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As an important source of water for human beings, groundwater plays a significant

role in human production and life. However, di�erent sources of uncertainty

may lead to unsatisfactory simulations of groundwater hydrodynamics with

hydrological models. The goal of this study is to investigate the impact of

assimilating groundwater data into the Terrestrial System Modeling Platform

(TSMP) for improving hydrological modeling in a real-world case. Daily

groundwater table depth (WTD) measurements from the year 2018 for the Rur

catchment in Germany were assimilated by the Localized Ensemble Kalman Filter

(LEnKF) into TSMP. The LEnKF is used with a localization radius so that the

assimilated measurements only update model states in a limited radius around

the measurements, in order to avoid unphysical updates related to spurious

correlations. Due to the mismatch between groundwater measurements and

the coarse model resolution (500m), the measurements need careful screening

before data assimilation (DA). Based on the spatial autocorrelation of the WTD

deduced from the measurements, three di�erent filter localization radii (2.5, 5,

and 10 km) were evaluated for assimilation. The bias in the simulated water table

and the root mean square error (RMSE) are reduced after DA, compared with runs

without DA [i.e., open loop (OL) runs]. The best results at the assimilated locations

are obtained for a localization radius of 10 km, with an 81% reduction of RMSE

at the measurement locations, and slightly smaller RMSE reductions for the 5

and 2.5 km radius. The validation with independent WTD data showed the best

results for a localization radius of 10 km, but groundwater table characterization

could only be improved for sites <2.5 km from measurement locations. In case

of a localization radius of 10 km the RMSE-reduction was 30% for those nearby

sites. Simulated soil moisture was validated against soil moisture measured by

cosmic-ray neutron sensors (CRNS), but no RMSE reduction was observed for

DA-runs compared to OL-run. However, in both cases, the correlation between

measured and simulated soil moisture content was high (between 0.70 and 0.89,

except for the Wuestebach site).
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groundwater, data assimilation, integrated model, real data, soil moisture, cosmic-ray
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1. Introduction

As a widespread and highly used resource, groundwater

provides globally 50% of the drinking water, with higher values

for inhabitants of dry regions, and 2.5 billion people depend

entirely on groundwater resources for their basic daily water

needs (UNWWAP, 2015). Either groundwater level or water

table depth is a significant variable related to groundwater and

can vary between 0m in wetland areas to depth of hundreds

of meters from the land surface in arid regions. Shallow

groundwater is crucial in terrestrial ecosystems as it strongly

influences the soil water content in the root zone and thus

exerts an important control on water and energy fluxes between

the subsurface, land surface, and the atmosphere (Koster et al.,

2004; Vereecken et al., 2016). To understand the influence of

temporal and spatial variations of groundwater level on terrestrial

ecosystems, models like the integrated Terrestrial SystemModeling

Platform (TSMP) (Shrestha et al., 2014) are used, which can

model the groundwater-soil-vegetation-atmosphere system in a

physical manner.

However, the accuracy of modeling is often affected by

uncertain model forcings, parameters, and initial conditions

(Freeze, 1975; Baatz D. et al., 2017). Especially for groundwater

systems, the extreme spatial heterogeneity of hydraulic parameters

is challenging (De Marsily, 1986). To quantify and reduce

the uncertainties of model predictions, DA can be used to

correct model predictions with observations and improve the

estimation of hydrological variables (Reichle et al., 2002, 2008).

One of the most commonly used DA algorithms is the

Ensemble Kalman Filter (EnKF) (Evensen, 1994, 2003). EnKF

uses a Monte Carlo approach to forecast model error statistics

(Evensen, 1994). DA with EnKF is often affected by a poor

quality of the estimated model error covariances and spurious

correlations between grid cells which are separated far in

space. Therefore, the Localized Ensemble Kalman Filter (LEnKF)

approach (Houtekamer and Mitchell, 2001) is used in this study,

which can improve the effectiveness of the EnKF analysis (Hu et al.,

2012).

Past studies have proven the effectiveness of DA in improving

real-time hydrological modeling and forecasting (e.g., Han et al.,

2014; Zhang et al., 2018; Yu et al., 2020), and some studies

investigated the assimilation of groundwater data with hydrological

models. Camporese et al. (2009a) assimilated both pressure head

and soil moisture data with the EnKF, and the results showed

that assimilation of either pressure head or soil moisture can

improve the characterization of subsurface states in the vicinity of

the measurement locations. Camporese et al. (2009b) assimilated

synthetic observations of pressure head and streamflow for a

v-tilted catchment, and the results suggested that streamflow

prediction can be improved by assimilation of pressure head and

streamflow, either individually or simultaneously. Kurtz et al.

(2014) assimilated jointly piezometric heads and groundwater

temperatures with EnKF to update uncertain hydraulic subsurface

parameters (i.e., hydraulic conductivities and leakage coefficients)

for an area near the river Limmat in Switzerland, and found

that the joint assimilation of the two kinds of data with

updating of uncertain hydraulic parameters gives the best

characterization. Zhang et al. (2016) assimilated soil moisture

and groundwater head measurements with the MIKE SHE

hydrological model for catchments of different complexities

and using different assimilation settings (observation types,

ensemble sizes, and localization schemes) and found that the

ensemble transform Kalman filter (ETKF) method improved

the model performance compared to the OL run. But the

average difference between observations and model simulations

was subtracted from the original data when comparing in situ

head measurements with predictions. The proposed scheme by

Zhang et al. (2016) with both distance localization and variable

localization was shown to be more robust than only using

one localization scheme and provided better results. However,

these experiments on groundwater assimilation have only been

conducted by hydrological models in synthetic experiments or

over-simplified real-world cases. No studies demonstrated the

potential of assimilating real groundwater observations into

integrated terrestrial system models to improve groundwater

estimates at the regional scale. This is therefore still an emerging

research topic.

The integrated model TSMP, which is composed of an

atmospheric, land surface, and subsurface model, was used in

this work, in combination with the Parallel Data Assimilation

Framework (PDAF) (Nerger et al., 2005; Kurtz et al., 2016).

TSMP has been applied in a series of studies (e.g., Shrestha

et al., 2015; Keune et al., 2016; Furusho-Percot et al., 2019).

The combination of PDAF and TSMP has been used for the

assimilation of different hydrological variables (e.g., soil moisture

and groundwater) at different scales (e.g., hillslope, catchment, and

continental scale) (Kurtz et al., 2016; Zhang et al., 2018; Gebler

et al., 2019; Naz et al., 2019, 2020; Hung et al., 2022). Zhang

et al. (2018) demonstrated in synthetic experiments with only four

grid cells that the joint assimilation of groundwater level and soil

moisture data has great potential to improve root zone soil moisture

characterization. Hung et al. (2022) assimilated groundwater levels

at the large catchment scale in a synthetic study that mimicked the

Neckar catchment, and the results showed that groundwater level

assimilation can lead to a large scale improved characterization

of groundwater levels, also between groundwater wells, but the

impact of groundwater level assimilation on other compartments

of the terrestrial system was limited, except for the deep vadose

zone. However, there is still a lack of studies with integrated

land surface-subsurface models to investigate assimilation of real

groundwater measurements at the larger catchment scale. The

objective of this study was to investigate whether assimilating

groundwater data into the integrated terrestrial systems model

TSMP at the larger catchment scale for a real-world case is able to

achieve a better characterization of groundwater levels (and other

terrestrial system states and fluxes) than an OL run and identify

the main limitations and complications in practice. Furthermore,

soil moisture measured by cosmic-ray neutron sensors was used

to verify the model simulation accuracy and evaluate whether

assimilatingWTD data can improve soil moisture characterization.

This is a novel contribution, as the assimilation of groundwater

measurements in integrated land surface-subsurface models at
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the larger catchment scale with real data has not been carried

out before.

2. Materials and methods

2.1. Study area and data

The simulation domain is the Rur catchment (2,354 km2) which

is situated in western Germany and includes a small part of Belgium

and the Netherlands. The Digital Elevation Model (DEM) for the

area was acquired from SRTM 90m Version 4 (Jarvis et al., 2008)

and is shown in Figure 1. The altitude ranges from 15 to 690m

a.s.l., decreasing from south to north, and the Rur river flows from

the Eifel hills in the south to the northern flat terrain. From the

northern to the southern part of the catchment, long-term average

annual precipitation ranges from 650 to 1,300mm,mean annual air

temperature decreases from 10 to 7◦C and mean annual potential

evapotranspiration varies between 850 and 450mm (Montzka et al.,

2008; Bogena et al., 2018). The land use types were taken from the

CRC/TR32 Database (Waldhoff and Lussem, 2015) and are mainly

agriculture (corn, sugarbeet and wheat in the north), grassland, and

coniferous and deciduous forest (southern mountainous areas).

The high-resolution (1:50,000) regional soil map BK50

(Nordrhein-Westfalen, 2009) (see Figure 2) and Pano (2006) were

used to obtain the soil characteristics and to calculate the soil

hydraulic properties. Bulk density was obtained from ESDB.

Based on the thickness of the BK50 soil layers, we treat

the layers below the soil layers as aquifer layers. The upper

aquifer hydraulic conductivity (see Figure 3) was obtained

from the Information System Hydrogeological Map of North

Rhine-Westphalia with a resolution of 1:100,000 (https://www.

opengeodata.nrw.de/produkte/geologie/geologie/HK/ISHK100/).

The permeability of the aquifer is based on different classes of

rock types.

The high-resolution reanalysis dataset COSMO-REA6

developed with the numerical weather prediction (NWP) model

COSMO (Baldauf et al., 2011) is used as atmospheric forcing in

this work (Bollmeyer et al., 2015; Wahl et al., 2017). Currently, the

reanalysis covers the period 1995–2019 at a high spatial resolution

of 0.055◦ (6 km) and is continuously extended by the German

Weather Service (Deutscher Wetterdienst; DWD). The forcing

data include precipitation, air temperature, air pressure, wind

velocity, specific humidity, incoming shortwave radiation, and

incoming longwave radiation.

The measured WTD data from the monitoring network

Geoportal NRW (www.geoportal.nrw) were used for assimilation

and some as independent verification data for the model

simulations. For the year 2018, there were 865 sites located in

shallow and deep aquifers of the Rur catchment that monitored the

WTD (see Figure 1), and most measurement sites are distributed

along the river. The observation frequency varies for each site, and

can be daily, weekly, or monthly. In 2018, there were 575 sites

with WTD between 0 and 20m. We only used the sites with WTD

between 0 and 20m to be sure that only measurements from the

upper aquifer were included for assimilation or verification, as our

model only considered the upper 20 m.

FIGURE 1

Map of the Rur catchment and locations of the 13 cosmic-ray

neutron sensors (CRNS) (black points) and groundwater

measurement sites (red points) in the year 2018. The Rur catchment

is situated in western Germany.

CRNS is a precise method to measure soil moisture at the

field scale (Zreda et al., 2008; Baatz et al., 2014; Köhli et al.,

2015). The Rur catchment CRNS network comprises 13 CRNS

stations (see Table 1) (CRS1000, HydroInnova LLC, 2009) (Baatz

R. et al., 2017; Bogena et al., 2022) and these observation sites

are relatively evenly distributed over the study area (see Figure 1).

CRNS measures the fast neutron intensity, and the measured

number of neutron counts shows an inverse correlation with soil

moisture content. Fast neutrons originate from the collisions of

secondary cosmic particles from outer space with terrestrial atoms.

Fast neutrons are moderated most effectively by hydrogen, since

the mass of the neutron is similar to the mass of a nucleus of

the hydrogen atom. Thus, the corresponding fast neutron intensity

measured by CRNS strongly depends on the amount of hydrogen

within the CRNS footprint, allowing for a continuous non-invasive

soil moisture estimate at the field scale (Baatz R. et al., 2017).

The horizontal footprint of this measurement matches the 500m

horizontal model resolution quite well. It canmeasure soil moisture

until 83 cm depth under very dry conditions, and to 15 cm depth

under very wet soil conditions (Köhli et al., 2015; Schrön et al.,

2017).
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FIGURE 2

Sand (A) and clay (B) content (%) for the Rur catchment derived from the BK50 soil map.

2.2. Model description (TSMP)

The coupled terrestrial system model used consists of three

compartments integrated under the framework TSMP, the 3D

variably saturated groundwater flow model ParFlow for the

subsurface (Kollet and Maxwell, 2006), the land surface model

CLM version 3.5 (Community Land Model) from the National

Center for Atmospheric Research (Oleson et al., 2007, 2008), and

the numerical weather prediction model COSMO (Consortium

for Small Scale Modeling) (Baldauf et al., 2011). These three

models are two-way coupled by the Ocean Atmosphere Sea

Ice Soil coupling Model Coupling Toolkit (OASIS-MCT, version

3) (Valcke, 2013). The integrated modeling platform TSMP

can run with different combinations of the component models

(Shrestha et al., 2014). In this study, CLM-ParFlow was used

without COSMO.

2.2.1. Land surface model CLM
The biophysical processes simulated by CLM3.5 include solar

and longwave radiation interactions with vegetation canopy and

soil, momentum and turbulent fluxes from canopy and soil,

canopy hydrology (e.g., interception processes), soil hydrology,

and stomatal physiology and photosynthesis (Oleson et al., 2007).

The mass and energy balance solved by CLM include soil

evaporation, evaporation from intercepted water, transpiration

from plants, infiltration of water in the soil, sensible and ground

heat fluxes, and freeze-thaw processes (Oleson et al., 2007,

2008).

The nested subgrid hierarchy is used to represent spatial land

surface heterogeneity (Oleson et al., 2008). Each grid cell is divided

into a variety of land units (glacier, lake, wetland, urban, and

vegetated), where each land unit can have a different number

of snow/soil columns, and each column can have multiple plant

functional types (PFTs) (Bonan et al., 2002; Oleson et al., 2008). In

CLM, the soil column and snow column are discretized into 10 and

5 vertical layers, respectively (Oleson et al., 2007, 2008). Each PFT

is characterized by distinct plant physiological parameters, which

could capture the biogeophysical and biogeochemical differences

between the different vegetation types (Oleson et al., 2007, 2008).

FIGURE 3

Hydraulic conductivity of the aquifer material for the Rur catchment.

2.2.2. Subsurface hydrological model ParFlow
In TSMP, the soil hydrology of CLM is substituted by the soil

hydrology of ParFlow (Kollet and Maxwell, 2008) and also surface

runoff and groundwater flow are calculated by ParFlow. ParFlow

is a three-dimensional variably saturated groundwater flow model

improved with a two-dimensional overland flow simulator (Ashby

and Falgout, 1996; Kollet and Maxwell, 2006). It combines the

kinematic wave equation (Lighthill and Whitham, 1955) and the

3D Richards’ equation (Richards, 1931) to describe the dynamic

coupling of surface-subsurface flow under overland flow boundary

conditions (Kollet and Maxwell, 2006). In ParFlow, the three-

dimensional Richards’ equation can be written as follows (Maxwell,

2013):

SsSw
∂h

∂t
+ Φ

∂Sw
(

h
)

∂t
= ∇ · q+qr (x, z) , (1)

and,

q = ΦSw
(

h
)

v = −Ks (x) kr
(

h
)

∇
(

h+ z
)

, (2)
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TABLE 1 CRNS sites with geographical information [from (Baatz R. et al., 2017; Bogena et al., 2022)].

Name Latitude Longitude Altitude (m
a.s.l.)

Mean annual
precipitation (mm y−1)

Mean air
temperature (◦C)

Land use

Merzenhausen 50.930 6.297 91 718 10.3 Crop

Rollesbroich1 50.622 6.304 515 1,018 7 Grassland

Rollesbroich2 50.624 6.305 506 1,018 7 Grassland

Gevenich 50.989 6.324 107 718 10.3 Crop

Ruraue 50.862 6.427 100 718 10.3 Grassland

Wildenrath 51.133 6.169 72 722 10.3 Needleleaf

Wuestebach 50.505 6.331 605 1,401 7 Spruce

Heinsberg 51.041 6.104 58 722 10.3 Grassland, crop

Kall 50.501 6.526 505 857 8 Grassland

Selhausen 50.866 6.447 101 718 10.3 Crop

Schoeneseiffen 50.515 6.376 611 870 7 Grassland

Kleinhau 50.722 6.372 374 614 9 Grassland

Aachen 50.799 6.025 232 865 10.3 Crop

where Ss is the specific storage [L−1]; Sw is the relative

saturation; h is the pressure-head [L]; t is time [T];Φ is the porosity;

q is the specific volumetric (Darcy) flux [LT−1]; qr is a general

source/sink term that represents transpiration, wells, and other

fluxes [LT−1]; x is the length along the x-axis specified as horizontal

direction [L]; z is the elevation along the z-axis specified as upward

to be positive [L]; v is the subsurface flow velocity [LT−1]; Ks(x)

is the saturated hydraulic conductivity tensor [LT−1]; kr is the

relative permeability.

ParFlow requires input soil hydraulic parameters like saturated

hydraulic conductivity, porosity, and Mualem-van Genuchten

parameters (van Genuchten, 1980; Kollet and Maxwell, 2008). For

our study, saturated hydraulic conductivities of soil layers were

calculated from sand, silt and clay contents and bulk density using

the software rosettav3 H3, which is based on an artificial neural

network analysis coupled with a bootstrap resampling method

(Schaap et al., 2001; Zhang and Schaap, 2017). To keep hydraulic

consistency between CLM and ParFlow, porosity (θs) for both

models is calculated on the basis of the sand fraction via the

following pedotransfer function in CLM (Oleson et al., 2007):

θs = 0.489− 0.00126
(

sand%
)

, (3)

The van Genuchten formulation (van Genuchten, 1980) is

employed to evaluate the pressure head from soil moisture data:

Ψ = −

[

(

θs−θr
θ(9)−θr

)
1
m
− 1

]

1
n

α
, (4)

where Ψ is subsurface pressure head [L]; θ s is porosity; θr is

residual soil moisture content; α is a measure of the first moment of

the pore size density function [L−1]; n is an inverse measure of the

second moment of the pore size density function; andm= 1-1/n.

The Newton Krylov solution technique is applied in ParFlow

and acts as a non-linear solver (Jones and Woodward, 2001).

The coupled partial differential equations for subsurface flow and

surface water flow are solved by the Newton-Krylov method with

multigrid preconditioning, which is good at handling subsurface

flow problems at large-scales in highly heterogeneous media and

under variably saturated conditions (Kollet and Maxwell, 2006,

2008; Maxwell, 2013). A prominent advantage of ParFlow is that it

was designed for parallel computer systems, so that it can efficiently

compute large-scale problems at high resolution, which has been

demonstrated in many studies (Jones and Woodward, 2001; Kollet

and Maxwell, 2006, 2008).

2.2.3. Coupling interface OASIS-MCT
The external coupler OASIS-MCT (Valcke, 2013) is used

to couple CLM and ParFlow, and control the exchange of

fluxes between the different component models (Shrestha et al.,

2014). When the fluxes correspond to different spatial and

temporal scales, OASIS-MCT uses time integration/averaging

and spatial interpolation operators to keep the scales consistent

(Sulis et al., 2015). In TSMP, ParFlow provides CLM with the

upper 10 subsurface layers pressure and saturation, and in turn,

CLM provides ParFlow with the upper boundary condition,

which is net infiltration or exfiltration. The net infiltration

includes precipitation, interception, total evaporation, and total

transpiration (Zhang et al., 2018).

2.3. LEnKF methodology

DA consists of a forecast and an analysis step. For the

forecast step, the state estimation is only based on past data

(McLaughlin, 2002). For the analysis step, the information from

current measurements and from a prior short-term forecast (which
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is based on past data) is used to produce a current state estimate.

Then, the estimate will be used to initialize the next short-term

forecast, which is subsequently used in the next analysis, and so

on (Hunt et al., 2007). The EnKF sequentially performs a model

forecast and a filter analysis. The efficiency of the filter relies on

the accurate determination of the forecast error covariance from

the ensemble, and the main sources of forecast errors are initial

conditions, forcing data, model parameters, and model equations

(Turner et al., 2008). Perturbation approaches can take these error

sources for the ensemble generation into account.

For each ensemblemember j at time step i, the state vector xj,i in

the forecast step is updated by observations and model predictions

and is given by:

xj,i=M
(

xj,i−1, qj,i, pj,i

)

, (5)

where j is the ensemble member, xj,i is the model forecast

state vector at time step i (pressure head in our study), M is

the model TSMP, xj,i−1 is the earlier model analysis with state

vector at time step i-1, qj,i is the vector with (perturbed) model

forcings (perturbed forcings are precipitation, incoming shortwave

radiation, incoming longwave radiation, and air temperature in

this study) and pj,i denotes the model perturbation vector with

parameters (porosity and saturated hydraulic conductivity in

this study). In summary, in this work, the ensemble of model

realizations is generated by different initial conditions, forcings,

and parameters. Model forecasts are updated according to:

xaj,i = x
f
j,i + Ki

(

yj,i −Hix
f
j,i

)

, (6)

Where, yj,i is the vector with (perturbed) observations, and the

superscripts a and f refer to the updated state vector (the analysis)

and the model predicted state vector, respectively. The observation

operator Hi is used to map model forecasts into the observation

space, which is here assumed to be linear, and Ki denotes the

Kalman gain that is calculated as:

Ki = PiH
T
i

(

HiPiH
T
i + Ri

)−1
, (7)

where Ri is the measurement error covariance matrix, and

Pi is the model covariance matrix, which is calculated from

the forecasted ensemble of model simulations at time step i

according to:

Pi =

∑N
j=1

(

x
f
j,i − xf

) (

x
f
j,i − xf

)T

N − 1
, (8)

where xf is a vector with ensemble mean values for the model

states at time step i. N is the number of ensemble members.

The estimation of the covariances with a limited ensemble

is affected by strong sampling fluctuations, and the estimated

covariances might be affected by spurious correlations

(Houtekamer and Mitchell, 1998, 2001). Houtekamer and Mitchell

(1998) suggested a localization approach to remove spurious

correlations to avoid filter divergence, limiting the updates to the

surroundings of observations. Based on the localization of the error

covariances proposed by Houtekamer and Mitchell (2001), in the

evaluation of the Kalman gain in Equation 7, Pi is replaced by ρ◦Pi,

ρ◦Pi represents the Schur product of the correlation matrix ρ and

covariance matrix Pi, where ρ is a correlation matrix containing

correlations between the grid cells (which are set to zero for grid

cell combinations that are separated beyond a certain threshold).

And the ρ and Pi should have the same dimensions, so the LEnKF

analysis scheme can be expressed as:

xaj,i = x
f
j,i +

[

ρ1
◦PiH

T
i

] [

ρ2
◦
(

HiPiH
T
i

)

+ Ri

]−1 (

yj,i −Hix
f
j,i

)

,(9)

Here ρ is determined by using a fifth-order piecewise function,

as given by Gaspari and Cohn (1999). The correlation ω between

a grid point and an observation, i.e., an element in ρ, can be

approximated as Hu et al. (2012):
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(10)

Where, l is the defined localization radius and e is the Euclidean

distance between an analyzed grid point and an observation

location. The correlations ω are distance-dependent and vary

between 1 at observation locations and 0 at distances greater than

twice the influence radius l. Only the observations located within

the localization radius from an analyzed grid point can contribute

to the analysis for this grid point (Hu et al., 2012). The cutoff

radius can filter out small and noisy correlations associated with

remote observations (Houtekamer and Mitchell, 2001). A larger

radius may contain more spurious correlation, resulting in less

effective assimilation. In contrast, a radius that is too small limits

the influence of observations too much to update neighboring

grid cells. Therefore, determining an appropriate assimilation

localization radius is crucial.

2.4. Assimilation methodology

To be able to assimilate WTDmeasurements into TSMP, WTD

data need to be transferred into pressure accordingly (see Figure 4).

At locations with WTD measurements, the pressure head in the

saturated zone is calculated from the measured WTD assuming a

hydrostatic pressure distribution, according to Zhang et al. (2018):

Ψi = Di −WTDobs, (11)

Where Ψi is the pressure head at the ith soil layer [L], Di is the

depth from land surface to the ith soil layer [L], and WTDobs is the

observed WTD [L].

In our study, in order to ensure stability and avoid the

occurrence of anomalous pressure values in the unsaturated zone
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FIGURE 4

Illustration of the link between groundwater level observation and

data to be assimilated [revised from Zhang et al. (2018)]. The blue

color indicates the groundwater level at layer i-1. The red layers

(from layer i to the bottom layer) are saturated and are incorporated

as groundwater observations, and converted to pressure heads

assuming hydrostatic conditions.

related to updating pressure in the DA step, a weakly coupled

approach was followed, which implies that only pressure in

saturated layers is updated during assimilation. Hung et al. (2022)

found that the weakly coupled approach outperformed the fully

coupled approach for assimilating WTD measurements in TSMP.

In the OL run, the vertical division between the unsaturated and

saturated zones will differ among ensemble members. But as stated

in Zhang et al. (2018), every grid cell should be updated consistently

in DA, so the definition of the state vector should be the same

for all ensemble members. The saturated and unsaturated zones

are defined by the deepest WTD among the ensemble members,

following Zhang et al. (2018). In the analysis step, only the pressure

head values for the defined saturated zone will be directly updated

via LEnKF.

3. Experimental setup

3.1. Ensemble generation and simulations

The simulation domain was discretized with a horizontal spatial

resolution of 500m. The study domain has a vertical extension

of 20m, which is discretized into 20 soil and aquifer layers with

variable thicknesses. The thicknesses of the 10 uppermost layers

increase exponentially with depth and extend to a total of 3m. The

deeper ten subsurface layers have thicknesses of 1m (three layers)

or 2m (seven layers).

It is expected that the assimilation performance improves with

increasing ensemble size (number of realizations), as found, for

example, in studies with groundwater flow models (Chen and

Zhang, 2006). An increasing ensemble size also implies higher

computational costs. Hendricks Franssen and Kinzelbach (2008)

indicated that 100 realizations should be sufficient for real-time

groundwater flow modeling problems with state updating only.

For combining state and parameter estimation, the ensemble size

needs to be larger. As a compromise between accuracy and available

compute time and data storage, we established an ensemble with

128 members for WTD assimilation in this work.

Meteorological forcings, hydraulic conductivities, and porosity

were perturbed to generate the ensemble. Four atmospheric

variables were perturbed: precipitation, incoming shortwave

radiation, incoming longwave radiation, and air temperature.

The meteorological forcings were perturbed without spatial

correlation, while temporal correlations were induced by a first-

order autoregressive model (Reichle et al., 2010; Han et al., 2015).

Since the four meteorological variables are correlated, random

values were drawn from a multivariate normal distribution. The

statistics of the perturbed atmospheric variables are summarized in

Table 2. The temporal correlations and standard deviations of the

perturbations were chosen based on previous catchment-scale and

regional-scale DA experiments (Reichle et al., 2010; Han et al., 2013,

2015; Baatz R. et al., 2017).

Precipitation and shortwave radiation were multiplied by

lognormally distributed noise (Han et al., 2013). A direct back

transformation would induce a bias (resulting typically in a

larger mean precipitation and larger mean incoming shortwave

radiation), and therefore a correction is applied (Yamamoto, 2007):

Z
∗

j,i = K × Ziexp
(

xj,i
)

=
Ziexp

(

xj,i
)

∑365
m=1

∑N
n=1 Znexp(xn,m)
(N×365)

, (12)

Where, Z
∗

j,i is the bias corrected perturbed variable of ensemble

member j at day i, Zi is the original variable at day i, K is the

corrective factor, and xj,i is the random perturbation of ensemble

member j at day i from the multivariate normal distribution. N is

the number of ensemble members (128 in this study).

Not only atmospheric forcing, but also hydraulic conductivity

was perturbed in this study as the uncertainty of this parameter is

in general large with an important effect on the groundwater flow

prediction. We use different Ks data for the upper soil layers and

lower aquifer layers. Hence, the Ks values of the soil and aquifer

layers were perturbed separately (Table 3). The Ks values for soil

layers were perturbed by perturbing the sand and clay contents first,

and then applying the Rosetta pedotransfer functions (Schaap et al.,

2001; Zhang and Schaap, 2017) to obtain the perturbed Ks. Sand

and clay content were perturbed by calculating a field of spatially

correlated perturbation values with geostatistical simulation and

mean zero. A spherical variogram model was used, with nugget

0, sill of 50%2, and range 25 km. In order to avoid unphysical

values for the soil textures, the sum of the sand and clay content

were constrained between 0 and 100%. The Ks of the bottom

aquifer layers were perturbed for each hydrogeological unit by

taking a value from a univariate uniform distribution with values

between −0.5 and −0.5 and adding this to the mean Ks of the unit

[log10(m/s)]. The porosity for the upper soil layers was determined

according to Equation 3 and on the basis of the perturbed sand

contents, while for the bottom aquifer layers, the constant value of

0.15 was used, without perturbation.

It is known from previous studies that the spin-up for the

model TSMP significantly influences the simulated WTD. The

100 year spin-up for 128 ensemble members departed from

a WTD of 0m, and was forced by 30-year average recharge

values (derived from gridded data of precipitation and actual
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TABLE 2 The listed cross-correlations give the cross-correlations between the perturbations for the di�erent atmospheric variables, following the order

as indicated in the left column of the table.

Variables Noise Standard deviation Time correlation scale Cross correlation

Precipitation Multiplicative 0.3 24 h [1.0,−0.8, 0.5, 0.0,

Shortwave radiation Multiplicative 0.2 24 h −0.8, 1.0,−0.5, 0.4,

Longwave radiation Additive 20Wm−2 24 h 0.5,−0.5, 1.0, 0.4,

Air temperature Additive 1K 24 h 0.0, 0.4, 0.4, 1.0]

TABLE 3 Perturbation of saturated hydraulic conductivities for di�erent subsurface layers.

Layers Texture classes Perturbation Generation

Soil layers Sand content Simple kriging (sill= 50%2 , range= 25 km, and nugget= 0) Rosettav3 (Zhang and Schaap, 2017)

Clay content

Silt content 100-sand (%)-clay (%)

Aquifer layers Hydraulic conductivity [in log10 (m/s) unit] was perturbated by uniform distribution (−0.5, 0.5)

evapotranspiration provided by the German Weather Service)

as an upper boundary condition. Next, an exit spin-up was

done by running CLM-ParFlow for additional 10 years, using

meteorological forcings from the year 2017 for all 10 years. The

conditions at the end of the spin-up were used to initialize the

DA experiments for the year 2018. The model time step is set

to hourly.

3.2. Selection criteria for assimilated sites

There is a spatial mismatch between the point-scale

groundwater measurements and the TSMP grid cell size of

500m. In order to compare the measured WTD data with the

model simulated values, each groundwater observation site was

assigned to the nearest grid cell center. It is therefore common

to have several measurement sites located in the same grid cell.

We kept the groundwater measurement site which had the

median value of all measurement sites in the grid cell for the

year 2018, while the rest of the measurement sites were excluded

from assimilation.

In addition, due to the relatively coarse model resolution,

some measurement sites were located in model river grid cells.

If all soil layers for each ensemble member in a grid cell were

saturated for the complete year, the grid cell was considered to

be a river grid cell. The river grid cells were eliminated from

the analysis as groundwater measurements are not informative

for the pressure values in river grid cells. Grid cells directly next

to rivers were also excluded from the DA procedure, as these

grid cells were also saturated most of the time and sometimes

became part of the river. In this study, within the localization

radius, we assimilated only observations from one site, with

measurement values that are median values considering all sites in

the localization radius.

In our study, the impact of the localization radius on

the assimilation results was investigated, and three different

localization radii were considered for assimilating groundwater

measurements: 10, 5, and 2.5 km. According to the assimilation site

selection criteria, three different localization radii resulted in 10

groundwater sites being selected for each of the DA experiments.

Also, we used the groundwater data from unassimilated locations

to investigate whether the localized assimilation could also

improve the groundwater estimation at locations without

assimilating data.

3.3. Evaluation of model performance

The root mean square error (RMSE) and bias (BIAS) were

calculated to evaluate the performance of the WTD assimilation.

The RMSE of WTD at each time step is calculated as:

RMSEi =

√

√

√

√

∑N
n=1

(

WTDsim
n,i −WTDobs

n,i

)2

N
, (13)

whereN is the total number of observation sites,WTDsim
n,i is the

ensemble average groundwater table depth of the grid cell where

the observation site is located at the time step i (either from an OL

run or a DA run), andWTDobs
n,i is the observed WTD at the nth site

and time step i.

The bias is also specified to quantify systematic differences

between simulated and measured WTD:

BIASn,i = WTDsim
n,i −WTDobs

n,i , (14)

In addition, simulation results were also compared with

measured soil moisture content by CRNS. We follow the approach

by Schrön et al. (2017), where weighted soil moisture content

from the simulations was compared with CRNS measurements.

The indicators, including BIAS, correlation coefficient (R), RMSE

and unbiased root mean square difference (ubRMSD), are used

to evaluate simulated soil moisture compared with the CRNS
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measurements. For each CRNS site, the above indicators were

calculated individually and aggregated over time.

BIAS =

T
∑

i=1

(

θ simi − θobsi

)

/T, (15)

R =

∑T
i=1

(

θobsi − θobs
) (

θ simi − θ sim
)

√

∑T
i=1

(

θobsi − θobs
)2

∑T
i=1

(

θ simi − θ sim
)2

, (16)

RMSE =

√

√

√

√

∑T
i=1

(

θ simi − θobsi

)2

T
, (17)

ubRMSD =

√

√

√

√

∑T
i=1

((

θobsi − θobs
)

−

(

θ simi − θ sim
))2

T − 1
, (18)

where T is the total number of time steps, θ simi is the simulated

(either from an OL run or a DA run) ensemble average soil

moisture content at the time step i, and θobsi is the observed

soil moisture by CRNS at the time step i. The overbars in

equations 16 and 18 indicate the temporal mean over the entire

time period.

4. Results and discussion

4.1. Water table depth

4.1.1. Spatial autocorrelation analysis
For localized assimilation, the selection of the appropriate

radius of localization is important. The localization radius should

not be too small in order not to neglect positive correlations, and

it should not be too long so that areas with spurious correlations

are excluded. Therefore, we calculated the spatial autocorrelation

of groundwater level measurements and simulated groundwater

tables in the OL run (see Figure 5) to identify the appropriate

radius. The spatial autocorrelations for different distance classes (0–

0.5, 0.5–2.5, 2.5–5, 5–10, 10–20, 20–30, 30–40, 40–50, 50–60, and

60–70 km) were determined. The spatial correlation functions for

the measured and WTD are quite close, implying that the model

represents quite well the spatial correlation of the real groundwater

levels in the Rur catchment. The largest differences are found for

shorter distances, where the model autocorrelation is higher than

the measured autocorrelation.

4.1.2. Di�erent localization radius assimilation
strategies

Based on the spatial autocorrelation analysis, the localization

radius could be up to 10 km. We tested 10, 5, and 2.5 km as

localization radii, including 10 groundwater measurement sites for

the assimilation.

For all scenarios, the RMSEs ofWTD after 1 year of assimilation

were lower than those of OL at the measurement locations (see

Figure 6). The histogram of WTD errors at measurement locations

also illustrates the improved WTD characterization after DA,

compared with the OL. It can also be observed that the OL

FIGURE 5

Spatial autocorrelation functions of measured and simulated (open

loop) groundwater table depth for the year 2018 (A), the 26th of

February 2018 (B), and the 24th of September 2018 (C). Filled

squares or circles indicate autocorrelation coe�cients are

significantly di�erent from zero (p < 0.05). When the number of

comparison pairs was smaller than 1,000, the number of

comparison pairs is indicated next to the marker.

results on average in WTD values were larger than the measured

ones, implying that the simulated WTDs were deeper than the

measured ones. DA resulted in a reduction of the bias, and the

peak of the histogram is closer to zero than OL. Thus, in all cases,

LEnKF strongly reduced the bias and RMSE of WTD, compared

to the scenario without assimilation of groundwater data, and the

simulation improvement is best when using 10 or 5 km localization

radius, and slightly worse for 2.5 km radius.

Since the groundwater assimilation results for the three radii

were similar at the assimilation sites, and the best results were

obtained for the 10 km radius, only the simulated WTD from

the 10 km localization radius DA run is shown in Figure 7, and

compared with the WTD from the OL run and the measurements.

The changes in groundwater levels during assimilation show that

once assimilation starts, the WTD gets closer to the measurements.

The impact of the DA is similar for the different localization

radii, with the same regions affected by increases or decreases

in WTD (see in Figure 8). The main difference is that for a

larger localization radius, the area updated by assimilation is
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FIGURE 6

The locations of the assimilated groundwater sites (dots) in the Rur catchment together with the average groundwater table depth (A); time series of

root mean square error (RMSE) of water table depth at measurement locations for the year 2018 for the open loop and data assimilation runs (B); the

histogram of the water table depth errors at the measurement locations for the year 2018 from the open loop and data assimilation runs [10 km (C),

5 km (D), 2.5 km (E)].

larger, with a stronger reduction of ensemble standard deviations.

However, for some areas, the ensemble standard deviation was

larger for the DA run than for the OL run. This occurred when

the measurements deviated strongly from the ensemble of OL

runs. With DA, some ensemble members became closer to the

observations, but others were not, resulting in an increase in the

ensemble dispersion.

4.1.3. Data assimilation verification
To explore the impact of the assimilation of WTD

measurements, we also evaluated the WTD characterization

at verification locations (555 sites in total) which were not

included in the assimilation, for the three different localization

radii. We only show results for verification locations within

the localization radius and only if enough measurement

data were available for assimilation at a given time step

(see Figure 9). Table 4 shows the RMSE for the OL and DA

simulations, averaged for the period of 1year. At verification

locations, the RMSE of the WTD also decreased, especially

closer to the assimilation location, with verification locations

separated <2.5 km from assimilation locations. DA could

improve the groundwater simulation around measurement

locations, which is consistent with the results by Hung et al.

(2022).

4.2. Soil moisture

The impact ofWTD assimilation was also evaluated with in-situ

soil moisture measurements from CRNS networks. Simulated soil

moisture in OL and DA runs (for 10 and 5 km localization radius)

was compared with CRNS measurements. The OL results indicate

that simulated soil moisture contents have similar temporal

variations as measured soil moisture contents (see Figure 10).

Assimilation of WTD measurements did not result in an obvious

improvement for soil moisture estimation (see Table 5). Hung

et al. (2022) also found that assimilating groundwater table

data only slightly improved soil moisture characterization with

RMSE reductions between 1 and 6%, and the improvements

were limited to a relatively small area around observation

locations. This is related to the fact that soil moisture is only

indirectly updated by the propagation of the pressure below the

groundwater table. Therefore, when the groundwater table is deep,

the impact of WTD assimilation on the upper soil moisture

is small.
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FIGURE 7

Water table depth time series for 10 assimilation sites: observations (Obs, red), ensemble mean of open loop (OL, blue) and ensemble mean of data

assimilation run with 10 km localization radius (DA, green) for the year 2018.
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FIGURE 8

Di�erence in average water table depth between data assimilation and open loop runs (data assimilation–open loop) for di�erent localization radii

[10 km (A), 5 km (B), 2.5 km (C)] on the 31st of December 2018 for the Rur catchment; and di�erence in standard deviation for data assimilation and

open loop runs for di�erent localization radii [10 km (D), 5 km (E), 2.5 km (F)] on the 31st of December 2018 for the Rur catchment.

4.3. Discussion

In all DA experiments, the estimation of the WTD

improved, and also close to observation sites an improved

groundwater characterization was found. This shows that

for real-world cases, the localized EnKF could merge the

integrated model TSMP with data to more accurately simulate the

groundwater table.

There are some caveats regarding the use of in-situ groundwater

observations to do assimilation and validate model estimates. Since

the spatial representativeness of model and measurements are

different, it is non-trivial to assimilate the in-situ groundwater

measurements into the integrated model and to evaluate the

coarse resolution model results against in-situ measurements.

In our study, the model has a grid resolution of 500m, while

the groundwater measurements are obtained from points. Many

observation sites were located in the same grid cell and were

not included in the assimilation in this work. In future work,

these measurements should be assimilated by modifying the

measurement operator. However, this will not resolve all issues

regarding scale mismatches. As the coarser model resolution

flattens the topography, and therefore the gradients for surface

and subsurface water flow, a systematic bias in the simulated

groundwater table can be expected and is also observed in this

study. In theory, for data assimilation, we should not have

systematic differences between simulated and measured values,

and prior bias correction would be a strategy to consider. In

practice, we normally have to deal with systematic biases in

data assimilation and if the ensemble spread is large enough,

the model states can still be corrected toward the measurements.

Removing the systematic bias in simulated groundwater levels with

TSMP is not trivial as it depends on the model resolution. An

extensive effort is needed to remove the systematic bias, which

is a research question in itself and beyond the scope of this

study. We argue that in the future better results can be obtained

if a higher model resolution of 100m instead of 500m is used

so that groundwater bodies related to narrow valleys can be

better represented.

In addition, the model TSMP in this study only considers

a vertical depth up to 20m, and only one upper unconfined

aquifer is better modeled. However, the real situation is much

more complicated, as typically multiple unconfined and confined

aquifer layers exist. As our model only models the 20m subsurface,

measurements relating to deeper aquifers were also excluded. In

future work, an extension of the vertical depth could provide more

realistic simulations, but for this, it would be important to have

more detailed 3D geological information.

The spatial autocorrelation analysis indicates that groundwater

levels were correlated for separation distances up to 10 km.

However, groundwater level characterization was only improved

in a smaller area for locations separated by <2.5 km from

measurement sites. Hung et al. (2022) used a dense observation
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FIGURE 9

Time series of RMSE of groundwater table depth for the open loop (OL) and data assimilation (DA) runs [10 km (A, D, F), 5 km (B, E), 2.5 km (C)

localization radius) at verification locations which were 0∼2.5, 2.5∼5, and 5∼10 km away from assimilated observations.

TABLE 4 The time averaged RMSE of the water table depth at the verification locations for the open loop (OL) and data assimilation (DA) runs (10 sites,

10, 5, and 2.5 km localization radius).

Experiment Horizontal distance 0–2.5 km Horizontal distance 2.5–5 km Horizontal distance 5–10 km

OL DA OL DA OL DA

DA (10 km) 6.03 4.22 5.52 6.01 5.12 5.16

DA (5 km) 6.03 4.31 5.52 6.05 / /

DA (2.5 km) 6.03 4.26 / / / /

network in a synthetic experiment that closely mimicked the

Neckar catchment of southwestern Germany, and proved that

groundwater level assimilation could improve groundwater level

estimation between the measurement locations. They found

that the improvement of the groundwater level simulation

decreased with increasing horizontal distance, and improvements

in groundwater level simulations could extend to 8 km away from

the observations for a localization radius of 12 km. Our results
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FIGURE 10

Soil moisture time series from cosmic-ray neutron sensors (CRNS) (red), ensemble mean of open loop (OL, gray), and ensemble mean of data

assimilation with 10 km assimilation radius (DA 10 km, blue) for the year 2018.
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TABLE 5 Comparison metrics for the soil moisture from CRNS compared to open loop (OL) and data assimilation runs (DA10 and DA5 are for 10 and

5km localization radius, respectively) for the year 2018.

Site BIAS (cm3/cm3) R RMSE (cm3/cm3) ubRMSD (cm3/cm3)

OL DA10 DA5 OL DA10 DA5 OL DA10 DA5 OL DA10 DA5

Merzenhausen −0.04 −0.04 −0.04 0.74 0.74 0.74 0.06 0.06 0.06 0.05 0.05 0.05

Rollesbroich1 0.05 0.07 0.07 0.89 0.88 0.88 0.06 0.08 0.08 0.04 0.04 0.04

Rollesbroich2 0.05 0.07 0.07 0.87 0.85 0.85 0.06 0.08 0.08 0.05 0.05 0.05

Gevenich −0.02 −0.02 −0.02 0.76 0.76 0.76 0.06 0.06 0.06 0.06 0.06 0.06

Ruraue −0.04 −0.04 −0.04 0.76 0.75 0.75 0.07 0.07 0.07 0.06 0.06 0.06

Wildenrath −0.04 −0.04 −0.04 0.76 0.76 0.76 0.05 0.05 0.05 0.04 0.04 0.04

Wuestebach −0.13 −0.12 −0.13 0.53 0.54 0.53 0.13 0.13 0.13 0.06 0.06 0.06

Heinsberg −0.03 −0.03 −0.03 0.79 0.79 0.79 0.06 0.06 0.06 0.05 0.05 0.05

Kall 0.02 −0.00 −0.00 0.82 0.77 0.77 0.05 0.05 0.05 0.05 0.06 0.06

Selhausen −0.06 −0.06 −0.06 0.70 0.69 0.70 0.09 0.08 0.09 0.07 0.07 0.07

Schoeneseiffen −0.08 −0.04 −0.08 0.81 0.72 0.81 0.09 0.07 0.09 0.05 0.06 0.05

Kleinau −0.03 0.00 −0.03 0.81 0.71 0.81 0.06 0.06 0.06 0.05 0.07 0.05

Aachen −0.14 −0.14 −0.14 0.80 0.80 0.80 0.14 0.14 0.14 0.05 0.05 0.05

Average −0.04 −0.03 −0.04 0.77 0.75 0.77 0.08 0.08 0.08 0.05 0.06 0.05

illustrate that for a real-world application, the improvement is

more limited, which will be related to model structural errors

like inadequate grid resolution and missing information on

pumping activities.

Theoretically, only grid cells within the localization radius

can be updated in the analysis step (Houtekamer and Mitchell,

2001). However, as the assimilation proceeds over time, updates

around measurement locations can laterally propagate through

the working of the physical equations, and this effect could be

particularly strong in the saturated zone given the importance of

lateral flow in the saturated zone. In the assimilation experiments

with 10 and 5 km localization radius, there were no obvious

improvements in the characterizations of soil moisture content

by TSMP. Though the groundwater bias was corrected after

assimilation, soil moisture does not change significantly with

the change in deep groundwater tables. Also, Hung et al.

(2022) discovered topography variations and lateral groundwater

flow greatly influence groundwater levels, making soil moisture

data probably less informative for groundwater levels, which

also supports the findings of this study. Hung et al. (2022)

found a slight improvement for soil moisture characterization

related to groundwater level assimilation, which was not found

in this study. The worse performance in this real-world study

might be related to model structural errors, as Hung et al.

(2022) simulated a catchment of similar complexity, but in

a synthetic version that mimicked that catchment. A further

reason might be the limited number of groundwater assimilation

and soil moisture validation sites used in this study. We

assimilated only groundwater level data, but soil moisture

was not measured at the same locations, and soil moisture

verification locations were separated from the groundwater

monitoring sites.

Improved results can be expected for more ensemble members

and/or a higher spatial resolution, which was not feasible in

this work, as only one single DA experiment with 128 ensemble

members required 73,728 core hours (the spin up not included)

and 1.75 TB of computer storage for 1 year of simulation at a

daily timescale.

Furthermore, although updating saturated hydraulic

conductivities in Hung et al. (2022) only marginally improved

the simulation of subsurface states, compared with only state

updating, we will explore in future work the role of this

important parameter in groundwater modeling. This should be

evaluated for simulations at higher spatial resolution and larger

ensemble sizes.

5. Conclusions

The localized Ensemble Kalman Filter was used to assimilate

groundwater level measurements into the integrated terrestrial

system model TSMP for the ∼2,000 km2 Rur catchment. This

is the first application of the assimilation of observed WTD

data into the integrated land surface-subsurface model TSMP

for a real-world case. Earlier work focused on a synthetic case,

mimicking the Neckar catchment in southwest Germany. For

the Rur catchment, 128 ensemble members were generated by

perturbing four atmospheric forcing variables, saturated hydraulic

conductivities and porosity. The perturbed ensemble was used

as input in the TSMP-PDAF data assimilation framework and

assimilation experiments were done for different localization radii

(10, 5, and 2.5 km). The performance of WTD assimilation was

assessed by comparing results from OL and DA experiments, and

using groundwater observations and soil moisture measurements
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from cosmic ray neutron sensors as verification data. The main

findings are:

1. TheWTD simulated by the integrated model TSMP could be

improved by localized EnKF, with more than 75% RMSE reduction

at the assimilated locations for 3 different localization radii. The

positive impact of assimilation is limited to the vicinity of the

assimilated locations. The localized WTD assimilation is greatly

affected by the unevenly distributed groundwater observations.

2. Simulated soil moisture generally reproduced the observed

temporal fluctuations of soil water content, but soil moisture

characterization was not improved after WTD assimilation. This

can be related to the fact that only the saturated zone was directly

updated via assimilation (and the unsaturated zone only indirectly),

and the presence of model structural errors like a relatively coarse

grid resolution of 500m and missing information on groundwater

pumping activities, for example.

3. Systematic differences between simulated and measured

WTD might be related to the too coarse model resolution and

model structural errors. Future work should focus on DA with

integrated land surface-subsurface models at a higher spatial

resolution and with more ensemble members, which would allow

parameter estimation. In addition, the measurement operator

needs to be considered for multiple groundwater level observations

in a grid cell.
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