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The goal of this study is to leverage emerging machine learning (ML) techniques

to develop a framework for the global reconstruction of system variables from

potentially scarce and noisy observations and to explore the epistemic uncertainty

of these models. This work demonstrates the utility of exploiting the stochasticity

of dropout and batch normalization schemes to infer uncertainty estimates

of super-resolved field reconstruction from sparse sensor measurements. A

Voronoi tessellation strategy is used to obtain a structured-grid representation

from sensor observations, thus enabling the use of fully convolutional neural

networks (FCNN) for global field estimation. An ensemble-based approach is

developed using Monte-Carlo batch normalization (MCBN) and Monte-Carlo

dropout (MCD) methods in order to perform approximate Bayesian inference over

the neural network parameters, which facilitates the estimation of the epistemic

uncertainty of predicted field values. We demonstrate these capabilities through

numerical experiments that include sea-surface temperature, soil moisture,

and incompressible near-surface flows over a wide range of parameterized

flow configurations.

KEYWORDS

super-resolution, machine learning, uncertainty, fluid flow, sea-surface temperature, soil

moisture

1. Introduction

High-resolution reconstruction (super-resolution) of sparsely sensed flow fields is

important for, but not limited to, hydraulic and hydrological applications. The most

successful approaches for super-resolution modeling of dynamical physical systems using

sparse measurements have primarily involved deep learning approaches, specifically

variations on convolutional neural networks (CNNs) and generative adversarial networks

(GANs) (Deng et al., 2019; Fukami et al., 2019, 2021; Liu et al., 2020; Wang and Ročková,

2020; Bode et al., 2021; Gao et al., 2021; Wang L. et al., 2021; Zayats et al., 2022; Zhou et al.,

2022). These methods include both residual loss functions, which minimize the disparity

between predicted and target values, and physics-informed (PI) loss functions, where

physical laws are enforced to supplement the learning process with relevant information

about higher-resolution features, thus effectively solving a sub-grid modeling problem.

However, deep learning methods tend to suffer from a so-called “black box” issue, which

makes it difficult to interpret results from trained models using the same techniques that

are traditionally applied to analytical models. Hence, reliable estimates of where a given
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model can fail are important for most applications. While there

is burgeoning research on the explainability of neural networks

(Goldstein et al., 2015; Carvalho et al., 2019; Nori et al., 2019;

Apley and Zhu, 2020) (and many others), these results are often for

simpler models and cases that are not in the scope of technological

readiness for dynamical physical systems. Additionally, many

situations exist where the interpretability of a model may be less

critical than a measure of prediction uncertainty, especially for

regimes that do not often have a solidmathematical theory. Because

of this, and to sidestep the issue of infancy of explainability in deep

learning, uncertainty quantification of machine learning models

has become popular as a corollary with regards to estimating areas

with a potential for high errors (Pearce et al., 2018; Kar and Biswas,

2019; Cortinhal et al., 2020; Wang and Ročková, 2020; Abdar et al.,

2021). To this end, we present an exploration of low-shot single-

image uncertainty estimation for the super-resolution of dynamical

physical systems with sparse sensors.

1.1. Machine learning for super-resolution

The rapid development in the field of modernmachine learning

(ML) methods has created new and transformative approaches to

not only approximate and accelerate existing numerical models

but also solve a wide array of challenging problems in various

areas of computational science. By leveraging the capabilities

to incorporate multi-fidelity data streams from diverse sources,

seamlessly explore massive design spaces, and identify complex,

multivariate correlations, a variety of data-driven, ML-based

methods have been proposed for image processing (Krizhevsky

et al., 2017;Wang et al., 2020), inverse problems (Collins et al., 2020;

Qian et al., 2020; Patel et al., 2022) reduced order modeling (Dutta

et al., 2021a,b, 2022), solution of systems of partial differential

equations (Chen et al., 2018; Raissi et al., 2019; Kadeethum et al.,

2021), and turbulence modeling (Duraisamy et al., 2019; Beck and

Kurz, 2021) to name a few. In particular, ML has also proven

adept at super-resolution tasks (Wang et al., 2020) for dynamical

physical systems by utilizing variations of CNNs (Liu et al., 2020),

fully convolutional neural networks (FCNNs) (Fukami et al., 2019),

and GANs (Kim et al., 2021; Güemes et al., 2022). Fukami et al.

(2019, 2021) developed a field reconstruction approach for sparse

sensors based on Voronoi tessellation and FCNNs, which was first

applied to fluid flow and then to large-scale geospatial problems.

Their introduction of a Downsampled Skip-Connection Multi-

Scale (DSC/MS) model (Fukami et al., 2019), which features skip

connections between the downsampling and upsampling blocks of

the FCNN, showed superior results than CNNs in reconstructing

turbulent flows. Supervised, self-supervised, and unsupervised

methods have also been developed using CNNs (Maulik et al., 2019;

Gao et al., 2021; Zayats et al., 2022) and GANs (Bode et al., 2019,

2021; Li and McComb, 2022) augmented with physics-informed

(PI) loss functions.

A primary goal of developing a super-resolution methodology

that can be applied to fluid flow scenarios is to create a framework

that can ingest sparsely sensed measurements from multi-fidelity

sources like wind tunnel experiments or low-cost, distributed field

observations and produce high-resolution field reconstructions

that are easily amenable for further analysis. Unfortunately,

data collected from experimental and field measurement sources,

like the ones mentioned above, can often be scarce. However,

fluid flow problems are usually governed by known physical

laws and conservation principles like the incompressible Navier-

Stokes equations and the depth-averaged shallow water equations.

Loss functions augmented with PI constraints defined by these

governing equations can help alleviate the need for large amounts

of training data in purely supervised learning, the downside is that

PI networks are often resource intensive to train. Additionally,

they may require measurements or estimates of the necessary

fields to solve the physics constraints that are applicable to the

scenario at hand (Karniadakis et al., 2021). In practice, due to sensor

cost and limitations on the resolution of obtained measurements,

data collection is often necessarily constrained, resulting in

sparse spatiotemporal measurements with emphasis given to only

a few relevant variables. For instance, one of the numerical

experiments adopted in this study involves mean fluid flow over

multiple surface geometries simulated by time-averaging of Direct

Numerical Simulation (DNS)/Large Eddy Simulation (LES) results

(McConkey et al., 2021). In order to effectively constrain the

learning process with relevant governing equations such as the

incompressible Navier-Stokes equations or the Reynolds-averaged

Navier-Stokes equations and avoid well-known gradient flow

pathologies (Wang S. et al., 2021), the neural network model

would need well-resolved simulation or experimental data for each

component of the system, namely velocity, pressure, and density.

The collection of such data, simulation-based or experimental,

may be limited by computational or observational constraints as

discussed before. Alternatively, if only partial data for a particular

component of the system, such as velocity is available, then the

network would have to learn multiple unseen fields in order to

train with the full system of governing equations as PI constraints;

this would add even more computational complexity to the

training and convergence of the model. Because of these drawbacks

of both supervised and self/unsupervised approaches that use

either purely residual or the full set of relevant physics-informed

loss constraints, the methods explored here combine supervised

and self/unsupervised techniques to mitigate the issues of both

supervised training (large datasets) and self/unsupervised training

(resource/variable intensive), which could prove useful in various

applied scenarios.

1.2. Uncertainty estimation for machine
learning in super-resolution

Some of the most common methods for uncertainty estimation

in machine learning have focused on Bayesian approaches (or

approximations thereof) (Osband, 2016; Wang and Ročková, 2020;

Abdar et al., 2021). One of the most straightforward methods

to approximate Bayesian inference is to use Bayesian Neural

Networks (BNNs) (Blundell et al., 2015), which learn both a

mean and a deviation instead of a scalar value for the network

weights. This allows for an ensemble of predictions by repeatedly

predicting on the same input image and looking at the variance of

predictions created by the fluctuating network parameters. These

provide an advantage over deterministic networks by allowing for a

probabilistic prediction of the distribution of the predicted output;
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it is the variability in these distributions that are often interpreted

as model uncertainty. However, this suffers from the same pitfall

as typical Bayesian calculations (Minka, 2001) in that they are

extremely resource-intensive to implement and train.

Another method for estimating uncertainty with neural

networks involves the creation of an ensemble of trained models.

There are various methods (Pearce et al., 2018; Malinin et al., 2019;

Abdar et al., 2021) (both Bayesian and non-Bayesian) to combine

with model ensembling to estimate confidence. However, while

thesemethods improve on BNNs by not requiring asmuchmemory

to train the models (if trained sequentially), the amount of time

it takes to create an analysis framework scales linearly with the

number of models desired in the ensemble.

Due to the resource-intensive drawbacks of BNNs and

ensembles of models, there has also been intense research on

methods to estimate the epistemic uncertainty of a single trained

model. One of the popular methods called Monte Carlo dropout

(MCD) (Gal and Ghahramani, 2016; Gal et al., 2017; Wang and

Ročková, 2020; Abdar et al., 2021) utilizes dropout during the

testing step to generate an ensemble of model predictions. In Gal

and Ghahramani (2016), Gal et al. showed that such an ensemble of

predictions can be interpreted in an approximate Bayesian sense

to be the Monte Carlo samples of the predictive distribution.

Another technique for creating ensembles from a single model

includes Monte Carlo batch normalization (MCBN), which has

also been shown to approximate Bayesian inference techniques

(Teye et al., 2018; Atanov et al., 2019; Kar and Biswas, 2019). Data

augmentation is a technique typically employed during the training

process to induce robustness in the model for unseen inputs. It

has recently been shown to have the ability to approximate results

obtained using Gaussian processes during test-time (Jiang et al.,

2022). This work develops a framework for super-resolution that

utilizes a Voronoi tessellation-based method to generate coarse,

gridded training samples from sparse observations, and adopts the

MC dropout and MC batch normalization techniques to generate

an ensemble of super-resolved predictions such that the ensemble

variance provides an estimate of the model uncertainty.

2. Approach

2.1. Supervised training

For this investigation, two well-known training strategies

were explored that have seen a lot of success for single-image

super-resolution tasks, namely supervised learning using FCNN

architectures and adversarial training. The FCNN we used for

this model was based on the U-Net architecture (Ronneberger

et al., 2015). Figure 1 shows a schematic of the supervised training

workflow adopted in this study. Figure 1A shows the generation

of a set of coarse resolution input images from a high-resolution

target image using Voronoi tessellation and data augmentation, as

described later. Figure 1C shows the ensemble of model predicted

output images with the corresponding error and uncertainty plots.

A detailed diagram of the exact ordering of the layers in each

convolutional block is shown in Figure 1B. As suggested by the

name, it is a U-shaped network that consists of a contracting

path and an expansive path that are made up of a series of

downsampling and upsampling blocks, respectively, and features

skip connections between these downsampling and upsampling

blocks to help preserve finer-resolution details during the pooling

process. Each downsampling block is made up of a pair of

convolutional layers and batch normalization layers arranged

alternately, that are followed by an optional Gaussian noise layer.

The Gaussian noise layers are optional in the network as they did

not improve prediction accuracy or the uncertainty estimate in our

numerical experiments and were therefore set to 0 while obtaining

the results reported in the following sections. Each downsampling

block is further augmented by a dropout layer followed by either

a max or average pooling layer. To preserve the symmetric U-

shape nature of the U-net design, the upsampling blocks are

almost identical to the downsampling blocks with the exception

of an additional transposed convolution layer and a corresponding

batch normalization layer, as shown in Figure 1B. The dropout and

batch normalization layers in each block are key contributors to

estimating the model prediction uncertainty, as will be explained

in the following sections. The optimizer utilized was the Nesterov

Adam (Dozat, 2016), with an initial learning rate of 1 × 10−3 that

decays by 5% after each training epoch in which the validation loss

does not improve.

2.2. Adversarial training

Generative Adversarial Networks (GANs) are a type of deep

learning algorithm that are used to generate new, synthetic data

samples that are similar to a training dataset. They consist of two

neural networks: a generator network and a discriminator network.

The generator network is trained to generate new, synthetic data

samples, while the discriminator network is trained to distinguish

between real and synthesized data samples. The two networks are

trained together in an adversarial process, where the generator tries

to generate samples that the discriminator cannot distinguish from

real ones, and the discriminator tries to accurately identify whether

a given sample is real or synthesized. GANs have been successful

in a wide range of different types of super-resolution tasks (Deng

et al., 2019; Bode et al., 2021; Güemes et al., 2022).

PatchGAN (Isola et al., 2016) is a kind of GAN model that

employs a special type of discriminator network which only

penalizes structure at the scale of local image patches and has

proved to be helpful in the generation of high-quality, realistic

images. The primary difference between a PatchGAN and a regular

GAN discriminator is that while the regular GAN maps from a

N×N image to a single scalar output, that indicates “real” or “fake,”

the PatchGAN runs a k× k patch convolutionally across the N×N

image to produce a d × d array of outputs Y (d = N − k + 1

with no padding and stride=1) where each Yij indicates whether

the ijth patch in the original image is “real” or “fake.” If needed, a

final scalar output can be obtained by averaging the responses in the

output array. However, by assuming independence between pixels

separated by more than a patch diameter, this training paradigm is

able to mimic a more sophisticated type of texture or style loss.

Both regular GAN and PatchGAN discriminators were

explored in this work and the basic adversarial training workflow is

detailed in Figure 2. The results reported in the following sections
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FIGURE 1

A schematic of the proposed super-resolution framework. (A) Shows the creation of an augmented and downsampled input feature space from the

input field using Voronoi tessellation, (B) shows the chosen U-net architecture containing additional dropout and batch normalization layers, and (C)

shows the ensemble of super-resolved field outputs along with the estimated uncertainties and error bounds.

FIGURE 2

Overview of a single iteration of the training routine for the regular GAN model with weak-PI loss. The tessellated variables are input into the

generator network (see Figure 1), which can utilize a combined residual and physics-informed loss function. The generated SR output is checked by

the discriminator to be a real or fake flow, and the entire model is trained iteratively in this adversarial fashion.
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use the U-Net described above as the generator network, which

compared favorably to using a randomly initialized CNN during

development. The tessellated features are input into the U-Net

generator, and the discriminator network is trained to predict the

validity of the generated component velocity fields. Results from

both residual and “weak”-PI losses are considered for a variety of

mean flow geometries, which is explained more in the following

section. All of the GAN results reported were obtained with a fixed

learning rate of 1× 10−4.

2.3. Approximate bayesian techniques for
uncertainty estimation

The predictive uncertainty of a deep learning (DL) model

usually consists of two parts—the epistemic (model uncertainty)

and aleatoric (data uncertainty). Aleatoric uncertainty is an

inherent property of the data distribution that can be attributed

to the stochasticity of the observations caused by noise and

randomness. As such this type of uncertainty is considered

irreducible. Epistemic uncertainty refers to the model’s uncertainty

due to the lack of relevant, annotated, high-quality training data.

Models are always expected to have high epistemic uncertainty

when the training data is either limited in quantity or when it is

rich in quantity but poor in informative quality, and thus offers

inadequate knowledge about the actual use cases.

Bernoulli dropout was originally (and still is) used for

regularizing a model to perform better on unseen scenarios (Wager

et al., 2013; Srivastava et al., 2014). This methodology multiplies the

output of each neuron by a binary mask drawn from a Bernoulli

distribution, thus effectively deleting a random set of weights in

the neural network during each epoch of training, which forces the

network to create multiple pathways to make the correct inference.

Several studies have shown dropout to be an effective technique to

reduce overfitting while training deep neural networks. However,

Gal and Ghahramani (2016) showed that Monte Carlo samples

of the posterior distribution for a specific input can be efficiently

obtained at test time by performing several stochastic forward

passes while sampling different dropout masks for each prediction.

They showed that any deep network trained with dropout is

an approximate Bayesian model, and estimates of the epistemic

uncertainty can be obtained by computing the variance of multiple

predictions on the same input with different dropout masks, thus

avoiding expensive Monte Carlo (MC) computations. This so-

called Monte Carlo dropout (MCD) technique was also adopted

in this work to estimate the epistemic uncertainty of the trained

SR model with minimal changes to the network architecture and

training algorithm. For each downsampling and upsampling block,

the MCD rate was 10% (meaning 10% of the neurons were turned

off during any given forward pass), with the exception of the

lowest resolution upsampling layer which had a dropout rate of

50%. While 50% is much higher than the typical rates used in

dropout-enabled studies, the skip connections present in the U-Net

architecture alleviated the need to retain and transmit all important

information between consecutive block layers.

Many modern neural network architectures have adopted

another regularization technique called batch normalization (Ioffe

and Szegedy, 2015) (BN) due to its ability to stabilize learning

with improved generalization. BN is a neuron-wise operation to

standardize the input distribution for each neuron in a particular

layer of a deep network. For instance, in a fully connected layer,

the input u for a neuron is transformed by the relation û =
(u − E(u))/

√
Var(u). Here the statistical measures (expectation

and variance) are calculated over mini-batches during training and

over the entire training set during evaluation or testing. Thus,

effectively the inference for a sample x during training becomes

a stochastic process that is dependent on other samples in the

mini-batch. This stochasticity was utilized in Teye et al. (2018)

to show that training using BN can also be cast as approximate

Bayesian inference, similar to training with dropout, and this allows

the estimation of epistemic uncertainty using a technique called

Monte Carlo batch normalization (MCBN). In this strategy, during

inference for a given query, several mini-batches are constructed

by taking random samples to accompany the query. The mean and

variance of the ensemble of outputs are then used to estimate the

predictive distribution.

In this work, batch normalization layers were used in addition

to dropout to serve the dual purpose of further enhancing the

generalizability and robustness of the trained SR model, while

also facilitating the uncertainty estimation of the trained model

using an ensemble of predictions. For the cases where training

data was extremely limited, multiple realizations of each input

sample were generated to artificially augment the training dataset

in order to enable the use of batch normalization. Because of the

asymmetric nature of the physical systems studied here, a unique

data augmentation method was adopted. In this process, sensor

measurements are first projected onto a 512 × 768 grid using

Voronoi tessellation to create a high-resolution estimate of the

flow field represented, following Fukami et al. (2019, 2021). In the

second step, several “downsampled,” uniformly gridded
√
n × √

n

representations (n being the sensor count, 49 ≤ n ≤ 225)

of the high-resolution tessellated field are generated to imitate

lower sensor counts or sparse data, thus augmenting the initial

dataset. Eventually, the lower-resolution instances are used for

training the model while the instance with the highest sensor

count is used for testing and validation. These artificially simulated

sensor configurations not only enriched the training set but also

allowed the successful sampling of multiple mini-batches for the

implementation of MCBN. While this data augmentation strategy

was uniquely appropriate for the problems explored in this work,

several other related techniques of artificial data augmentation

which exploit various symmetries of the physical systems or the

geometrical configurations may be relevant for other problems.

3. Numerical experiments

Training and testing consisted of several different applications,

with experiments done to highlight the capability of the model to

bound the prediction error for unseen testing scenarios with the

estimated epistemic uncertainty, as derived from a combination of

Voronoi tessellation-based upsampling, MC batch normalization,

and MC dropout. Numerical examples were selected from a variety

of domains, including multi-geometry Reynolds-Averaged Navier

Stokes (RANS) mean fluid flow, global sea-surface temperature,
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TABLE 1 Di�erent mean flow cases extracted from the McConkey et al.

(2021) dataset with their corresponding Reynolds numbers, number of

cases, and variable parameters.

Flow case Reynolds
number

Num.
cases

Variable
parameter

Periodic hills 5,600 5 Steepness

Parametric bump 13,260–

27,850

5 Bump height

Converging-diverging

channel

12,600–

20,580

2 Re

and global soil moisture datasets. This was done to explore and

demonstrate the applicability of the model to different dynamical

and realistic physical systems. The highest-resolution gridded

representation used for training or inference in this study was a

uniform sensor grid of 15 × 15 sensors. These input features were

super-resolved to a 512 × 756 grid in the multiple geometry flow

cases and to a 180 × 360 grid in the time-dependent geospatial

datasets. The model performance for each numerical example

was evaluated on not only the quality of the super-resolution

reconstruction but also the ability of the uncertainty estimate

(two times the standard deviation of the ensemble of predictions)

and the range of the ensemble predictions to bound the error

during inference. Implementation details and methodologies tested

differed slightly from case to case, as will be discussed in Section 4.

3.1. Flow over varied geometries

Different combinations of network architectures and loss

functions were evaluated for different surface geometries from the

time-averaged Direct Numerical Simulation (DNS)/RANS dataset

of McConkey et al. (2021). Table 1 shows the different cases of

McConkey et al. (2021) used in the present study. Three different

geometries were chosen: (1) Periodic Hills (PH) that had five

realizations of varying steepness but a constant Reynolds number

(Re) of 5, 600; (2) a Parametric Bump (PB) with five realizations

of different height and a Re between 13, 260 and 27, 850; and (3)

a Converging-Diverging channel (CD) with two realizations with

a varying Re of 12, 600 and 20, 580. Nine of these twelve mean-

flow scenarios were employed for training and the remaining three

were reserved for testing. Due to the relatively small training set a

low-shot training process was necessary.

To supplement the low sample count, a Voronoi tessellation-

based data augmentation strategy was adopted, as described

in Section 2. The sensor locations were designed to follow a

logarithmic scale in the y-direction starting from the bottom

wall, with uniform spacing in the x-direction, and had no local

refinement near the surface features. While following this gridded

approach to generate the downsampled training instances, if a

sensor was placed outside the flow domain (e.g., within a hill),

the associated velocity fields were assigned zero values. Training

time was approximately 1 h on an NVIDIA Titan V RTX graphics

processing unit (GPU).

To further address the issue of an extremely limited training

set (nine flow scenarios), a hybrid learning strategy was explored

by enforcing the principle of mass conservation, also known as the

continuity equation, as a physics-informed (PI) constraint to the

loss function while training the neural network models. As shown

in Equation (1), a penalty term was added to the loss function by

taking the absolute value of the divergence of the velocity vector.

Losstotal = Lossresidual +
∣

∣

∣

∣

∂Ux

∂x
+

∂Uy

∂y
+ ∂Uz

∂z

∣

∣

∣

∣

(1)

This combined loss, referred to as weak-PI loss for the

remainder of the paper, was used as a methodology to perform

physics-guided training of the deep learning models in low-

resource paradigms by ensuring that the manifold of possible

solutions was constrained by known physical laws. The use of

only the conservation of mass principle instead of the full system

of governing equations was a judicious choice that allowed more

flexibility in the training process. The continuity constraint requires

only two or three components of velocity as input and outputs

the same variables at a higher resolution, thus being inherently

more similar to the true spirit of single-image super-resolution

tasks. Considering the full system of Navier-Stokes equations as a

PI constraint would have required the other two coupled variables,

pressure, and density, to also be included in the input feature

space and in the output labels, thus significantly increasing the

computational and data burden.

Two different approaches were studied to implement the weak-

PI loss during training. The first approach involved numerical

approximation of the divergence term by computing second-

order finite difference derivatives of the output velocity fields.

Despite the limitations in accuracy owing to the use of finite

difference approximations, this approach was simpler to implement

in an existing residual-loss architecture and required very minimal

information about the spatial discretization of the computational

domain. In the second approach, the well-known automatic

differentiation technique utilized by the PINN method and its

variants (Bode et al., 2021; Karniadakis et al., 2021; Yang et al.,

2021) was adopted. In this technique, the neural network model

requires information about the spatial discretization in order to

compute a high-precision numerical approximation of the spatial

derivatives of the output fields using automatic differentiation

during every iteration of the training loop. However, in our

numerical experiments with the weak-PI loss, the second approach

provided negligible benefit over the first one despite requiring

significantly more memory and training time. Hence, all of the

numerical results presented in this work were obtained using the

first approach.

The models were tested simultaneously on all three geometries,

using the most extreme example for each case (periodic hills:

steepest hill; parametric bump and converging-diverging channel:

highest Reynolds Number [27,850 and 20,580, respectively]; details

are provided in Table 1). An ensemble of size 100 was generated

for each test example using either the U-Net or the GAN-based

model, both with and without the weak-PI loss term. In an effort

to keep input fields to a minimum and to minimize computational

complexity, only the tessellated versions of the Ux and the Uy

components of the flow velocities were used as input features along

with a “wall distance” metric, that returns the distance of a sensor

location from a wall.
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3.2. Soil moisture

Based on the results of the multi-geometry mean flow example,

the architecture and loss function combination with the lowest

RMSE and uncertainty bounding percentage was also applied to a

global soil moisture (SM) dataset (Orth, 2021), that provides soil

moisture snapshots at three depths (0− 10 cm, 10− 30 cm, 30− 50

cm) at a 0.25◦ spatial resolution and at a daily temporal resolution

spanning the years 2000 − 2019. As detailed in Orth (2021), this

dataset was created using in-situ moisture measurement data from

more than 1, 000 stations around the world. These measurements,

along with dynamic and static meteorological measurements, were

used to train a Long short-term memory (LSTM) neural network.

This network was then used to infer global soil moisture fields daily

in response to dynamic changes in meteorological measurements.

Similar to the previous case, several sparse representations

were derived from each SM snapshot using Voronoi tessellation to

produce different sensor configurations for the training set. During

this process, all grid cells that were closest to any sensor not located

on the land surface were assigned a value of zero soil moisture. The

model was trained on a subset (due to memory constraints) of daily

SM snapshots from years 2000 − 2016 and tested on 16 snapshots

evenly sampled from 2019. Training time was approximately 3

h on the system described above. Also similar to the previous

mean flow example, the model output statistics for each test case

were computed using an ensemble size of 100. Tessellated sparse

representations of the soil moisture snapshots as well as a land-sea

mask were used as input features. The purpose of the land-sea mask

was to focus the learning process only on the land surface and to

ensure that the artificially labeled sensors on the sea surface did not

bias the RMSE calculations.

3.3. Sea-surface temperature

The third and final numerical example was the National

Oceanographic and Atmospheric Association’s (NOAA) Optimum

Interpolation (OI) SST V2 weekly mean temperature dataset

(Reynolds et al., 2002, 2007). This dataset provides weekly

mean sea-surface temperature (SST) snapshots on a 1◦ × 1◦

resolution global grid (180 × 360 cells) for the years 1981 −
2022. The SST snapshots were augmented and downsampled using

Voronoi tessellation to generate a collection of different sensor

configurations for the training set. Following the same principle as

in the previous examples, sensors and associated closest cells that

fell on land were assigned a temperature value of zero.

The model was trained on weekly mean SST snapshots for the

years 1991 − 2015 and tested on 17 snapshots evenly sampled

from the year 2019. Training time was approximately 3 h on the

system described above. As in the previous example, tessellated

sparse representations of the SST snapshots and a land-sea mask

were provided as input features to the model. In addition to

evaluating the quality of the super-resolution reconstruction and

the associated uncertainty estimates, the SST dataset was also

used to study the effect of ensemble size on the model prediction

statistics. Each test case was evaluated using a series of ensemble

sizes from 100 to 800 and the comparative results will be discussed

in the following Section 4.

4. Results

4.1. Flow over varied geometries

The performances of different combinations of network

architecture and loss function implementation for the extrapolatory

case of each mean flow geometry is reported in Table 2. There

are substantial differences in two key metrics: (1) the super-

resolution reconstruction accuracy, with mean absolute errors

(MAEs) ranging from 0.016 to 0.134, and (2) the ability to bound

the prediction error during out-of-sample inference using the

uncertainty estimate, with error bound (EB) percentages, (defined

as the percentage of points in the output field variable where the

error is less than the uncertainty estimate), ranging from 22% to

93%. The U-Net with residual loss had the lowest MAEs for the

periodic hills (PH) and parametric bump (PB) cases (MAE= 0.016

and 0.019, respectively) and the second lowest MAE=0.055 for the

converging-diverging channel (CD) case. The U-Net with residual

loss also performed the best in terms of bounding the error with

the uncertainty estimate (EB = 93%) for the converging-diverging

channel case. Training the U-net with the continuity-based weak-

PI loss performed better than any other model, although only

marginally, in terms of bounding the error with the uncertainty

estimate (EB = 77%) for the PB case, whereas it was significantly

worse for every other case.

The regular GAN model, using the U-Net architecture as the

generator network and a standard scalar-valued discriminator,

didn’t perform as well as the U-Net trained with either of the loss

functions. In particular, the regular GAN trained with the weak-PI

loss had the lowest reconstruction accuracy (MAE = 0.134) for the

CD case and the lowest error bounding percentage (EB = 22%) for

the PB case, among all the trained models (see Table 2). However, it

is worth noting that the CD test case was themost extreme low-shot

learning scenario, with both training and test datasets comprising

only one mean flow case each.

The PatchGAN model, trained with the array-valued

discriminator and a residual loss function, significantly

outperformed the regular GAN model, trained with residual

loss, in all of the cases. In particular, the PatchGAN model trained

with residual loss had the highest error bounding percentage (EB

= 85%) for the PH case, and the highest reconstruction accuracy

(MAE = 0.046%) for the CD case among all of the models. Even for

the PB case, it was one of the best-performingmodels. However, the

PatchGAN model when trained with the weak-PI loss performed

significantly worse. In fact, the regular GAN and the PatchGAN

models when trained with the weak-PI loss were comparably the

two of the worst-performing models in all of our numerical tests.

4.2. Soil moisture and sea-surface
temperature

Based on the results of the mean flow example, further

numerical tests were carried out using two non-fluid-flow

examples, namely the multi-layer global soil moisture (SM) and

the sea-surface temperature (SST) datasets, as outlined in Section

3. Table 3 presents a comparative summary of the performance

of the best model, namely U-net trained with residual loss, on all
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TABLE 2 The mean absolute errors (MAEs) and error bound (EB) percentages for the extrapolative test cases of di�erent geometric flow fields from the

mean flow example, using every combination of model architecture and loss function type.

Architecture Loss type Periodic hills Parametric bump Converging-diverging channel

MAE|EB% MAE|EB% MAE|EB%

Results of the extrapolatory case for each geometry

U-Net Residual 0.016-80 0.019-74 0.055-93

U-Net Weak-PI 0.041-80 0.036-77 0.072-78

GAN Residual 0.056-53 0.067-37 0.062-83

GAN Weak-PI 0.059-34 0.050-22 0.134-29

PatchGAN Residual 0.019-85 0.024-73 0.046-89

PatchGAN Weak-PI 0.078-31 0.081-27 0.118-47

The bold values indicate the best performing model configuration for each flow example.

TABLE 3 The root-mean-squared error (RMSE), mean absolute error (MAE), bias, error bound (EB) percentage, and value bound (VB) percentage for the

U-net residual model when trained and tested on the multiple-geometry mean flow, sea-surface temperature, and soil moisture datasets.

Case Train data size RMSE MAE Bias EB% VB%

(norm) (norm) (norm)

Results over multiple domain testing

Multiple geometry mean flow 9 0.067 0.037 -0.026 82 84

Sea-surface temperature 1,236 0.016 0.012 0.006 74 91

Soil moisture 1,396 0.026 0.017 0.002 66 79

three datasets. This quantitative comparison is presented in terms

of the following metrics to measure accuracy—the normalized

root mean square error (RMSE), the normalized MAE, and the

normalized prediction bias (i.e. the difference between the mean

of the predicted ensemble and the true target value). Additionally,

two more metrics are evaluated to measure the quality of the

uncertainty estimate— the error bound (EB) i.e. the percentage of

points where the error is bounded by the uncertainty estimate, and

the value bound (VB), defined as the percentage of points where

the true target value is bounded by the maximum and minimum

values of the ensemble. The RMSE andMAE values for both the SST

and SM examples (0.016, 0.026, and 0.012, 0.017, respectively) were

lower than the corresponding values for the mean flow example

averaged over all the different geometries. Also, the biases for both

the SST and SM examples (0.006 and 0.002 respectively) were about

an order of magnitude lower than the mean flow example. In

contrast, the EB fell from 82% for the mean flow example to 74 and

66% for the SST and SM examples, respectively. However, while the

improvement from an EB of 82 to a VB of 84% was minimal for the

mean flow example, the corresponding increment for the SST and

SM examples were substantial, namely from 74 to 91% and from 66

to 79%, respectively.

5. Discussion

In this work, a new method is proposed that utilizes a

combination of Voronoi tessellation, MC batch normalization,

and MC dropout to generate a high-quality super-resolution field

reconstruction from sparse sensors for different dynamical physical

systems. The method was tested on several numerical examples

including both fluid flow and non-flow scenarios. When used to

model mean flow fields across different geometric configurations, a

U-net inspired architecture trained with a residual loss function was

found to be more effective than a similar architecture trained with

a physics-informed loss function, and also an adversarially trained

generative model with an array-valued PatchGAN discriminator

(Table 2).

An estimate of the epistemic uncertainty of the model was

computed by returning two times the standard deviation of the

ensemble of predictions at each location. The uncertainty estimate

of the model was successful at bounding the error of the prediction

mean (EB = 82%) in the low-shot learning environment for the

multiple geometry mean flow cases from the McConkey et al.

(2021) dataset, as listed in Table 1. When applied to the SST and

the SM datasets, the percentage of points in the test set where the

error was bounded by the uncertainty dropped to 76 and 67%,

respectively. However, it was observed that the target values were

still bounded by the range of the predicted ensemble, as measured

by a VB of 91 and 79%, respectively.

Figure 3 shows a graphical representation of the relationship

between error during inference and the estimated epistemic

uncertainty of the model (left column) as well as a distribution

of the model’s prediction and target values at each pixel (right

column). The scatter plots in the right column show that overall

there was very good agreement between the model predicted and

the true target values for all three numerical examples. However,

there were some outliers in the multiple-geometry mean flow cases

that are concentrated near the scalar extremes of the prediction

values. In the left column of Figure 3, the scatter plots of the error

and the uncertainty show that a vast majority of pixels in each

example were located inside the red cone, indicating a bounding of
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FIGURE 3

Summary of the relationship between the epistemic uncertainty and the prediction error for the mean flow (A, B), sea-surface temperature (C, D),

and soil moisture (E, F) examples. Figures in the left column show the correlation between the prediction error and the estimated uncertainty for

each of the examples while the figures in the right column show the correlation between the predicted and the true target values for the same

example. The areas of the figures in the left column that fall within the red cone contain the points in the super-resolved fields where the uncertainty

estimate bounds the prediction error. The red lines in the right column signify the points where the predicted and the target values match.

the error by the estimated uncertainty. However, there were some

noticeable differences in the distribution of errors and uncertainties

for the three different examples. The ensemble of mean flow

predictions was seen to be skewed toward a negative bias, which

resulted in nearly all pixels with a positive bias being easily bounded

by the uncertainty estimates, while some of the pixels with extreme

negative biases fell outside the bounding red cone in the top left

plot. The ensemble of predictions in the sea-surface temperature

example was also skewed in a similar fashion but in the opposite

direction. In other words, the positively skewed ensemble led to

a majority of pixels with a negative bias being bounded by the

uncertainty estimate but failed to bound some of the pixels with the

most pronounced positive biases in prediction. The three-layer soil

moisture example had a much more symmetric distribution in the

scatter plot of error vs. uncertainty (bottom left plot) which meant

that an almost equitable number of pixels with positive and negative

biases were bounded by the uncertainty estimates. However, unlike

the mean flow and SST examples, the prediction ensemble of the

SM example had a large number of pixels with extremely low values

of uncertainty, and thus a subset of these pixels were found to

have errors that weren’t bounded by the uncertainty estimates.

These effects and others are discussed in more depth with specific

examples in Sections 5.1, 5.2.

5.1. Mean flow accuracy and uncertainty
quantification

The U-Net model with a residual-based loss performed better

than the U-Net model trained with the weak-PI loss, as well as the

regular GAN and the PatchGAN models both with and without

the weak-PI loss. The negligible benefits of training the different

models with either form of the continuity-based weak-PI loss (see

Table 2) demonstrates that training with simply a residual loss

function can be effectively used for super-resolution reconstruction

and error estimation in problems where the governing physical

laws may not be known. However, while the weak-PI loss function
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did not improve the results of our tests significantly, it also had

a minimal negative impact on the ability of the model-predicted

uncertainty to bound the error during inference. This leaves open

the possibility that similar forms of physics-informed loss functions

could improve results in other computational fluid flow problems.

Specifically, an interesting extension of the study conducted here

would be to constrain the learning process by enforcing the full

set of relevant governing equations including the conservation of

momentum, as they arise in the incompressible Navier-Stokes or

the Reynolds averaged Navier-Stokes (RANS) equations.

Additionally, when the low-shot mean flow model was

trained exclusively on samples involving a single geometry, the

phenomenon of overfitting led to a reduction in the accuracy of

the super-resolved output for extrapolatory test cases. Moreover,

it also caused the model to erroneously overestimate its certainty,

thus generating an ensemble of predictions with a very low variance

that was not sufficient to bound the prediction error. Combining

data samples frommultiple geometries of the mean flow example in

the training dataset improved the ability of the model to accurately

extrapolate on test cases, and also increased the effectiveness of

using an uncertainty-based bound to track the error in inference.

It should be noted that an additional input feature in the form

of a “wall distance" metric was necessary when data samples

from multiple geometries were used for training the model. This

“wall distance" metric measured the distance of a pixel from the

closest boundary in any given geometry, and was introduced as an

additional input channel. Moreover, additional care was taken to

ensure that the state variables (input features) arising from flows

with different geometric and flow parameters such as steepness,

bump height and Reynolds number, were appropriately scaled

before training and inference.

Specific examples can help highlight the capacity of the

uncertainty of the model to estimate regions of increased error.

Test results using the U-net model trained with the residual loss

function for mean flow over three different geometries are depicted

in Figure 4. Figures 4A–C show the tessellated input fields, the

target fields, and the predicted flow fields, respectively. Figure 4D

depicts the relative prediction error fields, Figure 4E shows the

relative uncertainty fields, and Figure 4F uses a binary color-coded

visualization format to differentiate the pixels where the estimated

uncertainty bounds the error (red) from the ones where it doesn’t

(blue). The results across these different geometries (PH, PB, and

CD) highlighted the natural variance that the U-Net model outputs

when looking at different flow fields. In each case, the relative

error field (Figure 4D) was found to qualitatively emulate the

same spatial patterns observed in the corresponding epistemic

uncertainty field (Figure 4E). Regions of the flow field with a

high amount of mixing such as the wake regions downstream

of the obstructing features were consistently well represented

in the relative uncertainty fields as regions of significantly high

uncertainty (> 20%), whereas regions with nearly laminar flow

characteristics, away from the obstacle, were predicted to have

much lower uncertainty (< 5%). While some of the flow regions

with higher relative error were not bounded by the uncertainty

(Figure 4F), in most cases this could be attributed to regions with

very low levels of both error and epistemic uncertainty. The super-

resolution reconstruction results for the CD case (Figure 4, column

three) were the worst among the three. This could be explained

by the extreme lack of data, with only one flow instance (Re

= 12,600) available for training and one (Re = 20,580) available

for carrying out tests. Not surprisingly, the estimated epistemic

uncertainty of the CD case was much higher than the other two

cases and consequently, the percentage of pixels where the error

was bounded by the uncertainty was the highest for this case (EB =

93%). On the other hand, the PatchGAN model outperformed the

U-Net residual loss model in the CD case (U-net MAE = 0.055 and

PatchGANMAE = 0.046). These results indicated that the stronger

structural relationships enforced by the PatchGAN discriminator

during training could potentially be helpful for training these types

of models in situations with very limited data, however further

research is needed to better understand these effects.

5.2. Non-flow accuracy and uncertainty
quantification

5.2.1. Soil moisture
The multi-layer SM dataset (Orth, 2021) provided an

opportunity to apply this methodology on a different, realistic

physical system with a much richer set of training and testing

data. Figure 5 shows the results obtained using the U-net residual

loss model on a data sample from the test set. Figures 5A–

C in the top row show the tessellated input field, the super-

resolved soil moisture field, and the high-resolution target soil

moisture field, respectively, as false color composite images using

the standard visual RGB band range (red, green, and blue).

The first layer (0–10 cm depth) is represented by the red

channel, the second layer (10–30 cm depth) is represented by

the green channel, and the third layer (30–50 cm depth) is

represented by the blue channel. Darker regions in each color

band represent lower values of soil moisture, while lighter regions

indicate more moisture, and different intermediate hues indicate

moisture imbalance by depth. Even though the tessellated input

field was extremely sparse and contained many regions with

zero soil moisture content across all three layers as denoted

by the black colored blocks in Figure 5A, the model prediction

(Figure 5B) showed excellent agreement with the target soil

moisture field (Figure 5C). The relative error fields for the

three soil layers as depicted in descending order of depth in

Figures 5D–F, respectively, showed a distinct trend of decreasing

moisture content with increasing depth. This was intuitively

expected given the understanding that the seasonal variation in

soil moisture content typically reduces with increasing depth below

the surface.

Semi-arid regions (such as the Australian Outback, Mongolia,

the Middle East, South Asia, and large parts of Africa) are known to

experience the largest variations in the dryness of climate (aridity

index of 3–10) over the course of a given year (Lin, 1999). These

large variations manifested as significant temporal changes in soil

moisture content across the training dataset which, in turn, led to

a high amount of variance in the ensemble of model predictions

for these regions. Combined with the low absolute values of

moisture in many of these regions for the test instance presented
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FIGURE 4

Results for the di�erent test cases of the mean flow example taken from McConkey et al. (2021). The dimensionality and aspect ratio of each case

varied significantly, and are shown as dimensionless reconstructions on a 512× 756 grid for ease of visualization. The x component of velocity, Ux, is

shown, with the tessellated input (A), the target values (B), and the predicted values (C) all normalized between 0 and 1. The relative error (D) and

relative uncertainty (E) are shown for each case. Finally, the areas where the epistemic uncertainty bound the observed error are shown in a binary

color-coded format (F) where red indicates a pixel is bounded, and blue indicates it is not.

in Figure 5C, this led to large amounts of relative uncertainties, as

shown in Figures 5G–I in descending order of depth. The absolute

uncertainty of each layer also decreased with depth, but less than

the corresponding reduction in error. This led to an increase in

the layer-wise area where the target moisture value was bounded

by the predicted ensemble, as shown in Figures 5J–L using a

binary color-coded format with yellow representing the pixels that

were bounded and purple representing the ones that weren’t. In

this example, the points with higher relative error and relative

uncertainty were primarily located in arid and semi-arid zones and

in areas of the input field where the soil moisture content was

estimated to be zero due to the effect of tessellation across land-sea

boundaries (colored black in Figure 5A). Hyper-arid zones, such

as the Sahara Desert, had extremely low soil moisture variations

in the training dataset, and subsequently, showed extremely low

relative errors and uncertainties. The soil moisture content in

the uppermost layer (0 − 10 cm in depth) is expected to be the

most sensitive to changes in weather patterns, and consequently,

underwent large variations in the training set. As a result, both the

reconstruction accuracy (Figure 5D) and the percentage of points

where the target soil moisture value was bounded by the range of

the prediction ensemble (Figure 5J) were observed to be the lowest

in the uppermost soil layer.While the regions with the highest error

(> |0.02|) had a strong positive correlation with higher uncertainty

values ((> |0.015|), the magnitude of the uncertainty was not

always sufficient to bound the target moisture value.
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FIGURE 5

Results for an unseen test snapshot from the three-layer global soil moisture dataset (Orth, 2021). The tessellated input (A), the model prediction (B),

and the model target (C), all normalized between 0 and 1, are depicted by a false-color composite plot with the moisture content in each layer being

represented by an individual channel of an RGB image. Thus, the whole spectrum from darker to lighter colors is used to denote lower to higher

moisture content, respectively, across all three layers. (D–F) Show the relative errors, (G–I) show the relative uncertainty fields, and (J–L) show the

areas where the target value is bounded by the model ensemble prediction for the layers 0−10 cm, 10−30 cm, and 30−50 cm in depth, respectively.

5.2.2. Sea-surface temperature
Finally, the U-net with residual loss methodology was evaluated

on the global sea-surface temperature dataset from NOAA

(Reynolds et al., 2002, 2007). Figures 6A–F show the super-

resolution results on an extrapolatory test snapshot of the weekly

mean sea surface temperature for the 33rd week of 2019. The

contours of the reconstructed field (Figure 6B) exhibit very close

agreement with those of the target field (Figure 6C), even on

subgrid-scale features, despite the large information gap with the

lower-resolution grid of the tessellated input field (Figure 6A).Most

of the finer scale details were well resolved, as demonstrated by a

pixel-wise relative error of less than 5% for most of the non-polar

waters, although the contours of the predicted field were noticeably

smoother than those of the target field. According to the relative

error field in Figure 6D, areas with high relative errors, especially

in warmer waters, were primarily concentrated around areas of

high gradient in the tessellated sensor measurements (Figure 6A).

However, high relative error regions were also observed in coastal

areas, such as in coastal Eastern Asia and Western North America,

and were caused by the effect of tessellation on a coarse grid

across land-sea boundaries combined with large gradients in the

near-shore sea surface temperatures.

The estimated epistemic uncertainty of the model (Figure 6E)

bounded the observed error to a large extent (EB = 76%), whereas

the percentage of pixels where the full ensemble range bounded

the target value (Figure 6F) was significantly higher (VB = 85%).

The uncertainty of the model was consistently low for temperate

waters with normalized temperatures ranging between 0.3 and 1.0

(roughly 14◦ C to 31◦C), as reflected in the nearly constant relative

uncertainty values between latitudes 30S to 30N (see Figure 6E).

The steep increase in both the relative error and the relative

uncertainty values in the polar regions could be primarily attributed

to the sharp drop in the magnitude of the sea surface temperatures

while the absolute values of error and uncertainty exhibited a

more gradual decline. Moreover, the trained model showed a

consistent change in the variability of the predicted ensemble that

was typically proportional to the changes in the prediction error

while keeping the magnitude of the error low almost throughout

the domain. This amounted to the trained model being highly

effective in bounding the target values within the range of the
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FIGURE 6

Results for an unseen test snapshot from the NOAA sea-surface temperature dataset (Reynolds et al., 2002, 2007). (A) Shows the tessellated input

field, (B) the contours of the predicted temperature field, (C) the contours of the target temperature field, (D) the relative error field, (E) the relative

uncertainty field, and (F) the regions where the range of the predicted ensemble bounds the prediction error, represented as a binary color-coded

plot where red indicates a pixel is bounded, and blue indicates it is not.

predicted ensemble, as reflected in the highest value of VB = 85%

among all the numerical examples (see Figure 6F).

To understand the characteristics of the distribution of

predictions generated by the framework, the ensemble of

predictions for three individual pixels across three different

temperature ranges (approximately 0.15, 0.41, and 0.83) were

studied. Figures 7A–F shows the histograms of the model

predictions obtained either with an ensemble of size 100

(Figures 7A, C, E) or with an ensemble of size 300 (Figures 7B,

D, F). In each figure, the red vertical line marks the target value

for each pixel while the black curve depicts the probability density

function defined by the ensemble statistics assuming it follows a

normal distribution. The global coordinates of the chosen pixels

are denoted by three black dots on the super-resolved prediction

field in Figure 7G. Figures 7A, C, E, show that given the choice of

the numerical example (SST) and the modeling framework (U-net

with residual loss), an ensemble size of 100 was sufficiently large

for the model to adequately capture the temporal variability in the

training dataset in order to generate an approximately normally

distributed ensemble of predictions. Specifically, for Figure 7A,

while the ensemble of size 100 did not show a peak of predictions

around the mean (nearly uniform distribution between the values

of 0.125 to 0.155), increasing the ensemble count to 300 (Figure 7B)

showed amuchmore peaked distribution around themeanwith the

target value falling inside the two largest prediction bins. However,

this barely affected the mean (0.137 vs. 0.136) or standard deviation

(0.011 vs. 0.011) for the 100 and 300 ensemble count distributions,

respectively. In Figure 7C, the smaller ensemble of predictions was

more concentrated near the mean of the ensemble leaving the

bins at the lower and higher ends of the distribution (centered

at roughly 0.390 and 0.435) largely unpopulated. Increasing the

ensemble size generated a more well-balanced distribution, as

shown in Figure 7D. However, the ensemble mean (0.417) and std

(0.008) remained unchanged up to three significant digits. The

smaller ensemble for the final pixel location (Figures 7E, F) showed

a similar under-representation at the lower end of the prediction

range (0.79 − 0.81), creating a long (flat) tail. Similar to the other

pixels, increasing the ensemble size allowed the model to generate

a more well-balanced distribution of predictions that more closely

resembled a normal distribution, without significantly altering the

mean (0.825 vs. 0.826) or std (0.009 vs. 0.009) of the ensemble.

Finally, Figure 7H shows the change in the percentage of points

where (i) the uncertainty bounded the error (EB) and (ii) the range

of ensemble predictions bounded the target value (VB) with the

increase in ensemble sizes. Increasing the ensemble size from 5 to

100, showed a faster rate of improvement both for VB (< 50 to

80%) and amore gradual but significant rate of improvement for EB

(≈ 60 to 74%). However, with any further increase in the ensemble

size, there was very little improvement in the percentage of error

bounded by uncertainty; at the same time, the percentage of points

where the target value is bounded by the range continued to grow to

over 90%, with very little degradation in the accuracy of the mean.

The previous analysis strongly indicated that with increasing

ensemble sizes, the distribution of predicted values was starting

to asymptotically converge, at least formally, to a Gaussian

distribution. This implies an inherent reliability of the proposed

MCBN/MCD ensembling methodology with repeated use, and

this asymptotic behavior was observed for test datasets across
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FIGURE 7

Analysis of the predicted ensemble for three di�erent pixels of a random test sample from the NOAA Sea-Surface Temperature (SST) example. (A–F)

Show a histogram of the model predictions at the indicated lat, lon coordinate, with the target value for that pixel represented by the vertical red line,

(G) shows the location of these pixels as black dots superimposed on the prediction field, and (H) shows a plot of the percentage of pixels where the

error is bounded by the epistemic uncertainty (blue) or the percentage of points where the target value lies within the range of ensemble predictions

(orange) over the entire SST test set.

multiple experimental domains. This analysis also indicated that

for experiments and scenarios where computational resources

and inference time are not limited, predictions with larger (>

100) ensemble sizes had a higher chance of bounding the target

value, providing a much better estimation of the range of possible

values than looking at the epistemic uncertainty alone. Thus the

reliability of the ensemble range to bound the error improved

with additional computational time (> 90%). For extremely fast

predictions and applications that require real-time prediction, the

standard deviation of the ensemble provided more reliable results

for the tested domains, especially when the ensemble size was less

than 25.

5.2.3. Ongoing work
Ongoing work includes the exploration and application of

this methodology for super-resolution modeling of wind tunnel

experiments, currently being conducted at the U.S. Army Engineer

Research andDevelopment Center (ERDC) Synthetic Environment

for Near-Surface Sensing and Experimentation (SENSE) wind

tunnel facility. The immediate objective is to use super-resolution

reconstruction to supplement and inform physical data collection

in order to generate high-resolution data sets to support the

development of generalized closure schemes for near-surface flows.

This work will, in turn, support ongoing field observations and

near-surface vegetated flow studies being conducted by the ERDC

at the USDA Jornada Experimental Range in Las Cruces, NM,

and the U.S. Army Corps of Engineers Field Research Facility in

Duck, NC. Additional directions of future research at ERDC will

involve using super-resolved soil moisture fields to support the

generation of high-resolutionmaps from remote sensing and sparse

in-situ observations. These maps are a key component of global

hydrological analysis efforts that support a variety of missions,

such as providing antecedent soil moisture conditions for flooding

analysis in remote areas.

6. Conclusion

Using the U-Net architecture with a residual loss coupled with

data augmentation and a Monte Carlo batch normalization and

dropout scheme generates stochastic network predictions, such that

for a statistically significant ensemble size the variability in the

predicted distribution can be interpreted as epistemic uncertainty

for super-resolution of dynamical physical systems. These estimates

of epistemic uncertainty were shown to qualitatively follow

inference error in all the problems and to successfully bound

error in a majority of the cases for the low-shot multiple-

geometry mean flow, soil moisture, and sea-surface temperature

applications. However, results indicated that using the epistemic

uncertainty itself may not always be the most reliable method

for estimating inference error across all domains. By looking at
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the entire ensemble range, results were significantly improved

with negligible degradation of the ensemble mean when compared

to the target value, thus also showcasing the reliability of the

MCD/MCBN ensemble-based estimation method. These results

highlighted the utility of incorporating the epistemic uncertainty

estimates with small ensembles (<25) for real-time prediction on

computationally-intensive datasets. However, the observed ranges

of predictions with larger ensembles (>25) were demonstrably

more accurate in the characterization of possible inference values.

The methodology worked well for low-shot learning scenarios

(only 9 training samples for the multiple-geometry mean flow

example). Additionally, the incorporation of the continuity loss

in the mean flow example produced comparable results in

the uncertainty estimation (80 vs. 80%, 74 vs. 77%, and 93

vs. 78%; residual loss vs. weak-PI loss) for the periodic hills,

parametric bump, and converging-diverging channel geometries,

respectively. This shows the potential of similar deep ensemble-

based frameworks constrained by appropriate physical laws for

the estimation of target values and the range of possible errors

when applied to dynamic physical systems with well-defined

governing equations.
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