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Editorial on the Research Topic

Data-driven machine learning for advancing hydrological and

hydraulic predictability

The growing influence of machine learning (ML) in every aspect of our lives has led

to revolutionary advancements in our understanding, prediction, and decision-making

capabilities. One field that stands to benefit greatly from applying these techniques includes

hydrology and hydraulics. The ability to predict hydrological and hydraulic phenomena

with greater accuracy and reliability is of utmost importance, given the increasing threats

posed by climate change and extreme weather/climate events. In this editorial, we explore

the significant contributions made by four recent studies that aim to advance hydrological

and hydraulic predictability through data-driven ML.

MLmodels are data hungry. Their prediction performance highly depends on the quality

and quantity of applied training data. Additionally, ML models are black-box. The model

predictions usually lack physical explanation and are associated with significant errors and

uncertainty under changing conditions. Among the four papers in this editorial, two studies

focus on addressing data scarcity and the other two focus on explanation and uncertainty

quantification of ML models to improve the prediction accuracy and trustworthiness.

In the paper “Simulating hydrological extremes for different warming levels–combining

large scale climate ensembles with local observation-based machine learning models”

(Hauswirth et al.), the authors have developed an innovative approach that combines

large climate ensembles with a local, observation-based ML model to advance hydrological

extreme predictability under different warming levels at local scales. This study showed

that the combination of the wealth of information improved the prediction performance

of hydrological extremes under different climate change scenarios for national, regional, and

local scale assessments providing relevant information for water management in terms of

long-term planning. This, in turn, provides insights into the potential impacts of different

warming levels on hydrological extremes, such as floods and droughts, which are critical for

effective water resource management and risk mitigation.
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The study “Uncertainty quantification of machine learning

models to improve streamflow prediction under changing climate and

environmental conditions” (Liu et al.) addresses a key challenge in

data-driven hydrological modeling, i.e., the uncertainty inherent in

predictions caused by data noise and changing climate conditions.

This research developed a novel uncertainty quantification

technique and incorporated it into Long Short-Term Memory

(LSTM) network to generate reliable and robust streamflow

predictions under a changing climate. The calculated uncertainty

agrees with confidence level and prediction errors, which helps

avoid overconfidence and guides data collection and further model

development. Such advancements are crucial, as they enable water

managers to make better-informed decisions regarding water

allocation, infrastructure planning, and flood control.

In the paper “Super-resolution and uncertainty estimation

from sparse sensors of dynamical physical systems,” (Collins et

al.) the authors used convolutional neural networks for global

reconstruction of system variables from potentially scarce and

noisy observations and explored the epistemic uncertainty of

the ML model using Monte-Carlo batch normalization and

Monte-Carlo dropout methods. They demonstrated the superior

performance of the model on a wide range of hydrological

applications, including sea-surface temperature, soil moisture, and

incompressible near-surface flows. By utilizing super-resolution

techniques and uncertainty estimation, this research offers a

promising solution for hydrological and hydraulic modeling,

where high-resolution data is often scarce but essential for

accurate predictions.

Lastly, the study “Investigation of hydrometeorological

influences on reservoir releases using explainable machine

learning methods” (Fan et al.) utilizes explainable ML

techniques to shed light on the complex relationships between

hydrometeorological variables and reservoir releases. The

authors applied the explanantion method to the LSTM

network, which not only explains the variable importance

but also provides variable-wise temporal importance

of the hydrometeorological drivers to reservoir release

prediction. This explanation will enable better reservoir

operation and management practices under a changing

climate. The use of explainable ML in this context promotes

transparency and interpretability, which are crucial for

fostering trust and facilitating the integration of ML models

into decision-making processes.

Since the launch of this special issue in Frontiers in Water,

numerous papers on this topic have been published (Chen et al.,

2023; Karim et al., 2023; Shen et al., 2023; Xu et al., 2023;

Yan et al., 2023), including both data-driven ML and hybrid

modeling that integrates physics-based numerical and ML models

(Slater et al., 2023). This shows the accelerated progress and

evolution in utilizing ML in hydrology and hydraulics. The

majority of these published works echo the optimistic view of

the bright future of this emerging field, a perspective shared

by this editorial and the four papers featured in this special

issue. Although these papers deal with diverse applications, a

recurring theme is the prevalent belief that data-driven and physics-

based modeling are complementary. We can take advantages

of both modeling techniques to advance hydrological and

hydraulic predictability.

In conclusion, these four studies in this special issue and

many concurrent publications elsewhere showcase the potential

of data-driven ML to revolutionize the field of hydrology

and hydraulics. By combining large-scale climate simulations

with local observation-based models, incorporating uncertainty

quantification techniques, reconstructing high-resolution data

from sparse sensors, and employing explainable ML methods,

researchers are paving the way for enhanced predictability and

decision-making capabilities in water resource management. As we

face an increasingly uncertain future due to climate change and

other environmental challenges, embracing the power of ML in

hydrological and hydraulic research is not only a promising avenue

but a necessary one.
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