] to facilitate the training. Additionally, we use

the previous 7 days of the hydrometeorological observations for

reservoir release prediction (i.e., t= 7), which demonstrate the best

prediction performance on the validation data among the range of

t values between 1 and 15 (Fan et al., 2022b). Correspondingly,

we investigate the hydrometeorological influence on the reservoir

release in this 7-day period.

2.6. Model evaluation metrics

We employ six statistical metrics widely used in hydrological

community (Gupta et al., 2009; Yang et al., 2021) to evaluate

the LSTM model prediction performance, which includes the

Correlation Coefficient (CORR), the Root Mean Squared Error
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TABLE 2 The summary of LSTMmodel prediction performance on the

reservoir release.

Reservoir CORR NSE KGE RMSE RSR PBIAS

BSR 0.98 0.94 0.93 0.85 0.24 4.83

CAU 0.98 0.96 0.92 1.04 0.20 2.22

CRY 1.00 0.99 0.98 2.19 0.10 0.25

DCR 0.92 0.82 0.78 3.32 0.42 9.87

DIL 0.93 0.86 0.86 3.09 0.37 −0.61

ECH 0.97 0.94 0.91 1.97 0.24 −0.31

ECR 0.95 0.90 0.89 0.68 0.32 0.05

FGR 0.98 0.96 0.93 5.40 0.20 5.43

FON 1.00 0.99 0.97 4.17 0.10 2.47

GMR 0.94 0.88 0.88 3.44 0.35 0.38

HNR 0.89 0.76 0.66 0.21 0.49 22.98

HYR 0.97 0.93 0.89 1.82 0.26 3.23

JOR 0.91 0.81 0.79 3.53 0.44 6.62

JVR 0.95 0.89 0.86 1.30 0.33 4.03

LEM 0.98 0.95 0.95 0.48 0.22 2.22

MCP 0.90 0.71 0.52 4.62 0.54 −29.48

MCR 0.96 0.92 0.85 2.66 0.28 7.45

NAV 0.91 0.83 0.81 9.35 0.41 3.05

PIN 0.98 0.95 0.94 1.85 0.22 −3.84

RFR 0.97 0.92 0.85 0.30 0.28 −10.78

RID 0.99 0.98 0.94 0.80 0.14 −1.15

ROC 0.98 0.97 0.97 0.93 0.18 −0.79

RUE 0.96 0.91 0.89 0.83 0.30 1.54

SCO 0.83 0.69 0.65 1.40 0.56 −0.49

SJR 0.99 0.97 0.92 0.94 0.17 3.17

STA 0.96 0.92 0.91 1.12 0.28 −0.80

STE 0.97 0.94 0.90 0.28 0.25 5.44

TPR 0.99 0.99 0.98 0.40 0.11 −1.69

USR 0.89 0.77 0.61 2.66 0.48 19.83

VAL 0.99 0.97 0.96 1.26 0.16 0.15

Highlighed reservoirs are with low elevation (HYR), large capacity of storage (NAV), and

hydropower functionality (FGR), and they are analyzed in detail in Figures 3–5.

(RMSE), the Nash-Sutcliffe Model Efficiency Coefficient (NSE),

Kling-Gupta Efficiency (KGE), RMSE-observation standard

deviation ratio (RSR), and Percent bias (PBIAS). They are defined

as follows.

CORR =

∑n
k=1

(

(Sk − Sk)(Ok − Ok)
)

√

∑n
k=1

(

Sk − Sk
)2 ∑n

k=1

(

Ok − Ok

)2
(12)

NSE = 1−

∑n
k=1

(

Sk − Ok

)2

∑n
k=1

(

Ok − Ok

)2
(13)

KGE = 1−
√

(1− CORR)2 + (1− σS/σO)2 + (1− µS/µO)2

(14)

RMSE =

√

∑n
k=1(Sk − Ok)2

n
(15)

RSR =

√

∑n
k=1

(

Ok − Sk
)2

√

∑n
k=1

(

Ok − Ok

)2
(16)

PBIAS =

∑n
k=1

(

Ok − Sk
)

× 100
∑n

k=1

(

Ok)
(17)

Where Sk and Ok are the predicted and observed values,

respectively, and Sk andOk are their corresponding averages; σS and

µS are the mean and standard deviation of the predicted values; σO
andµO are themean and standard deviation of the observed values;

and n is the total number of observations.

The measurements of CORR, RMSE, and NSE are widely used

statistical measures to quantify how the simulated reservoir release

matches the observed release. CORR measures how the simulated

time series data vary with the corresponding observations. RMSE

quantifies the accumulated biases between the prediction and

observation. As a combined statistic of both CORR and RMSE,

NSE reflects both the temporal variation and bias between the

prediction and observation. KGE can amend some shortcomings

of the NSE measurments by decomposing NSE values into linear

correlation, bias, and variability components. PBIAS quantifies

the percentage of biases between the prediction and observation.

Based on above definitions, the criteria of RMSE, RSR, and PBIAS

with a value of zero, and the metric of CORR, NSE, and KGE

having a value of 1 indicate the best prediction accuracy. According

to previous studies (Moriasi et al., 2007; Yang et al., 2021), the

model performance and the NSE/KGE scores have the following

correspondence: NSE/KGE > 0.75: Very good prediction; 0.65 <

NSE/KGE ≤ 0.75: Good prediction; 0.5 < NSE/KGE ≤ 0.65:

Satisfactory prediction; 0.4 < NSE/KGE ≤ 0.5: Acceptable

prediction; and NSE/KGE ≤ 0.4: Unsatisfactory prediction.

3. Results

In this section, we first present the reservoir release prediction

results using LSTM networks based on four hydrometeorological

inputs using their 7-day lag observations and evaluate the

prediction performance using multiple statistics. Then, we

use SHAP to identify the four hydrometeorological factors’

contributions to the reservoir release prediction. Last, we verify

the correctness of temporal importance determined from the SHAP

method for the hydrological factors and investigate their long-term

effects on the reservoir release prediction.

3.1. LSTM model prediction performance

In this section, we present the summary of six statistical

measurements in the test period for 30 reservoirs, as illustrated in
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Table 2. The statistical values for all 30 reservoirs are summarized

with the following range: 0.83 ≤ CORR ≤ 1.00, 0.69 ≤ NSE ≤

0.99, 0.52 ≤ KGE ≤ 0.98, 0.21 ≤ RMSE ≤ 9.35, 0.10 ≤

RSR ≤ 0.56, and −34.15% ≤ PBIAS ≤ 22.98%. According to

the NSE categorization defined in Section 2.6, 28 reservoirs are

categorized as very good predictions and the other two reservoirs

are categorized as good predictions, which indicates the LSTM

model’s capability to successfully capture the variations of daily

reservoir releases. The other five metrics present a consistently

good forecasting performance as the NSE. This remarkably good

prediction performance on these diversely featured reservoirs

demonstrates that LSTM models can effectively extract the long-

term dependence information from hydrometeorological variables

and successfully forecast the reservoir release.

According to the study of Yang et al. (2021), the ML model

prediction performance can be affected by many factors, including

the reservoir elevation, the maximum capacity of the reservoir

storage, and the primary function, etc. In the following, we analyze

three different featured reservoirs, including the reservoir HYR

with a low elevation, reservoir NAV with a large capacity of

storage, and reservoir FGR with a hydropower functionality in

more detail. We will demonstrate that even though these factors

could conjunctively affect the human-controlled release decision,

the LSTM model can capture the embedded information from

historical observation data and effectively simulate the reservoir

release and human’s decision-making process.

Figure 3 illustrates the observed and LSTM-predicted daily

release at the reservoir HYR in both training and test periods with

NSE scores being 0.91 and 0.93, respectively. As observed, although

the reservoir HYR has the lowest elevation which may increase

the management complexity for the LSTM model to forecast the

human’s release decision, the predicted reservoir release closely

matches the observations. Taking a detailed analysis of the release

patterns, we can observe that reservoir HYR has a regular seasonal

variation in the controlled reservoir release for most of years.

This is because the reservoir refills in the Upper Colorado River

region are mainly dominated by the seasonal runoff produced by

melting snow and mountainous hydrology instead of the heavy

precipitation from the atmospheric river events, where the water

routing in upstream river basins can notably influence the release

decisions of downstream reservoirs. Despite these challenges, the

LSTM model can still capture the reservoir release variations

even at certain years when there is an abnormally large reservoir

release. Furthermore, the upstream operation and coordination

between reservoirs are affected by different operation policies and

interests, which can further increase the difficulty in forecasting the

releases for reservoirs with lower elevations. Nevertheless, the high

prediction performance demonstrates that the LSTM model can

capture the high variation information brought from the upstream

reservoir management.

Figure 4 depicts the observations and predictions of daily

release at reservoir NAV with NSE scores being 0.94 and 0.83 for

the training and test periods, respectively. Although the LSTM

model misses some peak flows, it can accurately capture the release

patterns and predict the timings of the peak reservoir releases,

which is crucial for flood control and water resources management.

Taking a detailed inspection, it can be observed that the fluctuations

at low flow regimes are small, and when it releases water, a great

volume of water is discharged within a short period of time. This is

because when the reservoir (e.g., NAV) has a large storage capacity,

it plays multiple functions roles such as agriculture irrigation,

ecosystem productivity, and recreation, and thus is associated with

more constraints and operation criteria. Therefore, the lack of

flexibility in adjusting to the reservoir inflow variations may lead

to more challenges for the LSTM model to capture human’s release

decisions.

As expected, the LSTM predicted daily release are in great

agreement with the observations at reservoir FGR with NSE

scores being 0.95 and 0.96 for the training and test periods, as

illustrated in Figure 5. It is clearly observed that the reservoir FGR

has many non-smooth variations in release patterns at low flow

regimes. This is because the reservoir function such as the hydro-

electric power generation, also plays a crucial role in the operation

decision-making process. For reservoirs with the functionality of

hydropower generation, when providing hydroelectric supplies to

meet the energy demands during peak hours, the water is required

to be diverted to the powerhouse first to enable the system to be

flexibly turned on and off (Ding et al., 2021). Despite this irregular

reservoir release because of the required reserves to effectively

stabilize the power grid variations, the high agreement between the

observation and predicted reservoir release demonstrates the LSTM

model’s capacity in accurately capturing human’s release decisions.

We use multi-step lag observations of four

hydrometeorological factors to accurately forecast the reservoir

release in the 30 reservoirs of the Upper Colorado River Basin.

To help operators comprehensively understand how LSTM

makes reservoir release predictions from hydrometeorological

variables, we use SHAP to investigate the contribution of each

hydrometeorological factor to the amount of water to be released

and the temporal importance of hydrological factors in the

reservoir release forecasting. More importantly, we explore

whether SHAP can provide reliable and physically plausible

explanations for the hydrological processes being simulated by the

LSTMmodel.

3.2. The importance of
hydrometeorological factors identification

In this section, we compute the Shapley value for each input

variable in the LSTM model at each time step using the test data

and then average each hydrometeorological factor importance over

7 days. Next, we design experiments to examine the correctness

of the contribution of each factor to the prediction determined by

the SHAP analysis. Last, we use domain knowledge to assess the

physical realism of the inferred hydrological processes.

Figure 6 presents the importance of four hydrometeorological

factor contributions determined from the SHAP analysis. To ensure

a fair comparison among different reservoirs, the importance

scores of four hydrometeorological factors for each reservoir are

normalized such that the sum of the importance scores of four

features is one. As illustrated in Figure 6, all the reservoirs are

categorized into two groups, where the reservoirs with a relatively

small storage capacity are highlighted in yellow and the reservoirs

with a relatively large storage capacity are highlighted in blue.
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FIGURE 3

Observed and LSTM-predicted daily release at reservoir HYR. The LSTM model provides an accurate prediction with high NSE scores, although
reservoir HYR has the lowest elevation, which is more susceptible to the influences from water routing in upstream river basins and possible releases
from reservoirs with higher elevations.

FIGURE 4

Observed and LSTM-predicted daily release at reservoir NAV. The LSTM model provides an accurate reservoir release forecasting despite the erratic
release patterns caused by the large storage capacity.
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FIGURE 5

Observed and LSTM-predicted daily release at reservoir FGR. The LSTM model accurately capture the release flow patterns, although reservoir FGR
has irregular daily releases because of hydro-electric power generation.

FIGURE 6

The importance of four hydrometeorological factors determined from the SHAP analysis. When the reservoir has a small storage capacity, the inflow
is the dominant factor (highlighted in yellow). When the reservoir has a relatively large storage capacity, the storage is the dominant factor
(highlighted in blue).

It is clearly observed that the inflow is the dominant factor

of reservoir release prediction for the small reservoirs and the

storage will dominate the reservoir release forecasting for the large

reservoirs. Overall, the top two contributors are storage and inflow

and both the temperature and precipitation play a minor role in

forecasting the reservoir daily release. This finding is consistent
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FIGURE 7

The comparison of prediction results for reservoir MCR between using four hydrometeorological variables and using only inflow variable as the LSTM
input to forecast the daily reservoir release. The legend (Four variables) represents the experiment considering all four inputs of storage, inflow,
temperature, and precipitation. The high NSE score of using only the inflow as input variable to predict the reservoir release verifies the SHAP result
that the inflow is the dominant factor.

FIGURE 8

The predicted daily release of reservoir BSR for the four experiments using di�erent hydrometeorological inputs. The legend (Four variables)
represents the experiment considering all four inputs of storage, inflow, temperature, and precipitation. The feature importance learned from the
SHAP method is consistent with the designed experiment result.

FIGURE 9

The predicted daily release of reservoir RFR for the three experiments using di�erent hydrometeorological inputs. The legend (Four variables)
represents the experiment considering all four inputs of storage, inflow, temperature, and precipitation. The relatively low NSE score of using only
storage as the input variable demonstrates that using the feature importance selected from the SHAP analysis should refer to physical processes
being modeled.
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FIGURE 10

The temporal importance of reservoir (A) storage and (B) inflow determined from the SHAP analysis. The importance scores from day 3 to day 7 are
combined. The SHAP analysis demonstrates that the first- and second-day lag observations have more influences on the release forecasting, which
is consistent with the domain knowledge.

with the domain knowledge that the hydrological factors have more

influence than the meteorological factors, since the climate forcing

tends to have a hysteresis effect on the reservoir inflow.

Next, we verify the feature contributions determined from the

SHAP analysis. Specifically, we select three representative reservoirs

to design experiments: when the inflow is the primary driver for

the release forecasting, we design an additional experiment for

reservoir MCR that only considers inflow; when both the inflow

and storage are the main drivers for the release forecasting, we

perform three additional experiments for reservoir BSR, where

experiment I considers inflow only, experiment II considers storage

only, and experiment III considers both inflow and storage; when

the storage is the dominant factor for the release forecasting,

we perform two additional experiments for reservoir RFR, where

experiment I considers storage only and experiment II considers

both inflow and storage. All experiments use 7-day lag observations

as input variables.

Based on the SHAP analysis illustrated in Figure 6, the inflow

is the dominant driver in affecting the release prediction for

reservoir MCR. Therefore, we design an experiment to test whether

only considering inflow can obtain a good forecasting of the

reservoir’s daily releases forecasting. As illustrated in Figure 7, the

high NSE score of using only inflow as the input to forecast the

reservoir release verifies the correctness of SHAP analysis. From the

perspective of domain knowledge, small reservoirs are subjected to

fewer constraints and operation criteria and thus easier to manage.

In consequence, the reservoir operators can easily adjust the

reservoir storage volumes in response to the variations in reservoir

inflows. Therefore, the inflow plays a more important role for small

reservoirs, and it affects reservoir release decisions. The feature

importance determined from the SHAP method is consistent with

the designed experiment results and domain knowledge.

Although using only inflow to forecast the reservoir release

can accurately capture the trend and peak timing, the LSTM

model over- or under-estimate the reservoir release at different

flow regimes. Specifically, due to the functionality of flood

control, the reservoir MCR has a clear periodic water releasing

pattern throughout the testing period. The reservoir operators
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FIGURE 11

(A) The temporal Shapley values for the reservoir NAV storage factor. (B) The comparison of simulated reservoir releases between using 7 day lag and
2 day lag observations, where the legend (7 day) represents using previous 7 days of storage and inflow data to predict the reservoir release on the
current day. The significantly improved accuracy of using 7-day lag observations is in consistent with the feature importance identified by the SHAP
analysis.

will empty the reservoir storage for the required flood control

during winter and make preparations for the spring snowmelt.

Therefore, incorporating four hydrometeorological information

can assist LSTM in capturing the reservoir inflow-release dynamics

and improve the prediction accuracy, which is crucial for flood

control and water management.

Based on the SHAP analysis, both the inflow and storage play

important roles for reservoir BSR in affecting the reservoir release

prediction. Therefore, we perform additional three experiments to

assess the influence of inflow (experiment I), storage (experiment

II), and both storage and inflow (experiment III) on the reservoir

release forecasting. As illustrated in Figure 8, the NSE values are

0.66, 0.62, and 0.92 for experiments I, II, and III, respectively. It

is clearly observed that using only inflow or storage to forecast

the reservoir release leads to similar prediction performance, which

tends to decrease the prediction accuracy. When both storage and

inflow are used to forecast the reservoir release, the prediction

accuracy improves significantly, which has a similar NSE score

as the case including all four hydrometeorological factors. In the

respective of hydrological knowledge, the functions of the reservoir

storage and inflow are interconnected. The reservoir storage is a

state variable, which collects and stores water from upstream river

basins. The influence of the reservoir inflow on the reservoir release

is affected by the amount of water kept in quantity and operation

constraints in large reservoirs. Thus, both inflow and storage play

important roles on the water release for reservoirs with relatively

large storage capacities. The designed experiment results verify the

analysis from the SHAP method, and the inferred physical process

is consistent with the hydrological knowledge.

According to the SHAP analysis, the storage plays an important

role in affecting the release prediction for the reservoir RFR.

Therefore, we additionally design two experiments to evaluate

whether the major prediction gains are from the storage feature for

the reservoir RFR. Figure 9 illustrates the experiment predictions

and observations for the reservoir RFR. As illustrated, using only

storage to forecast the reservoir release leads to poor prediction

performance, as well as overestimation at low flow regimes and

underestimation at high flow regimes. However, using both storage

and inflow to forecast the reservoir release can significantly

improve the prediction performance, which achieves a high NSE

score close to including all four hydrometeorological factors. With

respect to the domain knowledge explanations, when the storage

is the dominant factor and has a relatively small storage capacity

(e.g., reservoir RFR), the storage buffer function of a reservoir is

less significant, and the release is more susceptible to the variations

of reservoir inflow. Under this circumstance, both the reservoir
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FIGURE 12

(A) The temporal Shapley values for the reservoir SJR inflow factor. (B) The comparison of simulated reservoir releases between using 7 day and 2 day
lag observations, where the legend (7 day) represents using previous 7 days of stroage and inflow data to predict the reservoir release on the current
day. For the reservoir SJR, the first 2 day information is the dominant driver in influencing the reservoir release. The little di�erence between two
simulations confirms the correctness in using SHAP to identify the temporal feature importance.

inflow and storage can affect the reservoir release. Therefore, the

relatively low NSE score of using only storage as the input variable

indicates that the feature importance selected from SHAP should

be evaluated against the physical processes being modeled.

3.3. The temporal importance of
hydrological factors identification

In this section, we investigate the temporal importance of

hydrological factors in affecting reservoir release forecasting. Since

the meteorological factors play minor roles in the reservoir

release prediction, only the hydrological factors are used as the

LSTM model inputs to predict the reservoir release. We first

calculate Shapley values to determine the temporal importance of

hydrological factors at each time step. The importance scores from

the 3 to day 7 are combined because of decreased contributions

to the release forecasting. Next, we design experiments to examine

the temporal importance of hydrological factors determined by the

SHAP analysis. Last, we evaluate the inferred physical process from

the SHAP analysis against the domain hydrological knowledge.

Figure 10 presents the importance of reservoir storage and

inflow determined from the SHAP analysis. To ensure a fair

comparison among different reservoirs, the importance scores of

each time step are normalized in each reservoir such that the sum of

the importance scores of the two variables is one. The contributions

of 7-day lag observations to the release prediction present different

behaviors in different hydrological factors. For the reservoir storage

factor, the first- and second-day lag observations are the dominant

drivers in forecasting the reservoir release. Meanwhile, the rest 5

days’ storage observations still have significant contributions to

the release forecasting. For the reservoir inflow factor, the release

prediction is mostly contributed by the inflow that occurred within

the past 2 days. Compared to the storage factor, the rest 5 days’

inflow observations play a minor role in forecasting the reservoir

release.

Next, we verify the temporal importance determined from the

SHAP analysis. Specifically, we select two representative reservoirs

to design experiments: for the storage factor, we examine its

temporal importance in release forecasting for the reservoir NAV,

since all 7 days have similar contributions to the release prediction;

for the inflow factor, we evaluate its temporal importance in

release forecasting for the reservoir SJR, because the first day is
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the dominant driver in the release forecasting. We compare the

prediction performance from two experiments, where one using

7-day lag observations and the other using 2-day lag observations

for both reservoir NAV and SJR. In both experiments, we only

consider storage and inflow as the inputs.

According to the storage importance scores from the SHAP

analysis, all 7 days’ storage have significant contributions to the

release forecasting for the reservoir NAV. Thus, we examine the

Shapley values within the past 7 days for the reservoir NAV storage

feature, as illustrated in Figure 11A. It can be observed that the

storage observations that occurred within past 7 days all contribute

significantly to the reservoir release forecasting. In general, the

large storage values correspond to the large Shapley values, which

indicates that the large storage has a more significant contribution

to the release prediction. Figure 11B presents the predicted daily

release of reservoir NAV for the two experiments using 7- and 2-day

lag observations with NSE scores being 0.74 and 0.22, respectively.

It can be clearly observed that with 2-day lag observations as inputs,

the LSTM model fail to predict the reservoir release, which verifies

the temporal importance analysis using the SHAP analysis. From

the perspective of domain knowledge, since reservoir NAV has a

large storage capacity, more lag observations will be evaluated to

make the release decision. It is also noticeable that the Shapley

values assigned to each day fluctuate across time steps for the

reservoir NAV, which indicates that in the LSTM simulation, some

days (e.g., days 1, 2, 4, and 5) have more important contributions

to the release prediction when compared to others. However, this

quantified importance for each time step deviates from the fact that

storage of more recent time steps should have a higher impact on

the reservoir release prediction. The results of this experiment show

that inferred hydrological processes can be partially consistent with

physical realism.

As illustrated in Figure 10B, the inflow importance score for

day 1 lag observation is significantly higher than the other days

for the Reservoir SJR. We additionally designed an experiment

to examine the temporal importance quantified by the SHAP

analysis. Figure 12A illustrates the Shapley values for the lag 7-

day inflow observations and presents that the past 1-day inflow

observation has the most significant contribution to reservoir

release forecasting. For reservoir SJR, a consistent pattern is

observed that there are no large fluctuations in the importance

of inflow within the past observations. The large Shapley values

correspond to the large inflow values, which is also consistent with

the hydrological knowledge that the small reservoirs (e.g., SJR) are

more flexible to adjust to the variations of water release. Figure 12B

presents the predicted reservoir release using 7- and 2-day lag

observations along with the observed release with NSE scores being

0.97 for both two experiments. We can observe that using 2-day lag

observations can also provide a good release prediction accuracy,

which verifies the correctness of SHAP analysis. It is also noticeable

that even though the metric score NSE is the same, using 7-day

lag observations can help alleviate the over-estimations of reservoir

releases at low-flow regimes. From the perspective of hydrological

knowledge, the small reservoirs (e.g., SJR) are more sensitive to the

inflow within past 2 days because the small storage leaves no room

for the reservoir to store large amount of water and the inflow has

direct influence on the release decision.

FIGURE 13

The NSE values in predicting reservoir release for the di�erent lag
length of hydrometeorological observations at reservoir CAU. The
LSTM model yields the highest prediction accuracy when the lag
length is 7.

4. Discussions

In this study, we first use LSTM to predict the reservoir

daily release from the hydrometeorological drivers and then apply

SHAP to the trained LSTM model to investigate the influence of

these drivers on the prediction. The LSTM models have several

hyperparameters that need to be determined before they can be

used for prediction. The hyperparameter of look back window

size (t value) is particularly important which determines the lag

length of input observations used to predict the model output,

i.e., the t value represents the period over which the influence of

hydrometeorological inputs is taken into account to calculate the

reservoir release. However, as a data-driven model, the t value in

LSTM cannot be determined through physical constraints andmass

balance equations. In this work, we use 20% of the training data

as the validation set to tune the hyperparameters. Specifically, we

consider a range of t from 1 to 15 and evaluate the prediction

performance on the validation data for each t values. Results

indicate that t = 7 days give the best prediction of the reservoir

release. Take the reservoir CAU as an example, the following

Figure 13 illustrates that the NSE value gradually increases as the

increase of t at the beginning and achieves the highest value when

the lag length t is 7 and then the performance drops again. We

then use t = 7 for all the 30 reservoirs and find that it gives the

best prediction performance on the validation data for most of the

reservoirs. Therefore, in the numerical experiments of this study,

we use previous 7 days of hydrometeorological observations for the

reservoir release prediction.

A ML model is generally considered trustworthy if it can

generate predictions in a way that is consistent with our

knowledge of the system being modeled. SHAP is a model-agnostic

explanation method. It can be generally applied to different ML

models to explain the influence of model inputs on the outputs.

Meanwhile, SHAP is a local method which does not consider

variable interactions, which may result in some knowledge-

inconsistent explanations. Moreover, SHAP could suffer from the

unstable issue, i.e., multiple runs on the same data and the same

model with the same parameter settings may result in different

Shapley values. To address the possible instability of SHAP, for each

reservoir, we perform 10 simulations of the SHAP analysis and use
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FIGURE 14

We perform 10 simulations of SHAP analysis and use the mean value for explanation. For all the four drivers, i.e., (A) inflow, (B) storage, (C)
temperature, and (D) precipitation, their SHAP values are similar between the simulations, giving stable explanation, taking the reservoir SJR as an
example here.

the mean value for explanation. We find that SHAP present stable

results in this study where the 10 simulations have minor difference

in SHAP values for all the 30 reservoirs. Take the reservoir SJR as an

example, Figure 14 shows that for all the four hydrometeorological

variables, the SHAP values at each time step are close to each other

between the 10 simulations. For most of the 30 reservoirs, SHAP

gives physics-consistent explanations on the variable importance

and variable-wise temporal importance. But, in a few reservoirs it is

difficult to interpret SHAP explanation on the temporal importance

for a certain drivers from a hydrological point of view. For example,

lag hydrological observations that occurred in the recent past

generally have more impact on the release prediction. However,

SHAP shows a slightly different pattern in this lag time influence of

the storage variable for reservoir NAV. This is probably caused by

the SHAP’s ignorance of the variable interactions when it calculates

attribution scores. In summary, SHAP is a useful tool for black-box

ML model explanations, but the inferred physical processes should

be cautiously evaluated against domain-specific hydrological

knowledge to ensure the high prediction accuracy is associated with

reasonable explanations.

In the future, we will improve SHAP analysis to address its

physics-inconsistent issues. Furthermore, we will apply our recently

developed uncertainty quantification (UQ)method (Liu et al., 2022;

Lu et al., 2022a; Zhang P. et al., 2022) to evaluate the prediction

uncertainty of reservoir release to address the influence of the

data noise and to ensure a credible prediction under the climate

change. Additionally, we will apply our proposed interpretable ML

methods with UQ for the diverse reservoirs across the contiguous

Unites States (CONUS) to improve the predictive understanding of

the reservoir release and support decision making of the reservoir

operators.

5. Conclusions

In this work, we use the LSTM network to predict reservoir

release from its hydrometeorological drivers including inflow,

storage, precipitation and temperature, and apply the SHAP

analysis to explain the variable importance and the variable-

wise temporal importance of these drivers on the release. In the
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application to 30 diverse reservoirs in the Upper Colorado River

Basin, we demonstrate that the LSTM models can reasonably learn

the relationship between the hydrometeorological drivers and the

reservoir release from their observations and make an accurate

prediction under different meteorological and reservoir conditions.

Additionally, SHAP identifies that storage and inflow are the two

most influential drivers which have a relatively long-term impact

on the release and this impact gradually decreases as the lag time

increases. This interpretation of SHAP analysis is consistent with

our physical knowledge. However, in a few reservoirs, SHAP does

not show a clear influence decay along the increase of the lag time,

which is difficult to explain and probably caused by the SHAP’s

ignorance of the variable interactions. To summarize, SHAP is a

good method to interpret learning and prediction of the black-

box machine learning models. In this study, the SHAP analysis

enhances our understanding of the LSTM simulation, improves the

trustworthiness of the model prediction, and assists the reservoir

operators in making climate-resilient decisions. Nevertheless, due

to the incapability of SHAP in calculating the variable interactions,

its results should be cautiously interpreted in practice. In the future,

we will improve SHAP analysis and apply it to other machine

learning tasks for trustworthy and reliable scientific predictions.
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