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A multistage mesocosm vertical flow constructed wetland system was designed

to treat synthetic domestic wastewater with a high nitrogen (N) load. The study

aim was to determine the impact of design and operational variables on N

removal e�ciency in such systems. A tidal flow operational strategy enhanced

aeration and was coupled with a step-feeding approach to promote N removal.

Over the 420-day running period N removal rates were between 70 and 77

gN/m3/d, for a step-feeding ratio range of 60:40 to 80:20. The system was

able to remove 91–95% of chemical oxygen demand, 74–91% of ammonium

and 66–81% of total-N. Tidal flow and step-feeding strategies significantly

impacted nitrogen removal with the best performance at a step-feeding ratio

of 80:20 providing a carbon to nitrogen (COD/N) ratio of 4–5. The bacterial

diversity increased at each stage throughout the system with dominating

phyla Proteobacteria, Firmicutes, Planctomycetes, Bacteroidetes, Chloroflexi,

Verrucomicrobia and Acidobacteria. Dominant bacteria at the genus level were

Thiothrix, Planctomyces, Azonexus, Pseudoxanthomonas, Hydrogenophaga,

Gemmobacter and other genera suggesting that N removal was accomplished

via diverse metabolic pathways, including autotrophic nitrification, heterotrophic

denitrification, autotrophic denitrification, and possibly anammox. This study

shows benefits of step-feeding strategies in tidal flow constructed wetlands as

a cost-e�ective solution for minimizing external carbon input to achieve e�ective

N removal.

KEYWORDS

biological treatment, carbon dosage, microbial structure, nature-based solutions,

nitrification-denitrification, nutrients removal

1. Introduction

Use of constructed wetlands (CWs) for wastewater treatment has increased rapidly in
recent years, especially for small communities, rural areas, and villages (Chen, 2011; Wu
et al., 2014; Garfí et al., 2017; Moreira and Dias, 2020; Li et al., 2021). CWs are engineered
systems that are used worldwide for their low operation and maintenance costs, low energy
and carbon footprints, and ease of operation (Wu et al., 2014; Wang et al., 2016; Tan et al.,
2020). CWs have been successfully adopted to treat various types of wastewater including
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municipal, agricultural or industrial wastewater (Masi et al.,
2018; Lekshmi et al., 2020). Beyond removing a wide range of
contaminants from water, CWs also provide an array of social
and environmental benefits such as a recreational zones, biodiverse
habitats, or wildlife refuge and breeding grounds (Stefanakis et al.,
2014; Dumax and Rozan, 2021). CWs utilize microbial mediated
removal pathways to treat biodegradable contaminants such as
nitrogen (N) or chemical oxygen demand (COD) (Kulshreshtha
et al., 2022).

N removal in CWs is a complex process and is commonly
accomplished by microbial nitrification-denitrification (Lu et al.,
2020). CWs N removal potential can be further augmented
with anaerobic ammonium oxidation (anammox) to overcome
limitations of carbon availability encountered in denitrification
processes (Negi et al., 2022). Complete nitrogen removal requires
an efficient nitrification process to transform ammonium (NH+

4 )
under aerobic conditions using autotrophic aerobic bacteria.
Followed by the elimination of nitrate (NO−

3 ) by denitrification
using autotrophic and heterotrophic anaerobic bacteria with
an adequate organic carbon source (Kadlec and Knight, 1996;
Vymazal, 2007; Wang et al., 2016). Typically, the removal of
total nitrogen (TN) in CWs ranges between 30–50% and thus
does not always provide the required removal effectiveness,
particularly for heavily polluted wastewater (Lee et al., 2009;
Vymazal and Kröpfelová, 2009; Ruan et al., 2021; Negi et al.,
2022). Nitrogen removal in CWs is often limited by the lack
of readily available organic carbon sources for the denitrification
process (Pelissari et al., 2014). Denitrification efficiency may
be enhanced by the addition of external carbon sources such
as biochar or agricultural by-products (Yu et al., 2019; Zheng
et al., 2022) or iron addition as electron donor to ensure
occurrence of both reductive and anoxic conditions (Zhuang et al.,
2019). Besides external carbon loading, enhanced productivity
of nitrifying/denitrifying communities in CWs can be achieved
via control of oxygen supply to create suitable aerobic/anaerobic
conditions. Possible solutions include artificial aeration, step-
feeding, wastewater recirculation or hybrid designs that combining
nitrification and denitrification advantages vertical and horizontal
flow CWs (Vymazal, 2007; Ye and Li, 2009; Ávila et al., 2017;
Ilyas and Masih, 2017; Jehawi et al., 2020). Nevertheless, most
enhanced nitrogen removal modifications result in increased
operational costs due to energy input (aeration) or carbon dosing,
or require larger area footprints, e.g., for hybrid systems (Vymazal,
2013).

Tidal flow CWs (TFCWs) have been introduced as a
compromise between artificial aeration and multi-stage hybrid

Abbreviations: NH+

4 -N, Ammonium-nitrogen; anammox, Anaerobic

ammonium oxidation; BOD, Biochemical oxygen demand; COD/N,

Carbon/nitrogen; COD, Chemical oxygen demand; CWs, Constructed

wetlands; DOC, Dissolved organic carbon; FWSCW, Free water surface

constructed wetlands; HFCW, Horizontal flow constructed wetlands; HLR,

Hydraulic loading rate; L, Lower; NO−

3 N, Nitrate-nitrogen; NO2
−-N, Nitrite-

nitrogen; N, Nitrogen; OUT, Operational taxonomic units; PCA, Principal

coordinates analysis; SND, Simultaneous nitrification and denitrification;

TFCWs, Tidal flow CWs; TC, Total carbon; TN, Total nitrogen; TOC, Total

organic carbon; U, Upper; VFCWs, Vertical flow CWs.

systems (Saeed et al., 2020). TFCWs are vertical flow CWs
(VFCWs) designed to operate under alternating water level
conditions. The operation cycle includes wet phases during which
the system is filled up with water and dry phases when the system
is drained. During wet phases, the intruding water expels the air
form the substrate matrix and creates temporarily anoxic/anaerobic
conditions suitable for denitrification. Subsequently, dry phases
create passively aerated aerobic conditions when lowering the
water table drains the wetland and allows atmospheric air
into the bed matrix. TFCWs have been achieving over 80%
removal of TN operating effectively even in cold climates and
under low carbon/nitrogen (C/N) conditions due to anammox
microbial community that perform a low carbon nitrogen
removal pathway (Hu et al., 2014; Pang et al., 2015; Ji
et al., 2020). TFCWs are found to be less vulnerable to
bioclogging due to the shear stress of the fluctuating water
table that contains the growth of biofilm (Zhuang et al.,
2019).

Despite benefits of the tidal flow operation mode, the
implementation of TFCW is limited due to the complex
management, as tidal phases need adjusting to the incoming
wastewater quality to meet the required oxygen supply rate
and provide a balanced carbon pool. Some of the limitations
of TFCWs can be solved by an adjusted step-feeding strategy
that enhances nitrification and effectively closes denitrification
carbon demand. Stepwise introduction of the influent to already
nitrified wastewater leads to more efficient use of the influent
carbon source for the denitrification process (Tang et al., 2007;
Hu et al., 2012) and has been previously tested in TFCWs.
Limited literature compares different step-feeding ratios to assess
the optimum operation for managing wastewater dosage and
distribution points in the system. Therefore, the aim of this study
was to investigate the operation of a multistage TFCW that allowed
applying a step-feeding strategy. Multistage design divides CW into
zones/stages that offers different treatment condition (i.e., oxygen
levels, carbon pool) thus enabling treatment of different types of
contaminants within same CW system. The TFCW investigated
in this study is divided into 4 stages in series where first stage
is designed for organic matter removal and the initiation of
the nitrification step, the second stage is for the nitrification
and denitrification steps, and the third stage and fourth stages
(depending on the load) are incorporated to enable effective step-
feeding distribution.

The study investigated a range of step-feeding ratios to
assess optimum working conditions related to carbon source
distribution in the system. The study was carried out at mesocosm
TFCW fed with synthetic domestic wastewater (with elevated
carbon and nitrogen concentration of approx. 700 mgCOD/l and
60 mgNH+

4 -N/l respectively) for 420 days to obtain a better
control on the system and enable direct comparison between
the applied step-feeding rations. A microbial analysis was carried
out to identify the bacterial community structure and establish
possible links with the observed CW performance. This study
expands knowledge on TFCWs functions and operation and
delivers results that will strengthen the position of TFCWs as
an alternative for some of conventional wastewater treatment
systems as well as hybrid CWs that characterize with higher area-
footprint.
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2. Materials and methods

2.1. System description and operation

The CW system consists of four identical stages made from
gray PVC plastic with each stage being 100 cm in height and
10 cm in diameter with a total treatment surface area of 0.0.032
m² (0.008 m² each) with 80 liters influent tank filled with 60 liters
to feed the system and 80 liters effluent tank to collect the final
effluent (Figure 1). The experiment was constructed outdoors at the
School of Engineering, Cardiff University. The experiment was run
throughout the varying seasonal conditions with the daily mean air
temperatures ranging from 5–25◦C between winter and summer
periods respectively. Water samples temperature fluctuated less
significantly ranging from 10–20◦C between winter and summer
periods, respectively. Gravel was used as the main substrate in
all four stages. In each stage, a depth of 10 cm in the bottom
layer was filled with coarse gravel (20–25mm). This served as the
supporting and drainage layer; the following layer was filled with
gravel (4–9mm) as the main substrate layer with a depth of 50 cm;
a 10 cm top layer of gravel (10–19mm) was added to facilitate the
dispersion and the distribution of wastewater and the growth of
plants. The porosity of the gravel was 40% combined for the bottom
and main substrate layer. Each stage was planted with Phragmites

Australis at the beginning of the experiment, and good growth
with lush vegetation was observed after 2 months by feeding the
systemwith synthetic wastewater. Phragmites Australiswere chosen
as these are the most commonly used reference plant for CWs in
Europe and are able to survive in most conditions (Brix, 1994; Sun
et al., 2005; Kadlec and Wallace, 2008; Vymazal, 2010). Moreover,
these plants provide a comparatively high oxygen transfer into the
rhizosphere, which facilitates the aerobic degradation of pollutants
(Barbera et al., 2009; Wang et al., 2012). The system was fed
with synthetic domestic wastewater prepared freshly each week via
the peristaltic pumps from the influent tank. About 60 liters of
synthetic wastewater were required to feed the system for 1 week.
The system was operated with three batch cycles per day, with
each cycle entailing 2 h saturation and 6 h unsaturation giving a
total of 8 h per cycle. The synthetic wastewater simulates typical
domestic wastewater with a high concentration of organic carbon
source and nitrogen to obtain approximately 700 mg/l of COD and
60 mg/l of NH+

4 -N. Two liters of room temperature (circa 20◦C)
synthetic wastewater were pumped into the system in each cycle,
totaling 6 liters per day being actively pumped into the system.
The synthetic wastewater was batch loaded to the first stage and
sequentially passed through the other stages, generating alternate
wet/dry periods in individual stages. Before starting the experiment
and loading the synthetic wastewater to the CW, the system was
inoculated with activated flocs obtained from the aeration basin of
a local domestic wastewater treatment plant for about 2 weeks to
provide seed microorganisms for the system.

The experiment was divided into four phases: Phase 1 with
only tidal flow, Phase 2 with tidal flow and step-feeding ratio
(80:20), Phase 3 with tidal flow and step-feeding ratio (70:30),
and Phase 4 with tidal flow and step-feeding ratio (60:40). Step-
feeding ratios during experimental Phase 2 to 4 were distributed
from the influent reservoir into the third stage of the CW as
shown in Figure 1. In these phases, a portion of the flow will

be allowed into the first and second stage as normal, and the
remainder will be added directly from the reservoir into the
system once the synthetic wastewater finishes passing through
from the first and second stages to reach the third stage. Samples
were collected once a week from the influent tank and the
effluent of each stage and analyzed directly in situ for pH and
temperature using a pH/EC/TDS meter (HANNA HI 991301).
Chemical oxygen demand (COD), nitrite-nitrogen (NO2

−-N),
nitrate-nitrogen (NO−

3 -N), ammonium-nitrogen (NH+

4 -N) and
total nitrogen (TN) were analyzed using a Hach DR/3900
spectrophotometer and digester in the laboratory.

2.2. Tidal flow and step-feeding strategies

A tidal flow strategy was generated in each stage using
peristaltic pumps, which were controlled by specific programmable
timers (Williamson Pumps Ltd & Williamson Manufacturing
Company Ltd.; model: CM type variable speed cased pump).
This process repeatedly allowed the mesocosm CWs to be filled
with synthetic wastewater until the main media layer fully
submerged (wet saturated conditions) and subsequently drained
after a desired time (dry unsaturated conditions). Whilst, the
additional oxygen availability resulted in improved nitrification
it creates less favorable conditions for the denitrification step
(Vymazal and Kröpfelová, 2011; Li et al., 2015). Therefore, a
step-feeding strategy was adopted at later stages to improve the
TN reduction (denitrification step) by introducing the influent
synthetic wastewater to the nitrified liquid. Such approaches may
provide a more efficient use of the available carbon source that
could enhance the denitrification step (Miyaji et al., 1980; Fillos
et al., 1996; Puig et al., 2004; Hu et al., 2012).

2.3. DNA extraction and microbial
community analysis

Gravel samples were taken from the lower (L) and upper
(U) position of the main substrate from each of the four stages
of the multistage CW system after 420 days (at the end of
experimental Phase 4) and stored at −80◦C. Genomic DNA was
extracted from the gravel samples (1L, 1U, 2L, 2U, 3L, 3U, 4L, and
4U) using a Meta-G-NomeTM DNA Isolation Kit (Cambio Ltd).
Gravel (10 g) was placed in a 20ml sterile tube with 1ml of 0.2%
Tween 20 Wash Buffer (Cambio Ltd) and shaken for 10min on
a wrist action shaker at maximum speed (to remove the gravel
microbial biofilm). The cell suspension was then transferred to
a sterile 1.5ml NoStick tube (Alpha Laboratories), centrifuged at
14,000 × g for 2 mins, and DNA extracted from the cell pellet
according to the manufacturer’s protocol. DNA was evaluated for
quantity and size using a Qubit fluorometer (Qubit dsDNA BR
Assay Kit; Invitrogen) and Agilent Tape Station (High Sensitivity
D1000 ScreenTape and reagents; Agilent Technologies Inc) and
stored at−20 ◦C until required for molecular analysis. Details
for bacterial 16S rRNA gene PCR and Illumina sequencing are
provided in Supplementary Text S1. Principal coordinates analysis
(PCA) was used to visualize the difference in the microbial
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FIGURE 1

Schematic of the mesocosm constructed wetland system gray PVC plastic used in this study. About 80 liters influent tank was filled with 60 liters to

feed the system for one week and 80 liters e	uent tank to collect the final e	uent from the system by using programmable timer peristaltic pumps.

community calculated from the computed distance matrix and to
visualize the performance characteristics of the system in terms
of nutrient removal. R (v4.1.3) software was used to generate
correlation and PCA analysis using packages corrplot (v0.92) and
factoextra (v1.0.7) respectively (Alboukadel and Mundt, 2020; Wei
and Simko, 2021).

3. Results and discussion

3.1. Overall treatment performance

The experiment was carried out over 420 days and evaluated
the multistage CW system on nitrogen removal using both tidal
flow (Phase 1) and tidal flow with step-feeding (Phases 2 to 4)
as shown in Figure 2. COD removal rate was uniform across the
experiments (ANOVA, p > 0.05) consistently reaching 90%, due to
the system utilizing effective aerobic conditions induced by tidal
flow operation (Figure 2A). However, a lower performance (70–
75% COD removal) was observed in Phase 1 during a longer period
with cold temperatures when water temperature approached 10◦C.
Significant COD removal obtained in all experiments (Phases 1
to 4) was predominantly due to enhanced oxygenation efficacy of
the tidal flow system (Zhao et al., 2004; Hu et al., 2012; Chang
et al., 2014) and the intensive microbial activities these conditions
promote (Dušek et al., 2008). Previously, it has been reported that
inmost cases, insufficient oxygen supply is themain reason for poor
biological COD removal in CW systems (Korkusuz et al., 2005;
Ayaz et al., 2012; Wu et al., 2015). Nitrification is restricted even
more than COD reduction because oxygen is utilized for carbon

oxidization before nitrification due to the faster growth rate of

heterotrophic organisms compared with that of nitrifiers (Wu et al.,

2011; Bassin et al., 2015; Ge et al., 2015). However, well aerated

systems provide unfavorable conditions for other process such as
denitrification (Vymazal and Kröpfelová, 2011).

The average NH+

4 -N removal was 91 ± 8%, 89 ± 1%, 74 ±

5%, and 82 ± 5% for experimental Phases 1 to 4, respectively as

shown in Figure 2B. TN removal was limited by denitrification
(Figures 2C, D) and showed significant variability across the
experiments (ANOVA, p < 0.05). The average removal of TN
in Phase 1, where only tidal flow was employed, was 71%. After
applying the step-feeding strategy alongside tidal flow in Phases 2, 3

and 4 the average TN removal was 66–81% as shown in Figure 2D.

The nitrogen removal rate for Phases 2 and 4 were 77 gN/m3.d
and 70 gN/m3.d respectively, higher than observed in Phase 1 (67
gN/m3.d). This is due to the hydraulic loading rate (HLR) and

application of step-feeding which re-introduced external carbon
source to enhance the denitrification process. Interestingly, only
63 gN/m3.d nitrogen was removed in Phase 3. Figure 2 shows
that each time the new feeding ratio was introduced (Phase 2–4)
the nitrogen removal was dropping and then gradually increasing
with the duration of the applied step-feeding phase. This could
indicate microbial community response and adaptation to new
conditions when the nutrient availability was altered. The step-
feeding ratio of 70:30 occurs as breakthrough point for nutrient
distribution and availability in the system as it is clearly visible that
the following Phase 4 although also experiencing initial drop, shows
much faster rebound and consequent increase in the N removal
over the studied period.
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FIGURE 2

Treatment performance for Phases 1 to 4 in the multistage constructed wetland system: (A) Influent and e	uent COD concentration and COD

removal, (B) Influent and e	uent NH+

4 -N concentration and NH+

4 -N removal, (C) E	uent NO2
−-N and NO−

3 -N, and (D) Influent and e	uent total

nitrogen (TN) concentration and TN removal.

3.2. Nitrogen removal performance in
individual stages

The operational condition applied in Phase 1 showed that,
stages 1 and 2 were responsible for a majority (>85%) of COD
removal (Supplementary Figure 1), hence depleting the remaining
part of the system (stages 3–4) from the required source of carbon
to deliver effective denitrification as indicated by the high nitrate
concentration in the final effluent. This shows a need to improve
carbon pool distribution in the system. Therefore, a step-feeding
strategy was introduced in Phases 2–4 with varying feeding ratios
split between stages 1 and 3. It can be seen however that the
internal addition of a carbon source did not result in locally (stage
3) elevated COD concentration (Figure 3). This might suggest that
the added carbon load was efficiently processed and quickly entered
various microbial metabolic pathways including nitrogen cycling.

In Phase 1 (Figure 3A), the influent NH+

4 -N was reduced
by 91% to 5.3 mg/l and the system showed significant (p <

0.05) increase of nitrification between stages 1–3 while plateauing
and reaching similar (p > 0.05) levels at stages 3 and 4. The
first two stages operated with 28 and 52% of nitrification rate
respectively while NH+

4 reduction at stage 3 and 4 reached 59 and
63%, respectively. Nitrate accumulation varied between the stages
reaching 49% at the stage 4 and only 4% at the stage 2. This shows
great disproportion of denitrification potential across the treatment
stages of the system and a stepwise exhaustion of carbon sources
from inflow to effluent of the system.

Upon introduction of step-feeding, nitrogen dynamics were
significantly (ANOVA, p < 0.05) affected by the tested step-feeding
ratios displaying marked differences both between the phases but
also within internal, stage-wise dynamics. The influent NH+

4 -N
was reduced by 89, 74, and 82% with the bulk of reduction, a
third of reduction and slightly more than half of the reduction
occurring in the first three stages in Phase 2 (Figure 3B), Phase
3 (Figure 3C), and Phase 4 (Figure 3D), respectively. For all three
phases, nitrate accumulation started from stage 1 indicating that
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FIGURE 3

Nitrogen profile in individual stages of the constructed wetland for all phases (mean values of each stage) (A) Phase 1, (B) Phase 2, (C) Phase 3, and

(D) Phase 4. Detailed statistical analysis (ANOVA, pairwise t-test) provided in Supplementary Tables S1–S4. Calculations on performance metrics

(reduction, contributions, and accumulations) provided in Supplementary Text S3.

denitrification became the limiting process for TN reduction due
to the carbon deficiency. In the Phase 2 of the experiment, step-
feeding introduction of carbon source activated denitrification
potential at the carbon dosing point (stage 3) and showed lowest
NO−

3 -N accumulation rate (9%) while at the same time delivering
simultaneous very effective NH+

4 -N removal (77%) (Lai et al.,
2020; Gupta et al., 2022). For step feeding ratios of 70:30 and
60:40 (Phases 3 and 4 respectively) internal introduction of carbon
source showed to have initially inhibit nitrification rates (circa
15% NH+

4 -N reduction) and lead to increased nitrate accumulation
(circa 60%) due to insufficient denitrification. This could be a
sign of growing competition for carbon source between nitrogen
cycling microbial consortia and the rest of bacterial community in
the system as mentioned previously via TN and COD dynamics
analysis. Overall, the differences in NO−

3 -N accumulation in the
system displayed denitrification capabilities of the individual stages
coupled with step-feeding. High nitrate accumulation rates (45–
49%) observed for final effluent at the Phases 1 and 2 were
due to low inflow NH+

4 -N levels (>10mg/L) and relatively high

residual NO−

3 -N carried over from the previous stage (3 mg/L) in
comparison to conditions observed at Phases 3 and 4 (25–40mg
NH+

4 -N /L). Nevertheless, despite different internal dynamics
observed across all experiments (Phase 1–4) the differences in final
effluent NO−

3 -N concentration were insignificant (p > 0.05).
Details for statistical analysis results for the comparison of the

mean removal efficiencies between different step-feeding ratios are
provided in Supplementary Text S2.

3.3. The e�ect of operational conditions

The invested multi-stage TFCW operated in step-feeding
strategy. The wastewater inflow was distributed between stage
1 and stage 3 of the system according to the 3 step-feeding
ratios of 80:20, 70:30, and 60:40. Nitrogen removal performance
was significantly different between the applied step-feeding ratios
(ANOVA, p < 0.01). The system operated at a minimum of 60%
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TN removal, reaching maximum effectiveness of over 80% when
applying different step-feeding ratio thus, step-feeding ratio has
been proven to be a differentiating factor in achieving effective TN
removal in the study.

However, the subsequently observed effectiveness variability
between studied ratios was not expected and did not show a linear
relationship (ratio vs. TN removal effectiveness). The minimum
TN removal performance was obtained at 70:30 ration while both
80:20 and 60:40 ratios performed comparably well, with 60:40
ratio gradually reaching 80:20 ratio performance levels by the
end of the monitoring period. A similar removal performance
of 80% TN removal was achieved in a four-stage TFCW study
optimizing step-feeding ratio and reported 80:20 step feeding
ratio to outperform 90:10 and 85:10:5 dosing ratios (Hu et al.,
2012). However, test in similar TFCWs showed only above 30%
nitrification, including even lower TN removal at 80:20 step-
feeding ratio (Yang et al., 2011). This indicates that in addition to
step-feeding ratio optimization knowledge on carbon distribution
and utilization in the system is required. Carbon to nitrogen
(C/N) ratio is a key parameter in nitrogen cycle (Her and Huang,
1995; Ji et al., 2015). In wastewater treatment systems, carbon to
nitrogen ratio is often reported in reference to carbon source using
organic carbon fraction [i.e., biochemical oxygen demand (BOD),
COD, total organic carbon (TOC) or dissolved organic carbon
(DOC)] or total carbon fraction (TC). This study uses a COD
parameter to represent the available carbon in the studied system.
A complete denitrification requires a stoichiometric COD/N ratio
equal 2.86 (Fu et al., 2009). However, practical considerations
show that the effective nitrogen removal via denitrification occurs
when the COD/N ratio reaches above 3. Nevertheless, operational
conditions, quality of wastewater and carbon source composition
requires denitrification process to be carried out at COD/N ratios
often reaching 10 and above (Han et al., 2015; Pelaz et al., 2018;
Deng and Shi, 2020). Meanwhile, anammox process becomes
dominant and capable of delivering over 90% N removal when the
COD/N ratio equals to 1 and lower (Wang et al., 2019; Sarvajith
et al., 2020). In conventional CW designs (Vertical flow (VF)-,
Horizontal flow (HF)-, Free water surface (FWS)-CW) operating
with municipal wastewater, COD/N ratio ranging between 5–10
can deliver up to 50% nitrogen removal (Li et al., 2020; Rampuria
et al., 2020; Zhu et al., 2021). High performing CWs specifically
designed for N removal operate on higher COD/N ratios due to
optimization of carbon dosage. Introduction of tidal-flow or spray
aeration in CW can help to deliver up to 80% of nitrogen removal
however a COD/N >6 is required (Zhi and Ji, 2014; Wang et al.,
2020).

The investigated system showed a strong correlation (p < 0.05)
between COD/N ratio and TN removal observed the final effluent
at the stage 4 (Supplementary Figure S2). The highest performing
Phase 2 (80:20 ratio) delivered >80% TN removal in the effluent,
maintaining an average 4.9 COD/N ratio while Phase 3 and Phase 4
both showed C/N ratios varying between 2–3 indicating a potential
shortage of carbon source in the system. Interestingly, the highest
performing Phase 2 had least favorable thermal conditions, with
water temperatures on average 6◦C lower than Phase 4 (11.5◦C and
18.1◦C respectively). PCA analysis (Figure 4) reveals overlapping
clusters between Phase 3 and 4 while Phase 2 performance data

was grouped separately further indicating supreme performance
of Phase 2. High performance effectiveness of 80:20 ratio is even
more visible when considering variability of thermal conditions
the system was exposed to Supplementary Figure S2 and which
would affects kinetics of nitrogen removal (Pang et al., 2015;
Myszograj and Bydałek, 2016). Nevertheless, the strong inverse
correlation between water temperatures in the system (temp_out,
Supplementary Figure S2) and COD/N ratio indicated that the
inhibitive effect of low temperature can be overcome with higher
carbon availability and conversely at higher temperatures, excessive
carbon surplus is not required to sustain effective N removal in the
investigated system.

3.4. Microbial community of the multistage
CW system after 420 days (operational
Phase 4)

A combined total of 1,079,014 16S rRNA gene sequence reads
were obtained from the extracted DNA from the upper and
lower positions of the gravel substrate from the four stages of
the CW system after 420 days (Phase 4; 1L, 1U, 2L, 2U, 3L,
3U, 4L, and 4U). Read numbers ranged from 104,118 (3U) to
191,610 (1U) sequences per sample with an average read count
of 134,877 reads. Rarefaction curves (Supplementary Figure S3)
and Good’s coverage statistics (Supplementary Table S5) indicate
that 16S rRNA gene libraries for each gravel sample were
sampled sufficiently to capture the majority of the bacterial
diversity. Interestingly, both diversity (Shannon and Simpson
diversity) and species richness (SChao1) indices (Hugerth and
Andersson, 2017) increased in the CW system from stage 1
to stage 4 (Supplementary Table S5, Supplementary Figure S3),
which demonstrates that bacterial diversity increased at each
stage throughout the system. This agrees with other multi-stage
CW systems that also showed an increase in bacterial diversity
through the system from inlet to outlet (Babatunde et al., 2016;
Rajan et al., 2019) and is corroborated by PCA UniFrac analysis
(Supplementary Figure S5).

Bacterial 16S rRNA gene sequences were assigned taxonomy to
identify the different bacterial communities at each stage and were
classified from phylum to genus level. The relative abundance of a
given bacterial group was set as the number of sequences affiliated
with that group divided by the total number of reads per sample
(Figures 5, 6; Supplementary Table S5, Supplementary Figure S4).
In the CW system, a total of 14 bacterial phyla representing
62 assigned genera were identified at greater than 0.1% of the
community. However, in all samples a large fraction of the
sequences could not be assigned at the genus level (50 to 61.2%;
Supplementary Figure S4a), and this presumably represents a large
proportion of novel and unknown genera.

Overall, the CW system was dominated by members
of the phyla: Proteobacteria (44.5%), Firmicutes (10.9%),
Planctomycetes (13.6), Bacteroidetes (5.7%), Chloroflexi (3.8%),
Verrucomicrobia (3.3%), and Acidobacteria (3.3%), and lesser
proportions of Synergistetes (1.2%), Actinobacteria (0.53%),
Ignavibacterae (0.36%), Nitrospirae (0.35%), Hydrogenedentes
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FIGURE 4

PCA plot capturing the performance of tidal flow CW operating with step-feeding strategy. Performance data points formed 3 distinctive groups

separated primarily along the first coordinate axis with COD/N ratio and water temperature contributing most (38%) to the first component’s

variance. TN, COD, TP and NH+

4 are concentration values in the final e	uent (stage 4) of the system; CtoN—COD to nitrogen ratio;

temp_in/temp_out—water temperature in the inflow and outflow of the system.

(0.12%), Armatimonadetes (0.11%), and Spirochaetes (0.10%),
although there were some clear differences between phyla at
different stages (Figure 5). The five most commonly found phyla
in our study have been reported previously in CW systems and
are thought to be key phyla in the successful operation of CW
systems (Verduzo Garibay et al., 2021). The most abundant
phylum Proteobacteria showed clear differences at the class level,
with higher numbers of Gammaproteobacteria being found in
stages 1 and 2 and Betaproteobacteria becoming more prevalent
at stages 3 and 4 (Supplementary Figure S4b). Alphaproteobacteria
and Deltaproteobacteria were found consistently throughout, while
unclassified Proteobacteria were abundant in stage 1 but rapidly
declined after stage 2.

Changes in bacterial diversity and community structure with
stage and position may be linked to the different processes
and rates of N removal occurring at each stage, coupled with
the introduction of fresh carbon sources at stage 3. This is
evident from the dominant assigned bacterial genera (Figure 6)
and the top 20 16S rRNA gene operational taxonomic units
(OTUs) (Supplementary Figure S6) identified as proxy for bacterial
species. The dominant bacterial genera observed (Figure 6) in the
whole CW system (representing >1% abundance) were Thiothrix,
Planctomyces, Azonexus, Pseudoxanthomonas, Hydrogenophaga,

and Gemmobacter, and all varied in abundance depending on
CW stage. For example, the top three genera, Thiothrix ranged
from 3.9–20.3% in stages 1 to 3 and but were <0.2% at stage 4.

Conversely, Planctomyces were <0.7% in stages 1 to 3 but ranged
from 10.4–17.1% at stage 4, while Azonexus steadily increased from
1.3–2.4% at stage 1 to 1.6–6.5% at stage 4. All dominant genera were
represented in the top 20 OTUs, although the most common OTU
(or bacterial species) was OTU0009, which was unassigned at the
genus level but could be assigned at the family level and belonged
to members of the Veillonellaceae.

Operational taxonomic unit OTU0009 was particularly
prevalent at stages 1 to 3 and nearly absent at stage 4. The increased
abundance of OTU008 in stage 3 and the upper portion of stage
4 correlates with the addition of the carbon source supplement as
denitrification in CW systems by these organisms is known to be
associated with high TOC (Wu et al., 2016). Pseudoxanthomonas

are also known heterotrophic denitrifiers and OTU0045 was found
throughout the system but particularly within stage 2. Other
abundant denitrifiers found throughout included Gemmobacter

(OTU0014) which can denitrify mixotrophically (Du et al., 2020)
and Hydrogenophaga (OTU0056) which can utilize hydrogen
(Willems et al., 1989).

Stage 4 was dominated by members of the Planctomycetes

(Figure 5), including the genera Planctomyces and
Pirellula (Figure 6), and other uncultured genera
(Supplementary Figure S6). Many Planctomycetes conduct
anammox metabolism, a process in which ammonia is
oxidized by nitrite to nitrogen gas. Planctomyces OTU0059, and
Planctomycetaceae OTUs (OTU0062, OTU0065, and OTU0080;
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FIGURE 5

Bacterial 16S rRNA gene diversity in the multistage constructed wetland system at the end of Phase 4 assigned at the phylum level. 1L, stage 1 lower

position; 1U, stage 1 upper position; 2L, stage 2 lower position; 2U, stage 2 upper position; 3L, stage 3 lower position; 3U, stage 3 upper position; 4L,

stage 4 lower position; 4U, stage 4 upper position. Others (<0.1%) represents bacterial phyla with less than 0.1% abundance in each sample

(Gemmatimonadetes, Cloacimonetes, Chlamydiae, Latescibacteria, Lentisphaerae, Parcubacteria, Elusimicrobia, Deinococcus-Thermus and

candidate phyla WPS-1, WPS-2, SR1, and BRC1). NA represents bacterial OTUs that were unassigned at the phylum level.

Supplementary Figure S6) were well represented in the top 20
OTUs in high numbers at stage 4. Presumably very low oxygen
(or anoxic) conditions and low concentrations of organic matter
in the fourth stage allowed for these bacteria to proliferate and
outcompete denitrifying Proteobacteria (Jin et al., 2012; Mosley
et al., 2022).

However, further investigations are necessary to confirm the
taxonomic identity of the putative anammox bacteria through
further sequencing (16S rRNA and hydrazine synthase genes;
Mosley et al., 2022) or anammox-specific probes (Tal et al., 2006).

3.5. Nitrogen cycling bacteria

Abundance of denitrifying Proteobacteria (e.g., Thiothrix,
Thauera, Pseudoxanthomonas and Hydrogenophaga) in the
CW system in stages 1 to 3 suggests that this is the major
N removal process with both heterotrophic and autotrophic
denitrification occurring. Evidence of autotrophic ammonia-
oxidizing bacteria (Nitrosomonas and Nitrosospira) and
autotrophic nitrite-oxidizing bacteria (Nitrospira and Nitrolancea)
occurred throughout the system, although at very low abundance

(<1.0%; Supplementary Figure S7) demonstrates that ammonia
was continually oxidized to nitrate. The high abundance of
Planctomycetes and the potential for anammox bacteria suggests
that the anammox process was an alternatively occurring
pathway for nitrogen removal, especially at stage 4 of Phase 4
when conditions were suitable. Clearly, nitrogen removal in the
CW system was accomplished via diverse pathways, including
autotrophic nitrification, heterotrophic denitrification, autotrophic
denitrification, and possibly anammox. Similar collaborative
microbial pathways for N removal have been found routinely in
constructed wetlands (Wei et al., 2021; Zhang et al., 2021) and it is
the abundance, consortia and distribution of these organisms that
is key to the performance of a CW system (Zhang et al., 2021).

4. Conclusion

The multistage vertical flow constructed wetland applied a
combination of tidal flow and step-feeding strategies with 2 h
saturation (wet) and 6 h unsaturation (dry), giving a total of 8 h
per cycle. The results indicate that the proposed system was able
to deal with high concentration levels of organics (expressed as
COD) and nitrogen and efficiently remove them. The overall
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FIGURE 6

Bacterial 16S rRNA gene diversity in the multistage constructed wetland system at the end of Phase 4 assigned at the genus level. 1L, stage 1 lower

position; 1U, stage 1 upper position; 2L, stage 2 lower position; 2U, stage 2 upper position; 3L, stage 3 lower position; 3U, stage 3 upper position; 4L,

stage 4 lower position; 4U, stage 4 upper position. Data excludes all unassigned OTUs, see Supplementary Figure 4.

removal efficiency during the experimental period for COD, NH+

4 -
N and TN was up to 95.4, 90.9, and 81.1%, respectively. The
improvement of removal efficiency was attributed to the tidal

flow strategy as well as the prolonged unsaturated time that
enhanced the oxygen transfer to the system. It was possible
to use the step-feeding strategy to treat the synthetic domestic

wastewater with high influent concentrations of organic matter
and nitrogen to enhance the TN removal performance efficiency.
Consequently, sufficient bed resting time (6 h) and the addition

of a carbon source at the third stage of the system were key

factors to preserve the efficient nitrification process and support
the denitrification process. Statistical analysis showed that the
step-feeding ratio has a significant impact on organic matter
and nitrogen removal and identified the 80:20 step feeding ratio

to provide best overall performance for COD and N removal.
The bacterial diversity increased at each stage throughout the
system and was composed of bacterial phyla consistently found
in CW systems (e.g., Proteobacteria, Firmicutes, Planctomycetes,
Bacteroidetes, Chloroflexi, Verrucomicrobia, and Acidobacteria),
and dominant genera were representative of nitrogen cycling
bacteria undertaking N removal via diverse metabolic pathways,
including autotrophic nitrification, heterotrophic denitrification,
autotrophic denitrification, and possibly anammox.
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