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Groundwater is an important freshwater supply for agricultural, domestic, and

environmental uses and critical bu�er against a warming climate, particularly in

semi-arid and arid regions of the world. Groundwater dependent ecosystems

(GDEs), which rely on groundwater for some or all of their water requirements,

include terrestrial vegetation, rivers, springs, wetlands, and riparian zones. These

GDEs provide benefits to people ranging from habitat for pollinators to carbon

sequestration. Accounting for these benefits, called ecosystem services, can

inform management by expanding the potential group of groundwater users to

include groundwater dependent ecosystems. Here we develop an approach to

inventory the ecosystem services of GDEs by identifying the ecosystem functions

of a range of GDEs and assessing how they are linked to awide range of ecosystem

services. We apply this approach as a case study in California, USA, where we

found ecosystem services from GDEs is widespread across the state; over 30%

of California’s pollinator dependent crops may benefit from GDEs, and carbon

storage of GDEs is equivalent to 790 million tons, twice as much as California

emits annually.

KEYWORDS

groundwater depended ecosystems (GDEs), groundwater, ecosystem services, California,

regulating benefits, GDEs

Introduction

Groundwater is a critical water supply for agriculture, industry, and domestic use,
leading to a growing body of research on tradeoffs among water users and optimization
among multiple objectives (Velis et al., 2017). However, one aspect of groundwater that
is frequently not accounted for is its role in supporting unique ecosystems—groundwater
dependent ecosystems (GDEs). GDEs rely on groundwater for some or all of their water
requirements (Eamus et al., 2006) and include terrestrial vegetation and aquatic ecosystems.
GDEs provide a wide range of benefits to society, including flood risk reduction, carbon
sequestration, climate regulation, and recreational opportunities (Murray et al., 2006).When
GDEs are impacted by groundwater management decisions, those benefits may be affected.
Thus, accounting for the benefits provided by GDEs can offer new information when
evaluating acceptable tradeoffs associated with groundwater extraction.
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The benefits of nature are frequently categorized and analyzed
using the framework of ecosystem services (Millennium Ecosystem
Assessment, 2005; Díaz et al., 2018). Ecosystem services are
becoming prominent in environmental management because they
directly link human activities and changes in the landscape to
benefits or impacts on people (Keeler et al., 2012; Apitz, 2013;
Munns et al., 2015). These potential benefits include a range of basic
regulatory functions of the Earth system (e.g., carbon sequestration,
soil formation, water regulation), provision of material goods (e.g.,
food, building materials, and medicines) and an array of non-
material benefits (e.g., inspiration for science and art, recreational
opportunities, a sense of place and identity) (Díaz et al., 2018).
Because ecosystem services provide a framework for assessment,
and even for monetary valuation of nature’s benefits, they provide
a mechanism to integrate environmental considerations into
management and policy decisions (TEEB, 2010; Apitz, 2013;
Brauman, 2015a,b; Guerry et al., 2015). As a result, ecosystem
services have been embraced by a variety of organizations such
as state and federal governments, NGOs, and corporations (Apitz,
2013). Global initiatives codifying and expanding ecosystem
services assessment include the Millennium Ecosystem Assessment
(Millennium Ecosystem Assessment, 2005; TEEB, 2010), the
Common International Classification of Ecosystem Services
(Haines-Young and Potschin, 2018), and the Intergovernmental
Science-Policy Platform on Biodiversity and Ecosystem Services
(IPBES) (Díaz et al., 2018; Bongaarts, 2019).

While ecosystem services provided by groundwater have been
well established, such as production and storage of water supply
(Griebler and Avramov, 2015), ecosystem services provided by
terrestrial and aquatic GDEs has been less well-explored. In
addition, individual studies that have assessed benefits of GDEs are
known to be locally important [Murray et al., 2006, 2012; Knüppe
and Pahl-Wostl, 2011; CGIAR Research Program on Water, Land
and Ecosystems (WLE), 2015]. For example, studies have evaluated
impacts of groundwater on trout habitat (Power et al., 1999) and
on the carbon balance of wetlands (Kayranli et al., 2010). However,
these studies have generally not been systematically organized
under an ecosystem services rubric nor considered the provision
of a suite of benefits. Identifying and classifying the benefits
provided by GDEs into an ecosystems services approach provides
a way for GDEs to be assessed when evaluating tradeoffs in time
and space among groundwater users (Konikow and Kendy, 2005;
Zektser et al., 2005; Scanlon et al., 2012), including the effects of
groundwater pumping on adjacent wells (Pfeiffer and Lin, 2012)
and in nearby rivers (McPhee and Yeh, 2004).

The emergence of environmental considerations in
groundwater management (Rohde et al., 2017) has stimulated
regional GDE mapping efforts (Doody et al., 2017; Klausmeyer
et al., 2018) and frameworks to assess groundwater requirements
for GDEs (Eamus et al., 2006; Richardson et al., 2011; Rohde
et al., 2018). Most approaches to GDEs focus on their uniqueness,
biodiversity, and ecology. While many studies note that GDEs
provide ecosystem services, there is little concrete guidance
for identifying the specific ecosystem services GDEs provide
or how best to quantify them (Murray et al., 2006). Moreover,
ecosystem services of GDEs are conflated with ecosystem services
of groundwater itself (Figure 1). Building upon the growing body
of knowledge about the location and functioning of GDEs and

recognizing the growing interest in using ecosystem services
and sustainable groundwater management, here we: (1) present
an overview of GDEs and the ecosystem services they provide,
(2) develop an approach to assess specific benefits provided by
GDEs to people, and (3) apply this approach in a case study
to identify and quantify three ecosystem services—pollination,
carbon sequestration, and water quality regulation—provided by
GDEs in California, USA.

Groundwater dependent ecosystems and
the ecosystem services they provide

GDEs include both terrestrial and aquatic ecosystems such
as floodplain and riparian vegetation zones, wetlands, seeps,
springs, lakes and rivers (Griebler and Avramov, 2015). These
ecosystems are partially or fully reliant on the groundwater levels or
chemical characteristics of groundwater (Eamus and Froend, 2006).
Groundwater provides a reliable water source to aquatic GDEs
either via consistent discharge or seasonal fluctuations (Bergkamp
and Cross, 2006), and to terrestrial GDEs via groundwater levels.
The degree to which ecosystems rely on groundwater varies
according to season, geologic factors, flora, fauna, weather, and
climate (Eamus and Froend, 2006; Eamus et al., 2006; Kløve
et al., 2011; Wachniew et al., 2014). As illustrated in Figure 2,
groundwater conditions within different GDE types can support
unique ecosystem functions and life cycle processes, which in turn
allows them to deliver a range of ecosystem services.

In terrestrial ecosystems, groundwater has a strong impact
on the presence and composition of vegetation (Orellana et al.,
2012). Because groundwater often buffers terrestrial vegetation
during dry summers or drought, groundwater can also enable
vegetation to grow more vigorously and over a longer period
than would otherwise be possible (Naumburg et al., 2005). These
characteristics of GDEs can lead to particular ecosystem services
because the composition of species reliant on groundwater alters
the flow of carbon, nutrients, energy and material available through
the ecosystem.

In aquatic ecosystems, one major role of groundwater is its
contribution to surface water flows (Power et al., 1999; Pettit and
Froend, 2018), increasing hydrologic connectivity in freshwater
systems (Danielopol et al., 2003; Boulton, 2005; Sechu et al.,
2023). This supports migratory fish such as steelhead and salmon,
which rely on continuously connected surface water from the
ocean to their spawning grounds (Fleckenstein et al., 2004; Zektser
et al., 2005; Douglas, 2006). Groundwater also regulates water
temperature in rivers and streams (Power et al., 1999; Fleckenstein
et al., 2004), protecting aquatic species by providing areas of refuge
during times of extreme heat or cold (Power et al., 1999). This is
crucial for fish eggs, which are sensitive to temperature fluctuations
(Hester and Gooseff, 2010; Warren et al., 2012). The hyporheic
zone, where surface and ground water exchange occurs (Power
et al., 1999; Fleckenstein et al., 2004; Zektser et al., 2005; Saltveit
and Brabrand, 2013), is particularly important for fish that take
advantage of nutrient content and regulated temperatures to spawn
(Baxter and Hauer, 2000; Hester and Gooseff, 2010; Lawrence et al.,
2013).
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FIGURE 1

Ecosystem service benefits of GDES are distinct from benefits from groundwater and surface water. (A) Groundwater is interconnected with (B)

surface water. GDEs (C), which are supported by groundwater, provide distinct benefits to people because of the unique species they support. Here,

we focus on the benefits provided by GDEs (C).

FIGURE 2

Ecosystem functions of GDEs that are uniquely supported by groundwater and produce ecosystem services. Di�erent types of GDEs (left hand

column), both aquatic (blue) and terrestrial (green), are a�ected by groundwater (second column). The unique structure of GDEs allows them to

function (third column) in ways that produce a range of outputs (fourth column) that are value for a variety of reasons, called ecosystem services

(fifth column).

Linking groundwater inputs to GDE function is critical to
understanding impacts of groundwater extraction on ecosystem
services (Murray et al., 2006). In the Upper San Pedro River basin
in Arizona, for example, pumping to meet demand from a growing
population has reduced flow in the river thereby diminishing the

recreational opportunities provided by the river including diverse
plant and animal life along its banks (McPhee and Yeh, 2004).
Similarly, groundwater dependent rivers can run dry and become
disconnected without groundwater inputs, impacting migratory
fish passage (Fleckenstein et al., 2004), and threatening aquatic
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ecosystems (de Graaf et al., 2019). However, GDEs may not be
unique in their ability to provide desired ecosystem services.
Murray et al. (2006) notes that only small changes in carbon
sequestration capacity may result from loss of terrestrial GDEs,
as those ecosystems may be replaced by other non-groundwater
dependent species.

To facilitate the identification of ecosystem services provided by
GDEs, we provide background information below on a selected list
of ecosystem services that are both commonly provided by GDEs
and for which there are likely to be data. The ecosystem services
described below are not unique to GDEs and can likely be provided
by other ecosystem types. However, what is unique here, is the
identification and organization of ecosystem services provided by
GDEs in an attempt to articulate a fuller range of benefits provided
by groundwater.

Below, for each ecosystem service provided by GDEs, we
first discuss the mechanisms underlying the production of each
service, from which we can determine if a particular GDE
produces a given service (called production below). This is
critical because different types of GDEs and different biophysical
conditions provide different levels of service provision [e.g.,
wetlands may be either net carbon sources or sinks depending on
biophysical context (Kayranli et al., 2010)]. Second, for each type of
benefit we identify characteristics of potential beneficiaries (called
beneficiaries below). Again, local context is critical because cultural
preferences determine which ecosystem services are desired.

For example, food provision from rivers in California differs
from that provided in India not only because of biophysical
differences between ecosystems but because of differences in taste,
history, and institutions of those who cultivate, harvest, and eat
the food. Third, we identify any spatial distribution necessary to
achieve delivery of an ecosystem service (referred to as spatial
distribution). For example, pollination services are delivered only
if a beneficiary is within a critical distance. Thus, only pollination-
dependent crops planted within foraging distance of an ecosystem
that provides pollinator nesting sites or food resources receives
those services (Koh et al., 2016). Climate regulation, in contrast,
occurs locally as carbon is sequestered in plant biomass and
soils but provides a benefit globally because the atmosphere is
well-mixed (Lal, 2008). Other ecosystem services require both
proximity of a beneficiary and driver. Water quality regulation,
for example, is necessary only if pollutants are added to the water,
perhaps originating from an upstream city or farm (Brauman
et al., 2007). While local context is necessary in determining the
production and identifying the beneficiaries, the overall approach
is broadly transferrable.

Ecosystem service: pollination
Pollination is the movement of pollen, that fertilizes plants and

leads to the production of fruits and vegetables (Díaz et al., 2018).
Globally, 75% of major crops rely on insect pollinators (Klein et al.,
2007).

Production

Viable pollinator habitat is largely determined by the
availability of food resources—a range of floral vegetation
blooming throughout the year—and nesting sites—provided

by dry ground, as many wild pollinators are ground-nesters
(Potts et al., 2010; Chaplin-Kramer et al., 2011; Jha and Kremen,
2013). This habitat is provided by most terrestrial GDEs and
seasonally-dry GDE wetlands (Chaplin-Kramer et al., 2011).

Beneficiaries

Only pollinator-dependent crops benefit from pollination.
Natural habitat enhances pollination even when domestic bees
are used for pollination because it increases reproduction of
domestic bees as well as provides additional pollination by wild bees
(Williams and Kremen, 2007). Most farmland growing pollinator-
dependent crops thus potentially benefits from pollination services.

Spatial distribution

To receive pollination services, pollinator-dependent crops
must be within traveling distance of wild pollinator habitat. Though
foraging distances vary considerably among species, the majority of
bees travel under 1 km (Greenleaf et al., 2007). Thus, any farmland
growing pollinator-dependent crops within 1 km of GDE habitat
will likely gain some benefit.

Ecosystem service: water quality regulation
Terrestrial GDEs located between pollution sources and water

bodies can entrain nutrients, sediment, and some other chemicals
(Brauman et al., 2007).

Production

GDEs regulate water quality by slowing and filtering the
surface water flow. As water infiltrates through the soil and across
leaf litter, sediment particles are trapped (Barling and Moore,
1994; Lowrance, 1998). Vegetation reduces nutrient runoff through
direct uptake and by increasing soil permeability (Dosskey et al.,
2010). Floodplains and the interface between water and soil at
a streambank, which are often groundwater dependent, can be
particularly effective at removing pollutants (Hoffmann et al.,
2009; Lawrence et al., 2013). Factors influencing the ability of
vegetation to regulate water quality include slope, groundwater
dependent vegetation type, and pollutant type and size, but the
size and location of the area available to take up pollutants is the
primary determinant (Mayer et al., 2007; Gumiere et al., 2011).
In-stream vegetation supported by groundwater may also regulate
water quality through channel stabilization and by sequestering
pollutants (Montakhab et al., 2012).

Beneficiaries

Regulation of water quality is beneficial only when people
are affected by a change in water quality (Keeler et al., 2012).
Impacts could occur through direct consumption of drinking
water or indirectly, through recreational or cultural activities. The
appropriate definition of beneficiaries will be context specific but
may be as broad as people within a watershed, state, or country.

Spatial distribution

To regulate water quality, a GDE must be situated between
a pollutant source and a site where water quality is of interest
to beneficiaries. The sources most likely to provide pollutants are
agricultural or urban areas, and any surface water body may benefit
from improved water quality. GDEs downstream of pollutant
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sources and upstream of water bodies potentially provide water
quality regulation services.

Ecosystem service: climate regulation
Climate regulation by ecosystems includes carbon

sequestration and methane and nitrous oxide emissions affecting
global greenhouse gas concentrations as well as local climate
interactions such as shading, reflection, and rainfall recycling (Díaz
et al., 2018).

Production

Terrestrial GDEs sequester carbon in plant material and
in the soil (Anderson-Teixeira and DeLUCIA, 2011). Because
groundwater supported vegetation grows for longer periods and
more abundantly than would be possible without the addition of
groundwater, GDEs potentially sequester more carbon than other
types of vegetation (Naumburg et al., 2005; Eamus and Froend,
2006). Wetlands can be either sources or sinks of greenhouse gases
depending on their individual characteristics. Wetland soil and
plants sequester carbon, but wetlands also release carbon dioxide,
methane, and nitrous oxide (Kayranli et al., 2010). Dewatering
wetlands would likely cause substantial emissions of greenhouse
gasses. For local climate regulation, riparian GDEs help stabilize
the temperatures of adjacent streams by providing shade (Barling
and Moore, 1994), and like all vegetation, the albedo of GDEs is
higher than that of bare ground or developed areas, helping to
lower local temperature (Anderson-Teixeira and DeLUCIA, 2011).
All terrestrial GDEs likely provide climate regulation.

Beneficiaries

The impacts of climate regulation are diffuse (Wilbanks and
Kates, 1999), so potential beneficiaries encompasses the human
population more generally.

Spatial distribution

The atmosphere is assumed to be well-mixed, so proximity
between GDEs sequestering carbon and potential beneficiaries
is unnecessary.

Ecosystem service: flood impact mitigation
Ecosystems can reduce the occurrence as well as the impact

of natural hazards including coastal storm surges, riverine floods,
landslides, and fires (Díaz et al., 2018).

Production

Both terrestrial and aquatic GDEs can potentially reduce the
size and duration of riverine flood peaks by slowing the movement
of water over the land (Thomas and Nisbet, 2007) and in the river
channel (Bechtol and Laurian, 2005; Elosegi and Sabater, 2013;
Palmer et al., 2014). Headwater wetlands, however, may either
exacerbate or reduce flooding (Leyer et al., 2012; Acreman and
Holden, 2013). The extent to which GDEs can affect the size of a
flood peak and under what rainfall conditions they can do so is
unclear. Natural ecosystems are most effective at reducing small-
to medium-sized floods, but have limited benefit during large flood
events (Kochenderfer et al., 2007; Alila et al., 2009; Brookhuis and
Hein, 2016). Location, climate, season, slope, and vegetation type

all influence the flood mitigation service of GDEs (Andréassian,
2004).

Beneficiaries

People living within the floodplain will be affected by floods and
can benefit from reduced flood peaks.

Spatial distribution

To benefit from flood regulation, people must live downstream
of a GDE. A terrestrial or aquatic GDE potentially provides hazard
regulation services to those living in the downstream floodplain.

Ecosystem service: energy, food, materials, and
medicines

Flora and fauna supported by GDEs can provide bioenergy,
food, materials, and medicines (Díaz et al., 2018).

Production

Wetlands and terrestrial GDEs provide a range of material
resources including leafy vegetables, fish, invertebrates, and animals
that rely on these food resources (Silvius et al., 2000; Turyahabwe
et al., 2013). Species unique to GDEs, such as medicinal plants
found in Chinese wetlands (Fang et al., 2006), are likely to be locally
important. Groundwater dependent wetlands, for example, support
the growth of papyrus, a unique source of fiber used in paper
making (Wiedeman and Bayer, 2012). In addition, many terrestrial
GDEs, including floodplains, wetlands, and riparian areas, are
important agricultural sites due to their fertile soils and abundant
water (Verhoeven and Setter, 2010). Aquatic GDEs also support
vegetation and animals that have important material uses (Boulton,
2005). GDEs may also have important ties to identity because they
have historically provided food, shelter, and materials and carry
spiritual, cultural, and recreational significance. Specific animals,
such as migratory salmon, are both economically and culturally
valuable to many native tribes. Thus, any GDE can provide material
benefits, though both the specific GDEs and the types of materials
produced will be location specific.

Beneficiaries

Any person with access to a GDE, either directly or through
markets, could benefit depending on cultural preferences. Those
who do not have the material means to substitute food, energy, or
other material goods provided by GDEs are most reliant on them
and are most vulnerable to their disappearance.

Spatial distribution

Access to a GDE, often defined by proximity, is required
for first-order use of material resources provided by GDEs.
However, valuable resources provided by a GDE may be traded
great distances.

Ecosystem service: learning, experience, and
identity

Non-material benefits of nature include learning, experiences,
and identity provided by landscapes and the flora and fauna that
make them up (Díaz et al., 2018).
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Production

In GDEs, water flow, an extended wet season, and increased
water volume provide aesthetic features, particularly color, sound,
and movement that may improve mental health and enhance
recreational activities (Burmil et al., 1999). Recreation is strongly
linked with GDEs—the extended wet season and increased water
flow contributes to boating (Ward et al., 1996), fishing for specific
species dependent upon groundwater contributions to streams
for migration or spawning/juvenile rearing (Boulton, 2005), and
wetlands and riparian GDEs that often support fowl and other
animals that are hunted recreationally (Seavy et al., 2009). These
and other recreational experiences can be enhanced or enabled by
the aesthetic of flowing water in the dry season. Not all experiential
benefits are active; simply being in nature, with or without physical
exercise, has been shown to improve cognitive function and mental
health (Bratman et al., 2012).

Beneficiaries

GDEs may have important ties to identity because they
have historically provided food, shelter, and materials, and carry
spiritual, cultural and recreational significance in conjunction with
material good. For example, specific animals, such a migratory
salmon, are both economically and culturally valuable to many of
the indigenous people of California. Beneficiaries can be grouped
into categories with similar characteristics: (i) those who partake
in activities in GDEs, including boaters, swimmers, hikers, or even
painters; (ii) those who value the historical and cultural aspects of
GDEs; and (iii) those with traditional or indigenous connections
to GDEs.

Spatial distribution

In many cases, a GDE must be accessible to provide benefits. In
this case, proximity is key and is determined by a user’s willingness
to travel.

California case study

To demonstrate how this approach can be operationalized,
we mapped and then evaluated the provision of three ecosystem
services in California: pollination, water quality regulation, and
climate regulation/carbon sequestration. As the largest agricultural
state in the nation with farmland totaling 10 million hectares and
agricultural receipts totaling $44 billion, we developed methods to
quantify the pollination services provided by GDEs. Additionally,
California is committed to reducing greenhouse gas emissions to
80% below 1990 levels by 2050 (Cameron et al., 2017), and while
carbon sequestering ecosystems will help meet those goals, this is
the first attempt to quantify the contribution of GDEs in potentially
reducing emissions.

Methods

Evaluating ecosystem services from GDEs
in California

In 2014, California passed the Sustainable Groundwater
Management Act (SGMA) which requires groundwater

TABLE 1 Data used to quantify ecosystem services from GDEs in

California.

Data Source

Pollination

Pollinator habitat types Potts et al., 2010, Jha and Kremen, 2013

GDE pollinator habitat locations

California Department of Water
Resources, 2018

Bee foraging range

Greenleaf et al., 2007

Pollinator dependent crop types

Chaplin-Kramer et al., 2011

Cropland locations

United States Department of
Agriculture National Agricultural
Statistics Service, 2018

Water quality regulation

Surface water locations

U.S. Geological Survey, 2016

Developed area locations

United States Department of
Agriculture National Agricultural
Statistics Service, 2018

GDE locations

California Department of Water
Resources, 2018

Climate regulation

Above ground carbon storage

Gonzalez et al., 2015

Below ground carbon storage
(0–200 cm) Klausmeyer et al., 2018 (see https://

protect-us.mimecast.com/s/
dvgvCqxpojhNOWvoIZmUDc?
domain=conservancy.umn.edu; https://
conservancy.umn.edu/handle/11299/
213889)

GDE locations (NC Dataset)

California Department of Water
Resources, 2018

Groundwater basins (2018)

California Department of Water
Resources, 2018

State boundary: Shoreline

Hapke and Reid, 2007

State boundary: Interior

United States Census Bureau, 2016

sustainability agencies (GSAs) to manage groundwater resources
for current and future social, economic and environmental
benefits (State of California, 2014). Under SGMA, GSAs are
required to identify and consider impacts to GDEs in groundwater
sustainability plans (GSPs). To assist GSAs in the identification of
GDEs in GSPs, The Nature Conservancy (Klausmeyer et al., 2018)
mapped the occurrence and distribution of both terretrial and
aquatic GDEs statewide. These data were reviewed and eventually
adopted as the California Department of Water Resource’s Natural
Communities Commonly Associated with Groundwater (NCCAG)
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dataset, which includes terrestrial and aquatic features that need be
locally verified (California Department of Water Resources, 2018;
Klausmeyer et al., 2018).

Using the NC dataset, we quantified the benefits of the three
ecosystem services within SGMA basins: pollination, water quality
regulation and climate regulation/carbon sequestration. For each
service, we document the type of data we selected as well as the
specific data source (Table 1).

We followed the steps in the assessment approach described
above to identify: (1) GDEs producing the ecosystem service
(Production), (2) potential beneficiaries (Beneficiaries), and (3)
the service delivered by determining the appropriate overlap
of production and beneficiaries (Spatial distribution). We then
aggregated (Aggregation) and normalized our findings to provide
informative and interpretable results.

Pollination

Production

We identified terrestrial GDEs and seasonally-dry GDE
wetlands that can provide nesting sites and food resources for
wild pollinators defined as all vegetative GDEs in the NCCAG
database (Chaplin-Kramer et al., 2011; California Department of
Water Resources, 2018).

Beneficiaries

To identify pollinator-dependent cropland, we identified
pollinator-dependent crops grown in California using detailed
crop maps and an inventory of crop-dependence on pollinators
(Chaplin-Kramer et al., 2011; California Department of Water
Resources, 2018). In California, pollinator-dependent crops include
alfalfa, almonds, apples, berries, and peaches, while non-pollinator
dependent crops are primarily corn, citrus, grapes, potatoes, and
rice. We created a binary indicator of pollinator dependence,
by marking all cropland designated with ‘Modest’ to ‘Essential’
dependence on pollinators in Chaplin-Kramer et al. (2011) as
pollinator dependent.

Spatial distribution

We identified pollinator-dependent cropland benefiting from
GDEs by locating pollinator-dependent cropland within foraging
distance of GDE habitat, 1 km (Figure 3).

Aggregation

Total acreage of pollinator dependent cropland was summed in
each groundwater basin that has the potential to receive the GDE
crop pollination service (Figure 3). To normalize our results, we
divided the total acres of benefitting cropland by the total acres of
pollinator-dependent cropland in the basin.

Water quality regulation

Production

All GDEs in the NCCAG database (California Department of
Water Resources, 2018) that contained plants and soils capable of
filtering water were considered to potentially benefit water quality.
These included all ecosystems that were not limnetic or riverine.

Beneficiaries

We designated all surface waters in California within 1,500m
from a pollution source (e.g., developed areas, including urban
and farmland) as potential beneficiaries of water quality water
quality regulation.

Spatial distribution

Any GDE within a 500m buffer of a potentially benefiting
surface water feature was considered close enough to impact
surface water quality (Figure 3). The overlapping area between the
developed buffer and the surface water buffer represents the region
where water purification should occur.

Aggregation

We report the area and percentage of land area between
potential pollution sources and water bodies occupied by GDEs.

Climate regulation/carbon sequestration

Production

We calculated total carbon storage across the state of California
using above and below ground carbon storage data (Gonzalez et al.,
2015; California Department ofWater Resources, 2018; Ramcharan
et al., 2018). Soil carbon stocks were calculated using depth ranges
in soil grids (Hengl et al., 2017). We then extracted carbon storage
data from all groundwater basins and the GDEs within those basins.

Beneficiaries

We designated all regions of California as equally benefitting
from carbon storage, because local greenhouse gas regulation has a
global impact (Wilbanks and Kates, 1999).

Spatial distribution

We considered all of the GDE carbon storage across California
without further spatial filtering.

Aggregation

To aggregate and normalize our results, we report total
tons of carbon dioxide equivalent storage in GDE areas as a
percentage of total tons of carbon dioxide equivalent storage
in each basin. Because each pixel is one hectare in size, the
mean CO2 tons/ha can be calculated by finding the mean pixel
value in GDE and non-GDE locations in each basin. In order to
compare the climate regulation efficiency of GDEs vs. non-GDEs,
the mean tons/ha for non-GDEs is divided by the mean tons/ha
for GDEs.

Results

Evaluating ecosystem services from GDEs
in California

Pollination
Although GDEs occupy a small portion of California

(∼9,000 km² or 5.3% of California’s groundwater basins),
33% of pollinator dependent crops are within 1 km of a GDE
and therefore may benefit from GDE pollinators (Figure 4A).
In the Central and Imperial Valleys, ∼280,000 hectares of
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FIGURE 3

Spatial representation of how the crop pollination service (left) and water quality regulation service (right) are quantified. Crop pollination was

calculated by dividing the benefitting cropland (orange) by the total pollinator dependent cropland in the basin (orange + gray; left panel). Water

quality regulation was calculated by dividing the area GDEs capable of water purification (dark green) by the total area of land within 0.5 km of a

water body and 1 km of developed land (dark green + yellow; right panel).

FIGURE 4

(A) Crop pollination service by SGMA groundwater basin. Percent of pollinator-dependent cropland within 1 km foraging distance of a vegetative

GDE by groundwater basin. (B) Water quality regulation service by SGMA groundwater basin. Percent of groundwater dependent vegetation within

the water filtration area (land within 500m of surface water and 1,000m of developed land) by groundwater basin. (C) Climate regulation service by

SGMA groundwater basin. Total carbon dioxide equivalent storage in GDEs and (D) Percent of total carbon dioxide equivalent storage provided by

GDEs summarized by groundwater basin.

crops (out of ∼900,000 hectares of all pollinator-dependent
crops) could be benefiting from pollination services that
GDEs provide. The concentration of these benefits varies
spatially, with higher benefits in the Sacramento Valley
(46%), Salinas Valley (54%) and Imperial Valley (82%). Crops
receiving these benefits include almonds and alfalfa in the
Sacramento Valley and strawberries in the Salinas Valley
(Table 2). Although GDEs are not solely responsible for the
production of adjacent pollinator-dependent crops, the presence of
pollinators in GDEs has the potential to increase crop pollination,
thereby contributing to higher yields (Chaplin-Kramer et al.,
2011).

Water quality regulation
In the State’s larger groundwater basins, such as those located

in the Central Valley, more than 1,500 hectares of GDEs are located
between developed areas and bodies of water; therefore having the
potential to regulate or mitigate water quality (Figure 4B). GDEs
comprise a relatively large percentage of land in northern and
central California. In contrast, there does not appear to be water
regulation services in southeastern California, likely due to the lack
of surface water in those desert areas. As Figure 4B shows, there
are some areas with a large amount of surface water that do not
receive the water quality regulation service of GDEs either, such as
the northwestern sub-basin of the Sacramento Valley.
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TABLE 2 Crops benefitting from crops within 1 km of terrestrial GDEs.

Total benefitting crops

Square km Percent

Sacramento valley

Almonds 273 34.9

Alfalfa 216 27.6

Plums, prunes, and apricots 98 12.5

Sunflowers 92 11.8

San Joaquin valley

Almonds 730 48.4

Alfalfa 519 34.4

Cherries 51 3.4

Peaches/nectarines 52 3.4

Imperial valley

Alfalfa 472 92.7

Carrots 29 5.6

Melons, squash, and cucumbers 7 1.4

Flowers, nursery, and Christmas
tree farms

1 0.0

Salinas valley

Strawberries 27 69.0

Bush berries 4 11.4

Miscellaneous subtropical fruits 3 6.6

Alfalfa and alfalfa mixtures 2 6.1

Climate regulation/carbon sequestration
Areas with large amounts of woody vegetation, such as

groundwater dependent redwood forests in Northern California,
offer the greatest total amount of carbon storage (Figure 4C).
However, GDEs as a percent of total carbon storage for SGMA
basin (Figure 4D) shows that GDEs potentially provide a high
percentage of carbon storage in less vegetated regions (such as
in the desert regions). The total carbon storage in GDE areas
statewide is substantial: combined, areas occupied by GDEs store
the equivalent of 790million tons of carbon dioxide, which is nearly
twice as much as California emits annually (Widger, 2019).

Discussion

Groundwater dependent ecosystems in California provide a
range of ecosystem services. By systematically linking groundwater
to ecosystem function and ecosystem services, we can begin to
identify and quantify which ecosystem service beneficiaries are
threatened by groundwater degradation. Our analysis of three of
these services provides a blueprint for identifying and quantifying
GDE ecosystem services in California and in other states. When the
benefits of these ecosystem services are defined with more detail,
this could be used to evaluate specific policy questions about where

and how to invest in GDE and groundwater conservation. On a
local level, the approach we outline here may provide land and
water managers a way to consider potential ecosystem services
provided by GDEs.

While our results show the sum of pollinated cropland acres,
tons of carbon storage and area of water filtration are impressive,
the degree to which existing GDEs provide ecosystem services
compared to non GDEs needs exploration. Our analysis here
did not assess what additional services GDEs provide over other
non-groundwater dependent ecosystems; instead our goal was to
quantify services provided by GDEs. Overall, our results likely
represent an upper bound for the quantification of GDE ecosystem
services in SGMA basins. The total acres benefitting cropland,
for example, represents all cropland that could potentially be
aided by GDE pollination. This does not imply that those areas
are fully dependent on GDE pollinators for a successful harvest
or that elimination of a nearby GDE would negatively impact
crop production. Instead, it demonstrates cropland close to GDEs
potentially receive pollination services from GDE pollinators.
While our results may represent the upper end of potential benefits
of GDEs in SGMA basins, the potential services provided by GDEs
may be much larger if applied to all GDEs in the state (those within
and outside of SGMA basins).

Ecosystems services are recognized as an important solution
for sustainable development and are particularly useful when
addressing policy and resource management questions that require
a comparison of costs, benefits, and tradeoffs. However, a
disconnect often exists in preserving these ecosystem services, as
the close interdependencies between water and ecosystem are rarely
recognized or valued (Bergkamp and Cross, 2006). Ecosystem
services provided by wetlands, forests, springs, rivers, and coastal
environments rely on freshwater resources, including groundwater,
to maintain the ecological integrity of their ecosystem structure
and functioning. As a result, these ecosystems and the services they
provide are being affected by water and land resource management
and policy decisions that drive groundwater pumping, water
infrastructure development (e.g., dams, reservoirs, canals), and
land use conversion of natural landscapes to urban and agricultural
uses (Reid, 2005).

In recent years, conservation has been recognized as providing
co-benefits for people and nature. In 2018, the United Nations
declared the Nature-based Solutions, which preserves or mimics
the features and complex processes of nature to offer multiple
nature-people benefits, as a means to overcome 21st century
water challenges (WWAP, 2018). In contrast to centralized
traditional human-built (“gray”) infrastructure (e.g., dams,
canals), nature-based solutions (“green”) and infrastructure
(e.g., managed aquifer recharge) are considered to be a more
cost-effective and sustainable alternative (Perrone and Rohde,
2016; Villholth and Ross, 2018; Rohde et al., 2020). As a result,
groundwater aquifers have also become viewed as important
natural capital that provides not only water supply but also
other natural ecosystem services (Bergkamp and Cross, 2006).
Identifying the ecosystem services provided by GDEs provides
a more complete picture of the natural capital provided by
groundwater aquifers.
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