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Forecasting bacteriological
presence in treated drinking
water using machine learning

Grigorios Kyritsakas*, Joby Boxall and Vanessa Speight

Department of Civil and Structural Engineering, She�eld Water Centre, The University of She�eld,

She�eld, United Kingdom

A novel data-driven model for the prediction of bacteriological presence, in

the form of total cell counts, in treated water exiting drinking water treatment

plants is presented. The model was developed and validated using a year of

hourly online flow cytometer data from an operational drinking water treatment

plant. Various machine learning methods are compared (random forest, support

vector machines, k-Nearest Neighbors, Feed-forward Artificial Neural Network,

Long Short Term Memory and RusBoost) and di�erent variables selection

approaches are used to improve the model’s accuracy. Results indicate that the

model could accurately predict total cell counts 12h ahead for both regression

and classification-based forecasts—NSE = 0.96 for the best regression model,

using the K-Nearest Neighbors algorithm, and Accuracy = 89.33% for the

best classification model, using the combined random forest, K-neighbors and

RusBoost algorithms. This forecasting horizon is su�cient to enable proactive

operational interventions to improve the treatment processes, thereby helping to

ensure safe drinking water.
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1. Introduction

Drinking water treatment plants (DWTPs) are complicated systems tasked with

processing raw water to produce high-quality drinking water that complies with the

regulatory standards. The treatment process consists of different steps from pre-treatment

to disinfection that are monitored with sensors connected to the supervisory control and

data acquisition (SCADA) system. The SCADA systems offer a real-time check of the flow

entering and exiting the various treatment stages, the quality of the water exiting each

treatment stage, the quality of the treated water exiting the DWTP, and the condition and

the operational status (on/off) of the electromechanical equipment (pumps, valves, chemical

mixers etc.) and the water level of any tanks. Drinking water quality is monitored through

SCADA via the sensor detection of the key water quality indicator variables including pH,

turbidity, and disinfectant residual with a frequency between 5 to 15min. Moreover, samples

are collected with a daily frequency at the DWTPs outlet to measure key water quality

parameters such as coliform bacteria, heterotrophic plate counts, chlorine and turbidity

(DWI, 2020).

DWTP staff use the collected data to adapt the treatment processes to address changes in

the flow or the quality of the water entering the plant. These interventions in the treatment

process, such as changing chemical doses and adjusting flow rates, are mostly reactive and

are made once issues have been identified (Tomperi et al., 2014). Often, the reaction time is

insufficient to prevent water quality deterioration, particularly for source water with rapidly

changing conditions such as rivers with significant anthropogenic impacts (Jayaweera et al.,

2019). Previous research to model water treatment has been based on mathematical models
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and empirical formulas describing the complex systems of chemical

and biological reactions; however, this has proven to be difficult due

to the complexity and interactions of the physical, chemical and

biological processes involved (Ghandehari et al., 2011; Wang and

Xiang, 2019).

1.1. Application of machine learning for
DWTP management

Given the large data availability in DWTPs, data-driven models

that apply machine learning (ML) methodologies are gaining

in popularity as an alternative to mathematical and empirical

modeling, providing accurate and proactive solutions in many

cases. Their main advantage in comparison to the other modeling

types is their ability to use as inputs different types of data that

are coming from different sources and have different structure

and frequency. Moreover, data-driven models are capable to

understand non-linear relationships in the data and uncover

hidden relationships between different water quality parameters

that measure the quality of the water in the different DWTPs’

processes. Thus, data-driven models have been utilized for the

optimization of processes in DWTPs (Zhang et al., 2013; Park et al.,

2015; Jayaweera et al., 2019), predicting future deterioration events

(Fu et al., 2017; Mohammed et al., 2017), and improving the overall

performance of the DWTP (Abba et al., 2020). In these works,

the authors utilized the data that the DWTPs’ SCADA systems

already collected to improve the treatment management. A number

of recent studies that applied ML methodologies in DWTPs are

presented in a review paper by Li et al. (2021). In this paper, the

authors presented ML based research works that were successful

applied in different DWTP’s process stages for improving the

coagulation dosing and the membranes optimization and design,

controlling the membranes fouling and accurately predicting water

quality events. The authors strongly believe that ML based models

have the potential to provide further knowledge regarding the

treatment processes and fully support decision making. However,

they argue that more work is required on interpretable methods

that will better simulate the water treatment problems. Moreover,

for them, future work should focus on detection methods that

provide useful data for analysis of complex contaminants in the

treatment processes and on ML decision-making systems that will

revolutionize the DWTPs automation control system.

Prior research rarely considers the bacteriological presence

in the water, those that exist focus either on the prediction or

control of bacteria in the water source or the optimization of the

disinfection process (Haas, 2004). There is a gap in the applications

of ML techniques to provide information regarding bacteriological

presence in the treated water. This paper aims to fill this gap with

a ML based methodology that predicts bacteriological presence in

the water exiting DWTPs.

1.2. Cell counting data

With the absence of regulations in online sensor monitoring

to quantify the presence of bacteria in the DWTPs, bacteriological

monitoring of the drinking water relies on manual collection of

water quality samples from the DWTP outlet to measure coliform

bacteria and heterotrophic plate counts (HPC) (DWQR, 2019;

DWI, 2020). Laboratory analysis for these bacteriological indicator

variables is time consuming, with the results not available for at

least one day after the sample was collected. Therefore, potential

bacteriological failures will only be identified once the water has

passed in the drinking water distribution system (DWDS). In

addition, as this process cannot be automated, the results are

not incorporated directly into the SCADA system for use in

system control. At present, sensors for the bacteriological real time

monitoring are under development with the main technologies

being presented in a UKWater Innovation Research report (Boxall

et al., 2020).

Given that HPC is a century-old approach that typically

captures <1% of the bacteria in the drinking water, flow

cytometry (FCM) is becoming an alternative method to measure

bacteriological presence (Hammes et al., 2008). FCM is capable

of counting the total number of bacterial cells (TCCs) in the

bulk water thereby providing a better understanding of the

overall bacteriological concentration than HPC (Van Nevel et al.,

2016, 2017). Moreover, an online FCM has been developed

that can produce results with high frequency in an automated

process (Besmer et al., 2016; 2014). Potential application of this

technology in the DWTP could transform the manual sampling for

bacteriological monitoring into an automated process that could

be controlled and checked from the SCADA system. Furthermore,

online FCM could generate a large data set that could be further

analyzed in data-driven models to understand the bacteriological

content of the treated water. However, the application of online

FCM technology has some challenges to overcome such as

the high cost of the FCM hardware, the integration in the

existing automation systems and the requirement of an efficient

data standardization methodology that guaranties high quality

microbial data (Besmer et al., 2014).

This paper explores the potential application of FCM with ML

modeling by developing a data-driven forecasting model for the

prediction of the bacteriological presence, expressed as TCCs, in

the treated water (DWTP outlet). The model is designed for both

regression and classification forecasting and its ability is tested

in a large operational DWTP, located in the north of the UK,

that serves a population of circa 600,000 people, for a year of

hourly operational data. Both predictive approaches were used as

the regression one could indicate the bacterial cells change over

a certain period and the classification one could set an alarm

when the cell numbers surpass a certain threshold. The data-

driven model used different ML methods with the aim to compare

and select those methods with better predictive performance.

Moreover, different input variables selection methodologies

(feature selection) were examined with the aim to improve

the predictive performance, reduce the computational cost, and

improve interpretability. Finally, a combination between the best

model outputs (selected based on their performance metrics) was

examined for a potential increase in the model’s accuracy. The

aim was to develop a novel tool that could predict elevated

bacteriological presence in DWTPs outlets with a sufficient lead

time to allow for adjustments to improve the overall treatment

efficiency of the DWTP.
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FIGURE 1

Case study DWTP flow schematic including flow and water quality variables measurement sensor location (see table 1 for short-name clarification).

TABLE 1 Summary of the DWTP variables used in this work.

Variable Units Location in the DWTP Short form variable name

Flow Cubic meters per second, m3/s DWTP inlet InletFlow

Turbidity Nephelometric turbidity units, NTU DWTP inlet InletTurb

Color Degrees Hazen, DegH) DWTP inlet InletColour

pH - DWTP inlet InletpH

Flow m3/s Disinfection tank outlet TW_Flow

Cl2 milligrams per liter, mg/l Disinfection tank outlet TW_Cl

pH - Disinfection tank outlet TW_pH

Phosphate Parts per billion, ppb Disinfection tank outlet TW_Phosphate

Turbidity NTU Disinfection tank outlet TW_Turb

TCCs Cell counts per ml Disinfection tank outlet TW_TCCs

Flow m3/s DWTP outlet FinalFlow

Cl2 mg/l DWTP outlet FinalCl

Turbidity NTU DWTP outlet FinalTurb

Aluminum mg/l DWTP outlet FinalAlum

pH - DWTP outlet FinalpH

TCCs Cell counts per ml DWTP outlet FinalTCCs

2. Materials and methodology

2.1. Site description and selected data

The case study DWTP serves part of a large city, located in

the north of the UK, as well the surrounding area in the east of

this city, and has a maximum capacity of 364,000 m3/day. The

DWTP treats raw water from two different nearby lakes via a

pre-treatment stage followed by coagulation (alum), flocculation,

filtration (double-staged rapid gravity filters), and disinfection with

chlorine. For the chlorination process, the filtered water is dosed

with hypochlorite before reaching the disinfection contact tank.

The hydraulic retention time (HRT) of the treatment process is

estimated to be roughly 8 h. Once past the chlorine contact tank,

the treated water is stored in the treated water service reservoir

(SR) for a further 11 h (SR_RT). Finally, the treated water reaches

the distribution networks via 2 pump stations (1 main+1 backup).

A flow schematic of the DWTP that includes the flow and water

quality variables sensor locations is presented in Figure 1.

The SCADA system at this site collects water quality and flow

data from the DWTP inlet, DWTP outlet, and from the outlet of

each treatment process tank with 5min frequency. The measured
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TABLE 2 Descriptive statistics for DWTP variables used in this study.

DWTP stage Variables Unit Min Max Mean Median Std dev

INLET Inletflow m3/s 0 2.945 2.03 2.002 0.212

InletTurb NTU 0.024 6.766 0.682 0.612 0.369

InletpH - 5.46 10.128 6.67 6.491 0.796

InletColour DegH −3.36 112.479 25.450 26.444 6.178

Disinfection outlet TW_Flow m3/s 0 4.522 2.02 2.002 0.268

TW_pH - 6.1 10.905 8.521 8.536 0.212

TW_Turb NTU 0.044 1 0.082 0.078 0.026

TW_Cl mg/l 0 2 0.985 0.989 0.074

TW_TCC Cell/ml 0 984,992 274,504 266,605 104,566

TW_ Phosphate Ppb 0 2,000 322.872 321.368 40.906

Outlet FinalFlow m3/s 0 5.826 1.96 1.943 0.256

FinalpH - 5.37 10.131 8.197 8.211 0.156

FinalTurb NTU 0 1 0.071 0.068 0.021

FinalCl mg/l 0 1.498 0.803 0.812 0.054

FinalTCC Cell/ml 844 394,011 53,804 20,400 72,647

Final Alum mg/l 0 0.18 0.007 0.006 0.005

FIGURE 2

A schematic of the reorganization of the dataset to fill the time lags between the various treatment stages and forecasting horizon of 12h.

water quality indicator variables at this site include turbidity and

pH at the inlet (InletTurb, InletpH), the outlet (FinalTurb, FinalpH)

and the treatment stages (TW_Turb, TW_pH), color at the inlet

(Inletcolour), chlorine (Cl2) in the disinfection contact tank outlet

(TW_Cl) and at the outlet (FinalCl). Increased bacteriological

presence has beenmeasured in the water exiting the plant on several

occasions in recent years so the water utility installed 2 online FCMs

to measure TCCs, with a frequency of one measurement every 1

to 2 h, at the exit of the disinfection tank and at the outlet of the

treated water service reservoir. In addition, discrete water quality

samples are collected, between a daily and a weekly basis, at the SR

outlet and analyzed for different water quality indicator variables.

However, these parameters are not included in this work because

the aim is to develop a fully automatedmodel that uses data that are

automatically provided by theDWTP SCADA system. The flow and

water quality indicator variables used in this study are presented in

the following table (Table 1).

TCCs monitoring by online FCM started September 1st, 2020,

and thus, the study period for this investigation is between the

31st of August 2020 (to include antecedent conditions) through

September 1st 2021 which was the installation period for the two

online FCMs in this particular DWTP. Descriptive statistics for the

variables during the study period are presented in Table 2. Due to

the difference in the measurement frequency between the DWTP’s

flow and water quality indicator variables and the online FCM

TCCs, all data were transformed to hourly time step data (from
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FIGURE 3

Simplified diagram of the first group of inputs and outputs of the TCCs predictive model.

5min data) using the mean of each variable in the hourly time bin.

However, as the FCM data had an hourly or bihourly frequency, the

missing TCC data were filled using the cubic spline interpolation,

with the descriptive statistics of the actual and the interpolated TCC

data presented in Supplementary Table S1.

The hourly time series dataset required reorganization to

capture the time lags in the DWTP. The overall retention time

in the DWTP was estimated to be approximately 19 h [HRT (8)

+ SR_RT (11)]. So, for example, water that entered the plant at

00:00 h would exit the disinfection tank at 08:00 h on that same

day and reach the distribution network at 19:00 h, still on that

same day. The TCCs predictive horizon was set to be 12 h ahead

(sufficient time for operational interventions), which means that

for the forecasting model, the TCC measurement from the water

exiting the DWTP at 19:00 h (and associated upstream samples)

will be used to predict the TCCs at the DWTP outlet on the

following day at 07:00 h. The dataset was reorganized as presented

in Figure 2.

2.2. Data preparation and model input
variables

The regression forecasting approach requires the model to

predict the actual TCC values in the DWTP outlet 12 h into the

future. For this approach, the dataset was split into inputs and

outputs, where inputs were the data in the inlet, the disinfection

tank outlet and the plant outlet and the outputs the TCCs in

the outlet 12 h ahead (Figure 3). For the classification forecasting

approach, the output TCCs were categorized in 4 different classes,

based on the water utility’s risk criteria (Table 3). The distribution

of data is highly imbalanced, as Table 3 indicates, with more than

45% of the samples belonging in minimum risk class, while <30%

of the samples belonging in the risk classes (classes 2 and 3).

TABLE 3 Risk ranking classes for water exiting the DWTP.

Total Cell Counts (cells/ml) Risk cClass Number
of

samples
per class

<20,000 0-Minimum risk 4,196

20,000–50,000 1-Low risk 2,104

50,000–90,000 2-Medium risk 1,006

>90,000 3-High risk 1,631

Figure 3 shows the initial group of variables (16 variables) used

in the TCCs predictive model for both the classification and the

regression approaches. However, as past work in this field has

shown, including daily peaks or averages of various variables and

increasing the input sliding window that consequently increases

the total number of input variables, could also increase the model’s

accuracy (Meyers et al., 2017). Thus, in this investigation, two other

variable groups were tested. More specifically, in the second group

of variables, the daily peak and average inlet flow, outlet flow, inlet

turbidity, treated water TCCs, and final TCCs 2 days before the

output TCCs were added to the initial input group resulting in

a total number of 26 input variables. Finally, in the third group

of variables, a 5-h sliding window was selected, in addition to the

second group of variables, resulting in a total number of 106 input

variables (16 initial, 5 averages and 5 peaks and 5 x 16 variables for

the previous 5 time-lags). The 3 different input sets are presented

in Table 4.

The dataset was divided into training set and testing set using

the k-fold cross validation approach (Kohavi, 1995). In our case,

the dataset was split into 20 folds to avoid a small training set, given

that the available dataset is not a large one and covers just a 12-

month period. However, the model was tested randomly in only 4
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TABLE 4 Input variables groups for the predictive model.

Input
variables
group

Total input
variables

Input
variables

1 16 Figure 3 variables at

time t

2 26 Group 1 input

variables and t-2

days daily mean

and maximum

of the following

variables:

TW_TCC

(meanTW_TCCs

/maxTW_TCCs)

FinalTCCs

(meanFinalTCCs/maxFinalTCCs)

Inlet flow

(meanInletFlow

/maxInletFlow)

Outlet flow

(meanFinalFlow

/maxFinalFlow)

Inlet turbidity

(meanInletTurb

/maxInletTurb)

3 106 Group 2 input

variables plus

Group 1 input

variables at times

t-1 up to t-5 h

of the of the overall 20 folds, the 5th, the 8th, the 12th and the 15th

folds. All 4 folds captured data from the different seasons of the

year study period. The k-fold methodology was implemented using

MATLAB version 2022b and the training / testing ratio for each fold

was 85%−15%.

Once the training and test datasets were created and before

training the model, the input and output data (for the regression

approach only) were standardized (scaled to have mean 0 and

standard deviation 1).

2.3. Machine learning methods

The predictivemodel was developed inMATLAB version 2022b

using the Statistics and Machine Learning and the Deep Learning

toolboxes. The ML methods used in the model were as follows:

2.3.1. Random forest
RF is an ensemble of weak independent decision trees ML

method that uses a randomly selected number of variables from the

initial input variables group to make its splitting decision at each

node (Breiman, 2001). RF was used for both the classification and

the regression forecast. In classification, the final class decision is

made using one vote per tree, while in regression the final output

value is the average value of the weak trees. In this work, the number

of the weak trees was set equal to 1,000, the number of the randomly

selected variables was set equal to the square of the total number of

the input variables, and theminimum tree leaf per tree was set equal

to 2.

2.3.2. Support vector machines
SVM is a supervised ML method that constructs a high

dimensional linear decision space (hyperplane) to map the low-

dimensional but non-linear inputs (Cortes and Vapnik, 1995).

SVM uses a kernel function to transform the features in the

hyperplane. The kernel function selected for this work was the

Gaussian kernel and SVM was used for both the regression and the

classification forecast.

2.3.3. K-nearest neighbors
KNN is a simple non-parametric instant-basedMLmethod that

produces outputs based on the outputs of the K closest training

examples (Hastie et al., 2008). KNN was used for both classification

and regression forecasts in this work, setting the number of

neighbors k equal to 5 and calculating the distance between each

new point and the training samples using the Euclidean distance.

KNN produces its prediction outputs by voting among the k

neighbors for the classification forecast and by averaging the values

of the k neighbors in the regression forecast.

2.3.4. Feed-forward ANN
The ANN algorithm (Bishop, 2006) was used for the regression

approach only. ANNs consist of an input layer, hidden layer(s),

and an output layer and the connection between these layers is

made through different transfer functions. In this work, one hidden

layer with a size equal to 10 units was selected using the Bayesian

hyperparameter tuning process, and the Bayesian regularization

backpropagation was used as a transfer training function to update

the weights and the bias values.

2.3.5. Long short-term memory
The LSTMbelongs in the deep learning (DL)methodologies, an

advanced sub-field of ML algorithm (Hochreiter and Schmidhuber,

1997). LSTM are a type of recurrent neural network (RNN)

designed for sequence prediction as they introduce memory blocks

connected via layers. Each layer consists of three gates, the input

and the output gates as well as the forget gate that removes all the

non-required information. LSTM was used for both classification

and regression in this work. LSTM hyperparameters were set using

a Bayesian optimization that indicated an LSTMnetwork consisting

of 1 hidden layer with 50 units and initial learning rate equal to 0.01.

2.3.6. RusBoost boosting trees
The RB algorithm belongs in the family of the gradient boosting

trees ML methods (Seiffert et al., 2008). In gradient boosting, in

contrast to RF, each new generated tree learns from the previous

weak tree by using weights. RB is a classification only method.

In addition to the gradient boosting, it also removes random

training samples that belong in the majority class(es) to create more

balanced training sets and thus tackle the class imbalance problem.
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In this work, the number weak trees was set equal to 1,000, the

maximum number of splits per tree was set equal to the number

of the training samples, and the learning rate was set equal to 0.1.

2.4. Performance metrics

The predictive model regression accuracy was evaluated using

the root mean squared error (RMSE), the Scatter Index (SI), the

Nash-Sutcliffe Efficiency (NSE) and the Kling-Gupta Efficiency

(KGE) performance metrics. RMSE penalizes the large predictive

errors, has the same units as the forecasted variable (cells/ml

in our model) and have a range from 0 to infinity with values

closer to 0 indicating higher accuracy (Bryant et al., 2016).

SI is a normalized version of the RMSE error reported as a

percentage or as values between 0 and 1 (Bryant et al., 2016).

NSE is an improved version of the correlation coefficient that

is commonly used in the hydrological modeling (Knoben et al.,

2019). NSE’s range is between -∞ and 1, with NSE<0 indicating

a worse model accuracy than the mean of the observed data,

NSE = 0 indicating a model with the same accuracy prediction

as the mean of the observed data and NSE = 1 indicating

the perfect predictive model. Finally, KGE is recently used as

an alternative to NSE for hydraulic and hydrological modeling

calibration and evaluation (Knoben et al., 2019). KGE has the same

range and same indications as NSE. The metrics are expressed

as follows:

RMSE =

√

√

√

√

1

n

n
∑

i=1

|Oi−Y i|
2 (1)

SI =
RMSE

Õ
(2)

NSE = 1−

∑n
i=1 (Yi − Oi)

2

∑n
i=1

(

Õ− Oi

)2
() (3)

KGE = 1−

√

(CC − 1)2 + (
σY

σO
− 1)

2
+ (

ϒ̃

Õ
− 1)

2

(4)

where n=number of samples, Oi =the ith observed value, Õ

= the observations mean, σO = the standard deviation of the

observations, Yi = the ith predicted value, ϒ̃ = the predictions

mean, σY = the standard deviation of the predictions and CC

the Pearson correlation between observations and predictions.

Additional performancemetrics that show the general model ability

(PI) or compare similar ML methods performance when different

sets of input variables are introduced (AICc) are presented in the

Supplementary material.

In classification, 4 metrics were used to evaluate the

model, the overall accuracy, the macro-recall, the macro-

precision, the macro-F1 score and the recall of the high-risk

class. Accuracy is the percentage of the accurate predictions

over the total number of testing sample as given from the

following equation:

Accuracy =
Number of correct class predictions

Total number of samples
% (5)

Macro-recall, macro-precision, and macro-F1 score are the

simple average of the recall, precision and F1 score over the

4 classes, respectively. The mathematical expressions of recall,

precision and F1-score are as follows:

Recall =
TP

TP + FN
(6)

Precision =
TP

TP + FP
(7)

F1 score =
2 X (Recall X Precision)

(Recall + Precision)
(8)

where TP refers to the true positives of class, TN to the true

negatives of a class, and FP to the false positives. Recall per class

calculates the percentage of the accurately predicted events in this

class, precision per class gives the proportion of the accurately

predicted events of a class over total predicted events of this class

and F1-score is a formula that examines the relationship between

precision and recall (Ahmed et al., 2019). The macro-average of

these metrics will give an overall efficiency of the predictive model.

Finally, the recall of the high-risk class was examined separately,

as it is important to know how accurately the model identifies

bacteriological activity that could potentially harm the consumer.

2.5. Feature selection

The aim of the feature selection is to reduce the dimensionality

of the initial dataset by selecting a subset of more important

input variables that could achieve similar or even more accurate

predictive results than the initial model with less computational

time for training and testing. In addition, feature selection methods

could identify input variables that do not offer any contribution in

the prediction ability of the model. In general, there are 3 types

of feature selection algorithms, the Filter type, the Wrapper type,

and the Embedded type. Filter type algorithms aim to identify

correlations between the input variables and the target output

and rank the variables based on this correlation. Wrapper type

algorithms consider the selection as an optimization problem

with certain criteria and aim to find the optimal input variable

set that satisfies these criteria. Embedded type algorithms learn

the importance of the input variables as part of the machine

learning training process. Decision tree algorithms, such as RF and

RusBoost, include an embedded feature selection process as part of

their training. In this work, two filter and one embedded feature
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selection algorithm were selected as the aim was to identify the

most related input variables to the output target. The three different

feature selectionmethods that were used in this work are as follows:

2.5.1. RF predictors’ importance
(RFPI)—Embedded algorithm

RF is an interpretable method that in addition to the prediction

that produces, it provides estimates over the influence of each

unique input variable in the final prediction. In this research, the

RFI was used for the selection of the input variables that had higher

predictor importance value than 0.7 for the regression and higher

than 1.4 for the classification.

2.5.2. Minimum redundancy maximum relevance
(MRMR)—Filter algorithm

MRMR algorithm aims to find an optimal set of variables that

have minimum correlation with each other but as a set have the

optimum relevance with the predictive variable (Zhao et al., 2019).

The MRMR algorithm, initially, selects the best input variable

as the one that has the highest f-score with the output variable.

The second variable is selected as the one with highest maximum

output relevance minimum input variables redundancy score. This

process continues for all the remaining variables. Once the process

is finalized, the variables with the highest score are identified.

2.5.3. Neighborhood component feature
selection (NCFS)—Filter algorithm

This approach uses the nearest neighbor decision rule to

generate weighting importance for each different input variable

by maximizing the leave-one-out accuracy (Yang et al., 2012). A

random weight is given at each vector at the beginning of the

process. The weights are then updated through an optimization

with regularization process which aims to find the optimal weights

that minimize the objective function which measures the average

leave-one-out loss. At the end the process, the final weighting

score given to each variable indicates its importance. In this

work, the stochastic gradient decent was used as an objective

function and the regularization parameter was selected through an

optimization process.

2.6. Ensemble (combined) tests

The aim of combining tests was to investigate if the ensemble

approach improves the TCC model performance. Two different

approaches were used in this work, the average model and the

weighted averagemodel. The regression averagemodel is the simple

average of the predictive outputs of the best regression tests while

the classification average approach produces its classification from

the classification outputs of the best tests by vote. In case of a tie, the

classification average model selects the higher class. In the weighted

average models, a weight is assigned to each unique test based on

its predictive performance. Therefore, the difference between the

average and the weighted average model is that, in the former, each

test contributes equally to the ensemble model output while in the

latter, each test contribution is based on its predictive ability.

3. Results

3.1. Regression results

3.1.1. Initial analysis
A summary of the results of the different modeling

tests is presented in Table 5 (additional metrics in

Supplementary Table S2), which shows the average performance

metrics of the tests in the 4 different folds. It is notable that all the

predictive model tests had high NSE and KGE values (minimum

NSE = 0.78 and KGE = 0.88) indicating that the predictive model

is capable of capturing the behavior and patterns of interest.

RF appears to be the best performing ML method, with the

best results for each group of input variables (tests R1, R6, R14).

Moreover, RF captured a minimum of 93% of the variance (NSE

= 0.93) when the minimum number of inputs were used (test

R1). KNN was ranked second, SVM third, ANN forth and LSTM

was the worst performing model. The results indicate that the

predictive model performs better when the 2nd group of input

variables is used for the training as all the ML methods had

their best results when this group of variables was used. The

performance decrease when the 3rd group of variables is used

indicates that adding more variables could sometimes lead to

overfitting, i.e., learning patterns from time-lagged variables could

confuse the model predictions. However, the overfitting did not

affect all the ML methods equally, with the ANN having a drop

in RMSE performance of almost 30% and SI performance of

25%. Moreover, the average RMSE average (21,768 cells/ml) is an

indication that the model is weak in predicting rare and extreme

values. However, this value is almost 4 times below the TCCs

standard deviation.

3.1.2. Regression feature selection
In this analysis step, the 2nd group of input variables was used

as input for the feature selection as it was with this group of

variables that gave the best model outputs. In the RFPI approach,

the importance of each variable was equal to the average of

its importance in each one of the 4 different training folds for

the R6 test. The simple average of the scores and weights over

the 4 different training folds was also used for the MRMR and

NCFS algorithms, respectively. The results of the feature selection

algorithms application are presented in Table 6 (for the importance

score per variable see Supplementary material). The number of

important variables was 7 for the RFPI, 4 for the MRMR, and 9 for

the NCFS. The predictive model was tested again using the input

variables suggested by these feature selection algorithms and the 3

best ML methods (RF, KNN and SVM) from the initial analysis.

Overall, 9 more tests were implemented (3 groups of variables x

3ML methods) and the results are presented in Table 7 (additional

performance metrics in Supplementary Table S5).

NCFS is the best out of the three feature selection algorithms,

with all the ML methods having their best performance when

the input variables suggested by the NFCS were used. Moreover,

the results of the R22 and R23 tests indicate that the predictive

model’s performance was improved beyond its best performance

in the initial analysis (test R6). RFPI’s input selection produced

worse predictions than both the best RF test and best SVR test
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TABLE 5 Summary of the regression model’s performance metrics (in bold the best performing tests).

Test name ML algorithm Input parameters group RMSE (cells/ml) NSE SI KGE

R1 RF 1 18,673 0.93 0.36 0.92

R2 ANN 22,172 0.91 0.43 0.92

R3 LSTM 26,734 0.86 0.51 0.88

R4 KNN 21,218 0.91 0.41 0.93

R5 SVR 23,821 0.89 0.46 0.89

R6 RF 2 15,676 0.95 0.30 0.95

R7 ANN 20,217 0.92 0.39 0.94

R8 LSTM 24,497 0.88 0.47 0.91

R9 KNN 18,415 0.94 0.35 0.96

R10 SVR 20,435 0.92 0.39 0.92

R11 RF 3 15,948 0.95 0.31 0.94

R12 ANN 33,034 0.78 0.64 0.88

R13 LSTM 24,676 0.88 0.48 0.92

R14 KNN 18,497 0.94 0.35 0.95

R15 SVR 22,505 0.90 0.42 0.90

TABLE 6 The most important input variables for RFPI, MRMR and NCFS feature selection approaches.

Feature selection Important input variables (listed from the most to the least important one) Number of
important
variables

RFPI FinalCl, meanFinalTCCs, InletTurb, TW_TCC, TW_Phosphate, FinalTurb, maxTW_TCC 7

MRMR meanFinalTCCs, maxInletFlow, TW_pH, FinalTCCs 4

NCFS InletpH, InletTurb, TW_TCCs, FinalTCCs, InletColour, InletFlow, meanFinalFlow, FinalCl, maxFinalFlow 9

(R10). However, when the RFPI’s inputs were used, KNN had better

performance than the initial analysis (R17 and R9, respectively).

Tests R19, R20, R21 showed that all ML methods had worse

results than in the initial analysis, however these MRMR results

were better than tests where the group 1 input variables were used

(R1, R4, R5). This finding indicates the importance of the daily

average and the daily maximum of some key variables, such as flow

and TCCs, for better prediction results. KNN’s RMSE performance

was improved by more than 3,500 cells/ml, its NSE and KGE

performance by 2% and 3% respectively, and its SI performance

by 8% when NCFS input variables were used, a result that made

R23 the overall best predictive test output. As R22 is slightly better

performing test in comparison to R6, it was this test that was

selected together with the R23 test for the ensemble approach.

3.1.3. Ensemble (combined) analysis
For the ensemble analysis the results from test R22 and R23

(overall best performing models) were combined using the average

and the weighted average of their predictive outputs. In the average

ensemble (AM), both tests contributed equally to the final output

(predicted TCCs) as this was the average of both tests. In the

weighted average ensemble (WAM), the final output used a 60%

to 40% weighted average of the R23 and R22 tests, respectively

based on the better predictive performance of the R23 compared

to R22. The results of the two ensemble approaches are presented

in Table 8.

Both the AE and WAE had better performance than the R22

test and, as expected, R26 performed better than R25. Both R25 and

R26 had better RMSE performance than the best single test (R23)

indicating that the ensemble approach is more capable in capturing

the unexpected or extreme values. The MAE performance of the

combined approaches (R25 and R26) lies between the two single

tests (R22 and R23), which is to be expected given that MAE is the

average error over the testing dataset. However, we could consider

R26, that uses the WAE approach, the best approach as it explains

97% of the variance (KGE= 0.97) but also its RMSE output is better

than R23 by almost 400 cells/mlA comparison plot of the predicted

time-series outputs of the best two single tests and the two ensemble

approaches is presented in Figure 4 for a period of elevated cell

data that was investigated in this work (for further graphs check

the Supplementary material).

3.2. Classification results

3.2.1. Initial analysis
The initial classification results are presented in Table 9. The

results show trends similar to the regression forecast. Specifically,
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TABLE 7 Regression predictive model performance metrics using the variables indicated by the feature selection algorithms (in bold the best

performing tests).

Test name ML algorithm Input parameters group RMSE (cells/ml) NSE SI KGE

R16 RF RFPI 16,489 0.948 0.32 0.94

R17 KNN 18,167 0.933 0.35 0.94

R18 SVR 23,686 0.885 0.46 0.88

R19 RF MRMR 19,331 0.923 0.38 0.94

R20 KNN 24,202 0.883 0.47 0.92

R21 SVR 24,087 0.880 0.47 0.90

R22 RF NCFS 15,601 0.953 0.30 0.94

R23 KNN 14,520 0.960 0.27 0.97

R24 SVR 20,430 0.915 0.39 0.91

TABLE 8 Performance metrics of the two regression ensemble

approaches and the best two single tests (in bold the best performing

tests).

Test
name

ML
algorithm

RMSE (cells/ml) NSE SI KGE

R22 RF 15,601 0.953 0.3 0.94

R23 KNN 14,520 0.96 0.27 0.97

R25 AM 14,216 0.959 0.27 0.96

R26 WAM 14,136 0.96 0.27 0.97

as was seen for the regression approach, the 2nd group of input

variables was the one that produced the best results for each

ML method and RF was, overall, the best predictive ML method.

However, in the classification analysis, RB also produced good

results that were close to the results produced by RF. As was the

case for the regression approach, LSTM was the worst performing

model indicating that this ML method is not appropriate for this

type ofWQ investigation and with this type of available data. SVM’s

performance was worse than in the regression analysis, ranked this

ML method as the second worst. Finally, KNN was the third best

method, having significantly better macro-precision and macro-F1

results in comparison to SVM but still significantly worse than the

RF and RB ML methods.

3.2.2. Classification feature selection
As was the case in the regression analysis, the best three

performingMLmethods for the classification analysis were selected

for further investigation: RF, RB, and KNN. The group of input

variables that the 3 different feature selection algorithms indicated

as important are given in Table 10. For this analysis as in the

regression analysis, 9 different new predictive model tests were

implemented, and the results are presented in Table 11.

NCFS once again is the best input variable selection algorithm

with MRMR being the worst. The performance of all three ML

methods was improved when the NCFS’ input variables were used

as the results for the C22, C23, and C24 tests indicate. In contrast to

the regression analysis results, the predictive model’s performance

was also improved when the RFPI input variables were used as

each ML method produced better results than the initial analysis

(C16, C18, and C17 better than C6, C7, and C9, respectively). NFCS

feature selection improved the KNN accuracy by more than 6%

(C23); however, both RF (C22) and RB (C23) had slightly better

performance overall. As these three tests were the best ones, they

were selected for the classification ensemble analysis.

3.2.3. Ensemble (combined) analysis
For the classification prediction model, only the average

ensemble (AM) approach was used because the results of the

best three single approach tests were very similar. In Table 12, a

comparison of the AE with the best single tests is presented which

clearly shows that the combined approach (C25) outperformed all

the single tests. The only metric where C25 was worse than any of

the single models was the high-risk class metric, where it was less

accurate to test C24 by 0.28% and to test C22 by 0.58%. However,

its higher macro-precision and macro-recall performance indicate

that this model is more able to correctly predict an output in

the correct class and it creates less false positives than these two

single tests.

4. Discussion

This work aims to contribute to the discussion about

implementation of data-driven modeling as a decision supporting

tool for improving the performance of DWTPs. More specifically,

this research, primarily, aims to propose a data-driven model that

could be used as a tool to support decision making for improving

the bacteriological performance of the DWTPs. The secondary aim

of this work is to promote the application of online FCM, that are

not yet widely in use now, as a tool that monitors bacterial presence

in the treated water. Given the fact that utilities already collect this

large amount of water quality time-series data, additional online

FCMdata could improve the present data-drivenmodel and reduce

the extreme values prediction error.

The results of the analysis present two alternative predictive

approaches which offer slightly different information for water

utilities about their operations. The regression predictive model
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FIGURE 4

Plot of the observed vs. the predictive TCCs time-series produced by tests R22, R23, R25, and R26.

could be used as a tool for understanding the variance and the

distribution of the TCCs over a certain predictive period. The

classification predictive model could be used as a tool that identifies

when a DWTP is at a high risk of bacteriological failure, thereby

requiring an intervention.

KNN was the method that resulted in the best regression

predictive model in this work (R23). This model was significantly

improved through the application of input variable selection

techniques. This performance improvement was also seen for

KNN in the classification analysis, ultimately demonstrating that

KNN has great potential when the appropriate input variables

are selected. In addition, KNN is simple to implement, and its

results are transparent and comprehensible to decision makers

and managerial stuff in water utilities. In general, KNN’s main

disadvantage is its computational cost as it requires time to

compute the distances between the new unseen input with all the

existing data, however, in this work its computational time was

insignificant as the available dataset was small and not too complex.

RF is a well-known method in the water sector and has been

applied in various projects (Parkhurst et al., 2005; Meyers et al.,

2017; Kazemi et al., 2022). The results of this work indicate that

for this dataset, it was one of the two best models for predicting

TCCs at the DWTP outlet. In agreement with literature where

RF was applied, it is recommended that RF be considered for

WQ problems, especially if the datasets are well-distributed. RF

is a simple ML method to apply, and its results could be justified

and explained to decision makers due to its transparent and

interpretable outputs.

The fact that LSTM was the worst performing model was not

an unexpected outcome. In recent studies in the hydroinformatics

field, deep learning approaches have been proven to be the

models that could produce the most accurate results (Hitokoto and

Sakuraba, 2018; Dairi et al., 2019; Zhou et al., 2019; Mamandipoor

et al., 2020). However, the available datasets in these studies were

extremely large in comparison to the available dataset in our DWTP

WQ study, which is probably the reason that LSTM performed

poorly. In addition, LSTM required the most computational

time during the training period. This finding though does not,

necessarily, indicate that LSTM is not a good method for all WQ

problems. Deep learning approaches, in contrast to the traditional

ML approaches, are learning directly from the examples and their

multiple levels of representations over their consecutive layers

(Lecun et al., 2015). Hence, a further investigation of LSTM

prediction capability should be performed in case studies with

larger datasets or in the later years for this case study when

substantially more online TCC data becomes available.

The RB method applied in the classification approach also

produced good results. In the past, it was successfully applied for

the prediction of iron failures in district meter areas, which was

a classification problem with unbalanced datasets (Mounce et al.,

2017). In this case study, the dataset was more balanced with only

the medium risk class (class 2) having fewer samples compared

to the other three classes. RB increased the recall accuracy of

this class which, consequently, increased the overall macro-recall

accuracy. Its other advantage was its computational time that was

lower than RF. However, RB’s lower macro-precision performance
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TABLE 9 Summary of the classification tests performance metrics (in bold the best performing tests).

Test name ML method Input
variables
group

Accuracy High risk recall Macro-recall Macro-precision Macro-F1

C1 RF 1 85.23% 93.11% 74.98% 79.13% 0.77

C2 RB 82.60% 93.05% 75.73% 76.60% 0.76

C3 LSTM 73.88% 89.35% 59.28% 61.88% 0.60

C4 KNN 78.84% 88.48% 68.53% 69.85% 0.69

C5 SVM 76.07% 91.09% 68.76% 64.57% 0.65

C6 RF 2 87.45% 94.56% 80.25% 83.84% 0.82

C7 RB 86.10% 93.65% 81.48% 81.43% 0.82

C8 LSTM 75.67% 92.51% 63.85% 68.03% 0.64

C9 KNN 81.79% 91.86% 72.58% 73.73% 0.74

C10 SVM 79.74% 93.08% 68.98% 72.05% 0.70

C11 RF 3 87.46% 94.51% 79.40% 82.60% 0.81

C12 RB 85.13% 93.03% 79.37% 79.88% 0.79

C13 LSTM 77.13% 87.58% 68.52% 70.03% 0.70

C14 KNN 79.13% 87.03% 70.82% 71.80% 0.72

C15 SVM 79.60% 90.48% 69.80% 70.58% 0.70

TABLE 10 The most important input variables for RFPI, MRMR and NCFS feature selection algorithms for classification.

Feature selection Important input variables (listed from the most to the least important one) Number of
important
variables

RFPI meanFinalTCCs, FinalCl, TW_TCCs, InletpH, FinalAlum, maxFinalTCCs, TW_Turb 7

MRMR meanFinalTCCs, maxInletFlow, FinalCl 3

NCFS InletpH, InletTurb, TW_TCCs, FinalTCCs, meanFinalFlow, InletFlow, maxFinalTCCs, FinalCl, FinalTurb, maxFinalFlow 10

compared to the RF indicates this ML method also produced

more false positives than the RF results. This finding clearly

demonstrates the importance of taking overall consideration of

multiple performance metrics to decide which model is the best.

Water utility decision makers should always consider the main

purpose of the modeling prediction and how much compromise

between true and false positives they can tolerate for their proactive

water quality interventions.

This work demonstrated the importance of a feature selection

process for improving the prediction capabilities of the model.

NFCS improved both the regression and classification models’

accuracy and, in addition, reduced the time required for collecting

the data and training the model by reducing the required

input variables to 9 for regression and 10 for classification. The

comparison between the three different feature selection algorithms

indicated that the success of each one of these algorithms is

highly dependent on the type of the data-driven model. For

example, MRMR algorithm identified only 4 input variables that

were fully independent to each other but when the model was

trained using these 4 suggested variables, it generated the worst

overall prediction results. This finding may also show that, for

water quality problems, using dependent input variables could be

beneficial for the model accuracy.

The aim of the ensemble approach was to investigate if

a combination of two or more of the best predictive tests

could improve the overall model prediction accuracy for both

the regression and the classification approaches. The ensemble

tests are fully dependent on the accuracy of each one of

the individual models and, therefore, they were not expected

to produce an extreme improvement in the model prediction

accuracy. Nevertheless, the ensemble approach also reduced the

variance and the bias of the individual tests and, as a result, reduced

the extreme values errors in regression and the false positive

predictions in classification.

This paper highlights the importance of online microbiological

monitoring for understanding drinking water quality. Traditional

bacteriological monitoring approaches require a daily sample

to measure the 4 regulated bacteriological indicator variables

(DWQR, 2019). However, the traditional discrete sample

monitoring cannot capture the variations of bacteria during a

24-h operational period. In addition, by measuring once per day

for coliform bacteria, it can be extremely rare to find coliforms

in the outlet. The online monitoring capability used in this study

provided valuable information about TCC and the water quality

indicator variables that influence the bacteriological presence in

the water leaving the DWTP. Moreover, online monitoring can
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TABLE 11 Predictive model classification performance metrics using the variables indicated by the feature selection algorithms (in bold the best

performing tests).

Test name ML method Input
variables
group

Accuracy High risk recall Macro-recall Macro-precision Macro-F1

C16 RF RFPI 88.09% 95.68% 81.09% 84.34% 0.824

C17 KNN 81.54% 90.21% 74.00% 77.21% 0.745

C18 RB 86.90% 93.38% 82.14% 81.57% 0.819

C19 RF MRMR 83.13% 90.21% 74.40% 76.02% 0.750

C20 KNN 77.16% 88.76% 67.62% 67.67% 0.683

C21 RB 80.43% 87.04% 71.80% 72.09% 0.723

C22 RF NCFS 88.77% 94.24% 81.98% 84.17% 0.830

C23 KNN 87.52% 93.09% 80.90% 82.09% 0.816

C24 RB 87.64% 93.95% 83.05% 83.40% 0.836

TABLE 12 Performance metrics of the two classification ensemble approaches and the best three single tests (in bold the best performing tests).

Test name ML method Accuracy High risk recall Macro-recall Macro-precision Macro-F1

C22 RF 88.77% 94.24% 81.98% 84.17% 0.830

C23 KNN 87.52% 93.09% 80.90% 82.09% 0.816

C24 RB 87.64% 93.95% 83.05% 83.40% 0.836

C25 AM 89.33% 93.67% 83.80% 85.03% 0.845

capture sudden changes in the water quality and, finally as we

demonstrated in this work, can provide input for data-driven

models for the prediction of potential future deterioration events.

Figure 4 and the high RMSE metric results indicate that in the

regression approach, all the used ML methods struggled to predict

extreme values of TCC. This inability is probably due to limitations

in the available dataset, which did not capture seasonal changes in

this study. There are only a few measurements in the dataset where

extreme TCC values have been found, as would be expected for an

operating DWTP. Therefore, the model was not able to be trained

properly for prediction of extreme values. Future work, when more

data is available, should focus on extreme events by using them as

an extra input variable for the training period. The classification

approach, on the other hand, was able to predict the water being

in the high-risk class (TCCs >90,000) with an accuracy of 88% to

96%. This finding indicates that this model is able to understand the

conditions when extreme TCC numbers will occur. By using this

approach, utilities could benefit from a 12-h advance indication of

a high bacteriological risk and act promptly.

The predictive model is a data-driven approach that does not

require any hydraulic and process model for its implementation.

It uses the data measurements as captured by the sensors and

stored in the SCADA of the DWTP. Thus, the time that is

required for its training is minimal in comparison to process-

based models that require extensive inputs, hours of simulation,

and high computational power. This advantage is gained because

the data-driven models learn the trends and the patterns of the

dataset, in contrast to process-based models that are using complex

hydraulic and process equations to describe the water circulation

and treatment processes. Moreover, process-based models demand

many process and hydraulic empirical coefficients that require

calibration, and often recalibration to match any spatial and

temporal changes of the system. Finally, the data-driven model

applied in this DWTP, once built, could be used in any other

DWTP that has a SCADA system that contains sufficient water

quality data. The process-based models, though, cannot always be

directly transferred to other systems as each system has each unique

process and hydraulic characteristics. Nevertheless, the scientific

knowledge regarding the DWDS hydraulics and processes is a

prerequisite for the implementation of the data-driven models in

the DWDS to guarantee the scientific consistency of the model.

5. Conclusions

This paper has demonstrated a novel data-driven model

that uses multiple machine learning methods and input

variables (features) selection algorithms for the prediction of

the bacteriological activity (as measured by flow cytometry total

cell counts) in the water exiting a drinking water treatment plant.

Models were developed using both regression and classification

prediction approaches. In addition, an ensemble approach that

combined the results of multiple machine learning methods was

examined. Based on the results, the key findings of this research

study are:

• The regression predictive model managed to capture total cell

count trends and the general bacteriological behavior 12 h into

the future. However, it was not able to predict the highest

extreme observed peaks, probably because the available of

such extreme data was limited.
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• The classification model did capture the extreme events and

classified the water that belongs in the high bacteriological risk

class with an accuracy of up to 96%.

• Random Forest has been proven to be the best single machine

learning method for both the classification model and K-

Nearest Neighbor was the best single machine learning

method for the regression approach.

• Neighborhood component feature selection was the

best feature selection algorithms as its proposed input

variables decreased the required inputs (and consequently

reduced the computational time) and improved the model

prediction accuracy.

• The ensemble approach, which combined the best single

machine learning method results, was the best overall

predictive test for both regression and classification. The

regression ensemble approach combined the outputs of

the best two single method tests and the classification

approach the outputs of the best three single method

tests.

• Long short-term memory had the worst performance out

of all the machine learning methodologies. This finding

was expected as deep learning approaches require much

larger datasets than were available in this study. This is

a constraint that will apply to many other water sector

applications.

Overall, the outputs of this work advance knowledge about

the operational benefits for water utilities by analyzing the water

quality data that is already collected in drinking water treatment

plants using data-driven predictive models. The total cell counts

predictive model could be further developed as an online tool,

connected to the drinking water treatment plant SCADA system.

Such an online system would provide warnings to operators of a

potential bacteriological risk in treated water sufficiently far ahead

to adjust the treatment processes and help safeguard drinking

water quality.
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