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Numerous government and non-governmental agencies are increasing their

e�orts to better quantify the disproportionate e�ects of climate risk on

vulnerable populations with the goal of creating more resilient communities.

Sociodemographic based indices have been the primary source of vulnerability

information the past few decades. However, using these indices fails to capture

other facets of vulnerability, such as the ability to access critical resources (e.g.,

grocery stores, hospitals, pharmacies, etc.). Furthermore, methods to estimate

resource accessibility as storms occur (i.e., in near-real time) are not readily

available to local stakeholders. We address this gap by creating a model built on

strictly open-source data to solve the user equilibrium tra�c assignment problem

to calculate how an individual’s access to critical resources changes during

and immediately after a flood event. Redundancy, reliability, and recoverability

metrics at the household and network scales reveal the inequitable distribution

of the flood’s impact. In our case-study for Austin, Texas we found that the

most vulnerable households are the least resilient to the impacts of floods

and experience the most volatile shifts in metric values. Concurrently, the least

vulnerable quarter of the population often carries the smallest burdens. We show

that small andmoderate inequalities become large inequities when accounting for

more vulnerable communities’ lower ability to cope with the loss of accessibility,

with the most vulnerable quarter of the population carrying four times as much of

the burden as the least vulnerable quarter. The near-real time and open-source

model we developed can benefit emergency planning stakeholders by helping

identify households that require specific resources during and immediately after

hazard events.
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1. Introduction

The inequitable distribution of flood risks and their impacts is well documented at

global (Füssel, 2010; Anguelovski et al., 2016), national (Tate et al., 2021; Wing et al.,

2022), and local scales (Collins et al., 2019; Sanders et al., 2022). Inequitable risk is

often found by overlaying flood maps with social vulnerability to identify the likelihood

that people will be affected by a hazard (exposure), the degree to which people will be

affected by a hazard (sensitivity), and/or the ability of people to adjust after a hazard

(adaptive capacity) (Fischer and Frazier, 2017). These components of vulnerability do

not exist in a vacuum and are dynamically coupled to one another. An individual’s

adaptive capacity encompasses the range of their abilities to reduce their exposure
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and sensitivity (Nelson et al., 2007). Since adaptive capacity,

exposure, and sensitivity are difficult to measure directly,

previous work has relied heavily on utilizing readily available

sociodemographic data to create indices that act as proxies for

vulnerability (Tellman et al., 2020; Tate et al., 2021).

However, sociodemographic information alone may not

capture the complex nature of vulnerability (Rufat et al., 2019). For

example, vulnerability indices built on sociodemographic data lack

information regarding the spatial distribution of critical resources

(e.g., grocery stores, hospitals, pharmacies, etc.) that individuals

may need to access during and immediately after a disaster event.

Due to the fact that numerous critical resources may also be

distributed inequitably across cities and regions (Liu et al., 2014;

Akhavan et al., 2019; Barbosa et al., 2021), socially vulnerable

groups may lose access to critical resources to a greater extent

than less vulnerable groups (Fitzpatrick et al., 2020; Gangwal and

Dong, 2022; Jasour et al., 2022). Having the ability to quickly and

accurately estimate transportation network disruptions can better

inform emergency response personnel (e.g., ambulance services,

fire and police first responders) on how to traverse the network

more efficiently, thus having a more effective response to disasters

(Gil and Steinbach, 2008; Lhomme et al., 2013; Yin et al., 2016;

Green et al., 2017).

The wellbeing of a society is dependent upon the continuous

and reliable functioning of its infrastructure systems. Infrastructure

systems including but not limited to telecommunications,

electrical power systems, transportation, water supply systems,

emergency services, gas distribution, food/agriculture, and

healthcare are mutually dependent upon each other to function

properly (Rinaldi et al., 2001; Ouyang, 2014). Interdependent

infrastructure systems have been modeled through a variety

of approaches based on stakeholder objectives, including

empirical-, agent-, system dynamics-, economic theory-,

and network- based approaches (Hasan and Foliente, 2015).

Understanding disaster impacts with a network-based approach

is becoming increasingly prevalent because it captures more

realistic dynamics of our built environment by incorporating

large infrastructure datasets and flow characteristics such as

information, commodities, or people (Hasan and Foliente,

2015).

Numerous multi-layer, or interdependent, infrastructure

classification schemes and evaluation criteria have been defined

in the literature (Ouyang, 2014). Rinaldi et al. (2001) proposed

one such classification describing the six leading dimensions

of infrastructure interdependencies: (a) type of failure, (b)

infrastructure characteristics, (c) state of operations, (d)

types of interdependencies, (e) environmental factors, and (f)

coupling behavior. Researchers have utilized these dimensions to

quantitatively and qualitatively assess the impacts a disturbance

can have on networks to better understand how to avoid, reduce,

and eliminate disruptions. For example, insights gained from

studying how disasters disrupt interconnected infrastructure

networks have come from (a) analyzing the impact cascading

failures have on social vulnerability (Lu et al., 2018); (b) examining

correlations between spatial distribution of urban characteristics

with disruption duration (Dargin et al., 2020); (c) developing

methods for equitable repair based on operational and disabled

nodes/edges (Karakoc et al., 2020); (d) assessing how different

types of interdependencies impact system operations (Najafi et al.,

2021); (e) studying inter-organizational operating failures during

disaster response efforts (Oh et al., 2010); and (f) exploring the

strength of inter-agency collaboration for effective emergency

response (Kapucu and Garayev, 2012). Connecting social science

information to physical infrastructure data is becoming a necessary

component of post-hazard resilience models and there are clear

benefits to incorporating accessibility studies into existing and

future emergency management plans (Rosenheim et al., 2019;

Wiśniewski et al., 2020). Since initial disruptions are difficult to

predict and model, emergency managers can better respond to

events when interdependences are accounted for because this

approach better estimates how risk has the potential to cascade

through the multi-layer network (Lu et al., 2018; Arrighi et al.,

2021).

The goal of this study is to determine how resilient different

communities are in their ability to access critical resources during

disruptions caused by flood events through the use of a multi-layer

network framework. Using a near-real-time inundation estimate,

resource location information, community sociodemographic data,

and road network topologies, we measure the impact a flood

has on people’s ability to move during and immediately after

a storm event. This research fills in gaps within the current

state of natural hazard, hydrology, and flood response research

by specifically (1) creating an accessible, consistent, and flexible

toolkit for practitioners that (2) emphasizes a near-real-time analysis

of (3) multiple accessibility resiliency metrics. Our approach has

the advantage of moving beyond flood hot spots to identify

how disruptions from multiple flood sources (fluvial and pluvial)

propagate spatially and temporally through infrastructure systems.

We utilize a static transportation assignment cost function to

solve for the user equilibrium traffic solution (Beckmann et al.,

1955), creating a household resource accessibility model that

strictly uses open-source data and readily available computational

resources (i.e., not requiring graphical processing units or

supercomputing technology). We estimate infrastructure demand

while accounting for the impacts of travel congestion and flooding

(water depth). While this is not the first study to consider

these impacts, it is, to the best of the authors’ knowledge, the

first to quantify robust resiliency metrics to describe individual

households on a multi-layer network in near-real time that

can be readily applied to numerous regions across the globe.

We translate infrastructure demand information into multiple

resiliency metrics to define the reliability, redundancy, and

recoverability of the multi-layer system. Correlations among

these metrics and sociodemographic vulnerability indices further

substantiate the inequitable impacts of floods.

A benefit to having a rapidly repeatable framework is that

multiple flooding scenarios can be run to identify robust response

options to a disaster event while it unfolds (Horner and Widener,

2011). Furthermore, road networks are often the first infrastructure

network impacted by flooding (Yin et al., 2016), highlighting the

need for near-real-time information dissemination on inundation

estimates and optimized travel routes. Our model’s combination

of multiple network and household level metrics can specifically

benefit local and regional planners, where the majority of
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mitigation and emergency response actions will take place (Nelson

et al., 2015).

We present an application of our model to the 2015 Memorial

Day Flood in Austin, Texas USA.This paper is organized as

follows: first, we provide background information (Section 2) and

cover the characteristics of our study area (Section 3). We then

discuss our methodology (Section 4) in relationship to inundation

and vulnerability data, mathematical formulation of the traffic

assignment problem, and our specific resiliency metrics. We then

present our results (Section 5), discuss them (Section 6), and finally

we state the conclusions of this work and opportunities for future

research (Section 7).

2. Background

2.1. Inequitable access to critical resources

Colloquially, one of the most common examples of inequitable

access to resources is the “food desert,” a region that lacks

access to healthy grocery stores resulting in individuals likely

not incorporating healthy foods into their diet (Beaumont et al.,

1995; Cummins, 2002; Whelan et al., 2002). Numerous studies

have quantified resource access inequities under normal conditions

and without the influence of specific climate change or other

environmental related events (Liu et al., 2014; Akhavan et al., 2019;

Barbosa et al., 2021). While the term food desert has undergone

intense scrutiny in recent years due to its simplistic nature of

equating access to only geographic distance (Donald, 2013; Ghosh-

Dastidar et al., 2017; Widener, 2018), resource accessibility remains

highly variable from city to city and resource to resource (Akhavan

et al., 2019; Pulcinella et al., 2019; Barbosa et al., 2021). In the

context of emergency response, it does not matter what causes

the inequitable disruption just as long as emergency managers are

able to identify it and respond accordingly. While a flood event

may induce, maintain existing, exacerbate, or appear to alleviate

inequitable access to resources, a temporal analysis is required

to distinguish which of the prior specific dynamics is occurring.

Knowing the specific source of inequality is required for longer

term mitigation planning in order to systemically remove it.

Since emergency services often have to respond to situations

during and immediately after extreme weather events, it is

necessary for responders to have information on the condition

of the road network in order to efficiently operate. Quantifying

the impact of inundated road networks on emergency services is

common, as numerous studies have shown that even minor flood

events can increase response times above acceptable standards

or create areas of inaccessibility for upwards of 60% of required

destinations (Green et al., 2017; Arrighi et al., 2019; Tsang and

Scott, 2020). Furthermore, decreases in overlapping coverage, or

station redundancy, have also been identified and are directly

related to a reduction in resiliency (Lhomme et al., 2013; Coles

et al., 2017; Green et al., 2017). Floods can have direct (e.g.,

rendering a roadway impassible) and indirect (e.g., isolating a

location) impacts on transportation networks. Direct and indirect

impacts can create “islands” of areas that are inaccessible to

surrounding areas and “peninsulas” where a single (or fewer than

before) route(s) is available to access the rest of the road network

(Gil and Steinbach, 2008). These impacts can cascade on each

other, shift travel patterns, and induce resource shortages and

scarcities due tomisaligned supply and demand across the network.

Indirect impacts can manifest larger consequences outside of the

immediate vicinity of a flooded road (Coles et al., 2017). Due

to the likelihood of increased flooding in the future as a result

of global climate change, resource access disruption caused by

road network disruptions can be used as an indicator for future

household flooding (Jasour et al., 2022).

2.2. Social vulnerability indices

There is an extensive amount of literature regarding social

vulnerability indices (SVIs), including construction methodologies

(Cutter et al., 2003; Peacock et al., 2010; UNDP, 2010; Flanagan

et al., 2011; Foster, 2012; Bakkensen et al., 2016), strengths

(Tellman et al., 2020; Tate et al., 2021; Boscoe et al., 2022)

and weaknesses (Rufat et al., 2019). Indices are typically created

using a dimensionality reduction methodology to return a final

relative composite index score scaled from 0 (least vulnerable) to

1 (most vulnerable) within the specific study area. Vulnerability

indices are not created equally, leading them to have varying

levels of explanatory and predictive capabilities depending on their

specific end use. This discrepancy results in indices being applied

incorrectly, due to conceptual misunderstandings between a social

vulnerability model and its empirical validity (Bakkensen et al.,

2016; Rufat et al., 2019).

2.3. Tra�c assignment problem and the
user equilibrium solution

The traffic assignment problem, also referred to as the route

assignment or route choice problem, is the class of problems

associated with selecting feasible and minimum cost paths on a

transportation network from a series of origin-destination pairs

(OD pairs, the start and end points for trips made by individuals).

Simplified and idealized examples of the traffic assignment problem

are equivalent to the maximum-flow-minimum-cost problem,

utilizing only free flow travel times or simply just distance (Horner

and Widener, 2011; Gori et al., 2020). While the simplified ideal

solution has the advantage of being significantly faster to solve

(linear versus convex optimization), this method fails to capture

the real-world dynamics of how individuals and emergency services

travel throughout a city (Sohn, 2006; Cho and Yoon, 2015).

The user equilibrium solution to the traffic assignment

problem accounts for the impacts of congestion on the road

network. User equilibrium requires two assumptions to be met:

(1) that individuals are “greedy” and always choose paths that

minimize their own travel time and (2) are well-informed on

road network conditions. While it may be difficult for an

individual to know exact road network conditions during a

flood event, the prolific use of real-time traffic data (i.e., Google

Maps, Apple Maps, Waze, etc.) suggests that individuals have a

reasonable understanding of estimated travel times even during

disruptions. The user equilibrium traffic assignment solution
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does not minimize congestion as individuals do not make

collective decisions, but rather choose the options that will

benefit themselves. The solution to the user equilibrium traffic

assignment problem is defined as each path connecting an OD

pair has the same travel time. User equilibrium represents an

opportunity for transportation engineers and city planners to

implement changes or control mechanisms to move closer to

the system optimal solution, where each OD pair has the same

and minimal marginal travel time cost. We specifically focus

on solving the user equilibrium optimization problem because

it is the more realistic representation of how people make

travel choices.

2.3.1. The link performance function and
inundation disruptions

For the user equilibrium solution to account for congestion

on the road network, each road link is a function of the

number of cars that must utilize that link to go between

their OD pair and the road link’s capacity, length, and speed

limit. Numerous equations known as link performance functions

exist to represent travel times across road segments. One of

the most popular is the Bureau of Public Roads, or BPR,

function (Bureau of Public Roads, 1964). First developed in 1964,

numerous agencies and departments across the US and world

have modified the BPR function (Kurth et al., 1996; Moses et al.,

2013).

Besides road network characteristics, travel time is also

impacted by the flooding that occurs along roadways and

intersections, thus shifting travel flows and demands. As stated

in Pregnolato et al. (2017), the relationship between adverse

weather, traffic flow, and congestion is widely acknowledged but

poorly understood (Hooper et al., 2012; Tsapakis et al., 2013;

Pyatkova et al., 2018). Typically, flood induced road disruptions

have been determined by overlaying inundation maps on road

networks (Dawson et al., 2011; Coles et al., 2017; Green et al.,

2017). There are numerous environmental and structural factors

that influence the relationship between flooding and traffic flow

including but not limited to the ponded water depth, velocity

of the water, infiltration/drainage infrastructure, and precipitation

rate intensity (Koetse and Rietveld, 2009; Hooper et al., 2012;

Pregnolato et al., 2017). With ponded water depth and extent the

most widely available inundation metric, Pregnolato et al. (2017)

developed three equations based on experimental, observational,

and modeling literature that relate the depth of water on the

road to a decrease in maximum feasible vehicle speed, allowing a

maximum traversable water depth of either 150, 300, or 600 mm.

Various studies and emergency preparedness standards suggest

different maximum depths that a vehicle may be able to drive

through, ranging from 150 mm of standing water for smaller and

medium sized cars (Pearson and Hamilton, 2014; Kramer et al.,

2016; FEMA, 2022; NWS, 2022), 250 mm for emergency service

personnel (Dawson et al., 2011; Green et al., 2017), and even up

to 450 and 900 mm for larger four wheel drive vehicles (Pregnolato

et al., 2017).

TABLE 1 Definitions of the components of resiliency: redundancy,

reliability, and recoverability.

Component Definition

Redundancy The presence of duplicate services and routes

Reliability The degree to which road disruptions impact an

individual’s ability to reach a critical resource

Recoverability The time it takes for functionality to return to its

pre-flooded conditions

2.4. Defining network accessibility and
resiliency

There is a vast amount of literature in the transportation field

regarding accessibility disruptions to critical facilities (Horner and

Widener, 2011; Islam andAktar, 2011; Kocatepe et al., 2018; Boakye

et al., 2022). Generally, these accessibility studies either aim to

quantify how well a network performs or identify critical points

and “hot spots” such as areas with the highest economic impact

(Yamano et al., 2007), vulnerability (Elalem and Pal, 2015), or

risk (Zubair et al., 2006; Thacker et al., 2017). Determining hot

spot areas that are likely to flood can aid in identifying where

network performances are likely to degrade (Jalayer et al., 2014;

Pedrozo-Acuña et al., 2017; Wang et al., 2019). The simplest

method to quantify network performance is through the use of

network centrality metrics (e.g., degree, closeness, or betweenness)

or their derivatives (Borgatti, 2005; Brandes, 2008) to describe

network performance and subsequently relating performance to

accessibility. However, without considering the context of the

network disruption including placement (i.e., which roads are

closing where), travel patterns (i.e., how does traffic shift on

the routes that individuals are likely to take), or social needs

(i.e., does the most vulnerable population need more assistance

with food, or healthcare), traditional centrality and hot spot

methodologies can fail to identify meaningful critical points in

the network (Coles et al., 2017). To account for these limitations,

we utilize resiliency metrics and quantify the strength of critical

resource accessibility to investigate how it changes throughout a

flood event.

Resiliency and its application to natural hazards have

already been extensively defined (Zhou et al., 2009; Hosseini

et al., 2016). Furthermore, numerous metrics have already been

formulated to describe the components of resiliency (Carlier

and Lucet, 1996; Watts and Strogatz, 1998; Cardillo et al.,

2006; Derrible and Kennedy, 2010; Li et al., 2011; Wu et al.,

2011; Wang et al., 2017; Xu et al., 2018; Oehlers and Fabian,

2021). Lim et al. (2022) break resiliency into three components

(reliability, redundancy, and recoverability), which we have re-

defined for the context of our network accessibility model

(Table 1). Network scale resiliency, and the processes involved

in improving it or mitigating impacts to it, are defined

differently than household scale resiliency. Scale dependent

definitions allow for stakeholders to better identify impact

discrepancies based on the specific factors that are important

to them.
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FIGURE 1

Austin, Texas study area. Residential parcels are shown in tan and critical resource parcels are colored.

TABLE 2 Road link classifications and their associated parameters.

Classa Description Speed (kmph) Lanes (oneway) Width (m)b Capacity (pcu/hr/ln)c

Motorway Interstate 120 4 14.8 2,300

Motorway link On-ramps and interchanges 120 1 3.7 2,300

Trunk Other major motorways 120 4 14.8 2,300

Trunk link On-ramps and interchanges 120 1 3.7 2,300

Primary Highways or major arterial road 65 3 11.1 1,700

Primary link Slip lanes 65 1 3.7 1,700

Secondary Sub-arterial roads, connectors 50 2 7.4 1,500

Secondary link Slip lanes 50 1 3.7 1,500

Tertiary Neighborhood connector roads 50 2 7.4 1,000

Tertiary link Slip lanes 50 1 3.7 1,000

Other Residential, minor, and unclassified 40 2 7.4 600

aAs defined by OpenStreetMap convention.
bAssuming a standard road width of 3.7m.
cTheoretical design maximum of road, passenger car units per hour per lane (TRB, 2010).
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FIGURE 2

Austin, Texas social vulnerability index, social status (SS), and economic status (ES) indicators at the Census block group boundary using the 2015

American Community Survey 5-Year Estimates. SVI (A) is a factor analysis of relevant sociodemographic variables. SS (B) and ES (C) are the first and

second most prevalent factors from the factor analysis.

3. Case-study background and data
sources

3.1. Study area

Our study area is Austin, Texas, which is considered one of

the fastest-growing cities in the USA, having recently surpassed a

total population of 1 million people within the city and 2 million

within the metropolitan area. Austin is geographically split by

the Colorado River, which runs from west to east through the

city. We specifically focus on the formally defined neighborhood

boundary of Austin that is north of the Colorado River as

it contains the majority of new developments, major creeks,

main downtown areas, and population groups within Austin

(Figure 1). Our study area is approximately 250-km2 and has

a population of 300,000. Concurrently with rapid urbanization,

Austin is seeing an increase in the occurrence of 1% annual

exceedance probability storms, having experienced three in a 5-

year window (2013 Halloween Day flood, 2015 Memorial Day

flood, and the 2018 Hill Country flood). We use the 2015

Memorial Day flood (25 May 2015) in our analysis, as locals

refer to this as being the worst flood in recent Austin history.

In 2015, Texas saw intense rainfall events from April through

May, causing state and local emergency response agencies to be

active throughout the entire month of May and the majority of

June (Schumann et al., 2016). On Memorial Day, starting at 19:00

Coordinated Universal Time (UTC), it began to rain in Austin,

TX, resulting in 5.2 in. (13.2 cm) of cumulative precipitation in

the succeeding 5 h. This value is the second-highest amount of

precipitation in a single day in Austin, Texas since 2002 and the

eighth-highest amount since 1927, which is the farthest back that

uninterrupted records for this region extend. All stream reaches

in this study area had their peak instantaneous flow rates around

22:00 UTC.

3.2. Critical resources and data sources

We leveraged OpenStreetMap data using the open-source

Python tools OSMnx (Boeing, 2017) and NetworkX (Hagberg

et al., 2008) to obtain, handle, and manipulate the location of

critical resources and the road network topology. Open source

data can occasionally have incorrect and inconsistent information.

Furthermore, gaps can be present in the attributes of road

information (e.g., speed limit, number of lanes, road classification).

While these drawbacks exist, OpenStreetMap has become a pivotal

data source within public, private, and research communities due

to the amount and geographic extent of the data (Johnson et al.,

2022). To address these limitations, special consideration went

into ensuring location accuracy and filling gaps in missing data

values. We checked critical resource location layers individually

for accuracy and they required only minimal corrections. The

road network attributes that our model requires include speed,

number of lanes, road width, and capacity. Speed and the number

of lanes are sometimes reported in OpenStreetMap but not always

and to unknown accuracy. However, OpenStreetMap does have

a consistent classification scheme of all of its roadways, and the

geographic centerlines are predominantly accurate upon visual

inspection. To reduce the impact of inconsistent data reporting

of the required attributes, we implemented a relate table based

on common national standards to efficiently fill gaps within the

data. Table 2 summarizes the road characteristics we used to fill in

missing data within the road network when needed. We assumed

everything we extracted from OpenStreetMap was accurate and

visually inspected formajor errors. The only road characteristic that

is completely overwritten is the speed limit. Speed limit is sparsely

reported in OpenStreetMap and we determined it was more

accurate to relate to a completely standardized set of speed limits.

Parcel information is not currently available in OpenStreetMap

and we therefore acquired it from the Texas Natural Resources
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Information System. Parcel data are available for the majority of

counties/states in the US for free from local government agencies

and are typically updated annually.

Our final network contained 14,057 nodes, 36,027 edges, and

49,612 residential parcels. We identified eight critical resources

to examine including grocery stores (37 locations), hospitals (5),

pharmacies (25), fire stations (20), police stations (6), emergency

medical service stations (11), gas stations (112), and convenience

stores (78). We assume residential parcels that share a node with a

critical resource to be within walking distance while all others must

traverse the road network to access that resource.

4. Methodology

4.1. Inundation and social vulnerability data

We utilized a near-real-time inland compound (fluvial and

pluvial) inundation estimate of the Memorial Day flood from

previous research and we refer the reader to Preisser et al.

(2022) for more information on the methods and results. To

summarize, we used outputs from NOAA’s National Water Model

to map fluvial inundation using GeoFlood (Zheng et al., 2018), an

implementation of the HANDmethod (Nobre et al., 2011) utilizing

lidar scale topographic data, and pluvial inundation using Fill-

Spill-Merge (Barnes et al., 2021), a topographic depression routing

algorithm. The inundation layers used in this study all have a spatial

resolution of 1-meter.

We calculate social vulnerability using a factor analysis

approach on 27 variables from the U.S. Census Bureau’s American

Community Survey 5-Year Estimates from 2011–2015 at the

block group boundary (Bixler et al., 2021; Preisser et al.,

2022). Our SVI calculation is an adapted methodology first

developed by Cutter et al. (2003), which utilizes a principal

component analysis to similarly reduce the dimensionality

of input sociodemographic variables (Supplementary Section 1).

Along with the SVI (Figure 2A), we used the two most

influential factors as Social Status (Figure 2B) and Economic Status

(Figure 2C) indicators to highlight how more specific indicators

may capture more inequality compared to generalized indices. The

Social Status factor’s main contributing Census variables are the

people per unit and the percentages of the population that identify

as Hispanic, have less than a high school equivalent education,

have no health insurance, speak english as a second language, work

in extractive/construction industries, are below the poverty line,

and are a female headed household. The Economic Status factor’s

main contributing Census variables are per capita income, median

housing value, and the percentage of the households that makes

over $250,000 annually.

4.2. Mathematical formulation

The user equilibrium optimization problem (Equation 1),

which states that all used routes between each origin and

destination pair have an equal and minimal travel time, is subject

to three constraints: flow conservation, where link flow must equal

path flow (Equation 2), no vehicles left behind, where all flow that

goes into a node must exit that node (Equation 3), and no negative

flows, where a link cannot have a negative number of travelers

(Equation 4). tij(xij) refers to link performance function (Equation

5), xij is a link’s flow on link (i, j) in the set of links, A, r and s

are the origins and destinations that exist in the set of all nodes,

Z, hπ is the number of travelers on path π from (r, s) on the set

of all origin destination pairs 5, δπ
ij is the number of times path

π uses link (i, j), and drs is the sum of the number of travelers on

every path (r, s).

min
x,h

∑

(i,j)∈A

∫ xij

(i,j)∈A
tij(xij)dx (1)

s.t. xij =
∑

π∈5

hπ δπ
ij ∀(i, j) ∈ A (2)

drs =
∑

π∈5rs

hπ ∀(r, s) ∈ Z2 (3)

hπ ≥ 0 ∀π ∈ 5 (4)

The link performance function, tij(xij), or more specifically

the BPR function (Equation 5), shows the relationship between a

link’s travel time, tij, the link’s traffic flow rate, xij, and the links

functional or practical capacity, uij. The shaping parameters, α and

β , determine the rate at which congestion impacts travel times and

are often set to 0.15 and 4 respectively. As the flow rate approaches

0, the travel time across the link approaches the congestion free

travel time, t0ij. Under normal operating conditions, the congestion

free travel time is equal to the speed limit of the link multiplied

by the length of the link. We rely on the original BPR function

due to its minimal input requirements and simple mathematical

form compared to alternative equations (Davidson, 1966; Spiess,

1990; Akçelik, 1991; Mtoi and Moses, 2014). When impacted by

ponded water, the speed limit is reduced to the maximum safe

driving speed, v(w) (Equation 6). The newly calculated speed limit

is multiplied by the link’s length to determine the maximum safe

congestion free travel time.

tij(xij) = t0ij

(

1+ α

(

xij

uij

)β
)

(5)

Themaximum safe driving speed on a link (km/hr) is a function

of the known flood depth on that link, w (mm) (Equation 6).

Speed is reduced to 0 km/hr, allowing no vehicular travel, at depths

greater than 150 mm (Pregnolato et al., 2017). We utilize the more

aggressive standard and its related depth-disruption equation for

this study to account for the worst case scenarios (Pregnolato et al.,

2017; Arrighi et al., 2019; Tsang and Scott, 2020).

v(w) = 0.003864w2 − 1.1592w+ 86.94 (6)

4.3. Solution methodology

The broad framework for solving all traffic assignment

problems can be simplified into four steps. First, given a

network with known edge costs, determine the fastest path

for each OD pair. Next, based on the previously determined

flow paths, recalculate the cost on each edge using the link
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TABLE 3 Description of individual and network scale metrics, summed within each Census block group to compare against sociodemographic data.

`
`
`

`
`
`

`
`
`̀

Scale
Criteria

Reliability Redundancy Recoverability

Network Sum of closed roads Number of modified edge disjoint paths Time for network reliability to return to 75%

of pre-flood functionality

Individual Total travel time to reach one

of every resource type

Sum of maximum allowable travel time divided by

shortest path travel times for each location

Time for individual reliability to return to

50% of pre-flood functionality

FIGURE 3

Austin, Texas time series of total modeled closed roads caused from fluvial, pluvial, and compound flooding. A road is considered closed and

impassable if it has over 15-cm of ponded water.

performance function. With the new edge costs, shift travelers

from slower paths to faster paths. Finally, return to the initial

step until equilibrium is met and all travelers are on their

fastest path. With multiple algorithms available to solve the user

equilibrium optimization problem, we chose to use a gradient

projection, or path-based, algorithm for its faster convergence

speeds (Jayakrishnan et al., 1994). Path-based algorithms break

a network down into a list of the utilized paths connecting

OD pairs to more efficiently shift travelers between slower

and faster routes compared to older link-based algorithms

(Frank and Wolfe, 1956).

4.4. Termination criteria

Due to the nature of convex optimization, an exact solution

may not be easily calculated and we therefore need a termination

criteria to identify when our solution is “good enough” to be

considered at equilibrium. To do this, we define the two system

states: Total System Travel Time (TSTT) and Shortest Path Travel

Time (SPTT). TSTT is the total cost across the network using the

estimated traffic assignment, xij (Equation 7). SPTT is the cost

across the network if all travelers were assigned to the shortest

paths, x∗ij, based on the previously calculated link costs tij(xij)

(Equation 8). SPTT can also be defined as the sum of the number

of travelers between each origin-destination pair, drs, multiplied

by the shortest path travel time between the origin-destination

pair, κrs.

TSTT =
∑

(i,j)∈A

tij(xij)xij (7)

SPTT =
∑

(i,j)∈A

tij(xij)x
∗
ij =

∑

(r,s)∈Z2

κrsdrs (8)

To determine when a solution is close enough, we calculate

the Average Excess Cost, or AEC (Bar-Gera, 2002). The AEC

represents the average difference between the travel time on

each traveler’s actual path and the travel time on the shortest

path available to them, having units of time (Equation 9). We

consider convergence when the AEC is less than or equal to 0.01

seconds. An exact solution to the traffic assignment problem is

found when TSTT is equal to SPTT, otherwise TSTT will always

be larger.

AEC =

∑

(i,j)∈A tij(xij)xij −
∑

(r,s)∈Z2 κrsdrs

∑

rs∈Z2 d
rs

=
TSTT − SPTT
∑

rs∈Z2 d
rs

(9)

4.5. Calculating resiliency metrics

We chose to adapt the resiliency definition matrix from

Lim et al. (2022) because of their emphasis on measuring and

defining resiliency at multiple scales. The goal of analyzing

these components at the network at individual scales is to:

(1) provide insight on network performance characteristics that
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FIGURE 4

Austin, Texas inundated road network (A) and the resultant tra�c assignment solution (B) at peak flood conditions during the Memorial Day flood

(22:00 25 May 2015). Network redundancy (C), network reliability (D), household redundancy (E), and household reliability (F) show the spatial

distribution of metric values across the study area at peak flood conditions.

can better inform city and regional response efforts and (2)

describe high-resolution household impacts that complement

high-resolution inundation estimates. Based on the resiliency

component definitions (Table 1), we create a metric for each

component at the network and individual scale (Table 3). We

aggregate each metric to the underlying Census block group

in order to compare them with an SVI and other relevant

sociodemographic indicators.

4.5.1. Redundancy
We calculate network redundancy scores using a modified edge

disjoint paths. A node’s edge disjoint paths value is the number

of alternative routes that exist between that node and a specified

destination that have no overlapping edges. Because of the sparse

nature of road networks, it often only takes the removal of one or

two edges to disconnect an origin to a destination (e.g., a house

that lives on a residential road only has two directions to travel).
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FIGURE 5

Austin, Texas network redundancy Lorenz curve at peak-flood

conditions during the Memorial Day flood (22:00 25 May 2015).

Block group network redundancy is weighted by the population per

housing unit (i.e., density) and normalized from 0 to 1.

Therefore, we use a neighbors-of-neighbors approach and calculate

the total number of disjoint paths from all of the neighbors of the

neighbors (i.e., two network links away neighbors) of the origin

and destination (Lhomme et al., 2013). Household redundancy

scores are equal to the sum of OD travel times for each household

to reach each location of each resource divided by a maximum

allowable travel time (15-min), if the travel time is less than the

maximum allowable travel time. For both redundancy scores, a

higher value represents a more redundant connection for an origin

and that resource.

4.5.2. Reliability
Network reliability scores are the total number of closed roads

within each block group. Household reliability scores are the sum of

the total travel time for a household to travel to the nearest available

option for each resource type. We give unreachable resources a

representatively large travel time to represent the cost of not being

able to access that resource. For this study, we set that value to

4 times the maximum travel time across the study area to access

that resource.

4.5.3. Recoverability
Network and household recoverability metrics are the time

it takes the reliability metrics to return to 75 and 50%

respectively, of their pre-flood condition values. We chose these

threshold percentages due to a large number of block groups

being considered recovered at these values. Different threshold

percentages produce nearly the same recoverability Lorenz curves

since these plots measure the relative distribution of burdens

and the trajectory of the number of block groups that are

considered recovered using various thresholds are all nearly

identical (Supplementary Section 2).

4.6. Measuring equality and equity with
resiliency metrics

We calculated resiliency metrics using hourly inundation

estimates between 18:00 UTC (25 May 2015) and 17:00 UTC (26

May 2015). Rainfall began to fall around 19:00 UTC, and therefore

the network before this time is at pre-flood conditions. Peak-

flood conditions (i.e., largest compound inundation extent) occur

at 22:00 UTC, which coincides with the estimated peak number of

road closures (Figure 3). To determine each metric at each time

step, we overlay the road network with the inundation estimate

(Figure 4A), run the traffic assignment algorithm (Figure 4B), and

calculate the resultant network redundancy (Figure 4C), network

reliability (Figure 4D), household redundancy (Figure 4E), and

household reliability (Figure 4F) metrics.

In order to quantify equality, we use Lorenz curves and

calculate the associated Gini coefficients, which were originally

developed to measure income inequality (Morgan, 1962). A typical

Lorenz curve plots the percentile ranking of households’ net worth

on the x-axis and the percentage of cumulative income on the

y-axis. In a perfectly equitable society, the Lorenz curve would

match a 1:1 line. The Gini coefficient is a measure of deviation

from the perfectly equitable society (Gini = 0), where a value of –1

and 1 are perfect inequity, favoring the bottom and top net worth

of households respectively. Lorenz curves are gaining a renewed

interest in measuring inequality and have recently been applied

to other flood risk studies (Sanders et al., 2022; Yarveysi et al.,

2023). For this application, the x-axis of the Lorenz curve is the

social vulnerability (or social/economic status) index percentile

and the y-axis is the specific variable being measured for each

metric. To maintain similarity between Lorenz curves for ease

of readability, we normalize (0–1) all y-axis variables and reflect

necessary variables to ensure that a Gini coefficient greater than 0

represents inequality benefiting the least vulnerable. Furthermore,

we weight each y-axis variable by the people per unit Census

variable (i.e., average number of people living in a house) to account

for population density discrepancies. We also calculate the quartile

burden, which is equal to the normalized cumulative sum of the

metric under investigation for that percentile of the population with

Q1 representing the least vulnerable and Q4 the most vulnerable

quarter of the population.

It is important to note that by itself, Lorenz curves and Gini

coefficients measure equality because they examine the distribution

of a variable across a population. However, in response to a

flood event, equity may be a more substantive measure because

communities feel the impacts of flood events differently. For

example, if two households experience the same amount of

flooding, but one is more vulnerable due to an underlying condition

(e.g., is food insecure, has to go to a hospital for treatment regularly,

lives in an area susceptible to crime, etc.), then the impacts of

the flood are not felt equally. Therefore, we also present the same

resiliency metrics weighted by the SVI, social status, and economic

status indices to highlight the existence of flood impact inequities.
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It is not clearly defined the exact degree to which sociodemographic

vulnerability affects an individual. To account for this uncertainty

in determining hazard impact equity, we use multiple weighting

schemes based on a range of potential thresholds. Equation 10

produces a weighting factor for each metric. We calculated each

block group’s weight by first determining its indicator (SVI, SS,

or ES) rank, with the least vulnerable block group having a rank

of 0 and the most vulnerable block group having a rank equal to

the number of observations (nobs). p is the percentage weight, or

the degree to which an individual’s sociodemographic vulnerability

influences their ability to respond. The least vulnerable block

group’s weight is equal to 1 − p, while the most vulnerable

block group’s weight is equal to 1 + p, and every block group in

between has a weight value equally spaced between the minimum

and maximum.

weight = (1− p)+
(rank)(2 ∗ p)

nobs
(10)

5. Results

We present network resiliency results while considering

different flood sources (fluvial, pluvial, and compound) to address

how regulators might have to respond differently based on the

prevailing flood type. Additionally, we present individual resiliency

results while considering the holistic SVI as well as the Economic

Status (ES) and Social Status (SS) indicators, to draw attention to

different measures of socio-demographic variables.

5.1. Network scale

5.1.1. Redundancy
Our estimated network redundancy at peak-flood conditions

shows a slightly unequal distribution when only considering

pluvial flooding (G = 0.09), a near equal distribution when only

considering fluvial flooding (G = –0.01), and compound flooding

in between the two (G = 0.03) (Figure 5). Q2 (the second least

vulnerable quarter of the population) and Q4 (the most vulnerable

quarter of population) carry the most network redundancy burden

across all of the flood source scenarios. The gap in network

redundancy between the quarters of the population that carry the

most and least burden is 15, 12, and 14 percentage points for

compound, fluvial, and pluvial flooding respectively.

While we calculated network redundancy for each time step,

there was little to no change from one observation to the next.

This result suggests that either this particular storm does not

have a significant impact on the number of available routes for

households to access resources, or that the storm is maintaining

an equal impact across the study area. The latter is less likely as

the subsequent results showmore substantial unequal impacts over

time. The former is more likely because urban areas are typically

characterized by highly connected road networks, suggesting

that network route redundancy is not the reason for resource

accessibility discrepancies (Supplementary Section 3).

5.1.2. Reliability
Before rainfall begins (18:00), the network reliability burden lies

on the least vulnerable half of the population for fluvial flooding (G

= –0.15), but lies on the more vulnerable half of the population

for pluvial flooding (G = 0.11). This pre-rainfall inequality can be

attributed to the base conditions that the study area is experiencing

as a result of days of saturated conditions prior to the event of

interest. The compound flooding network reliability burden is

therefore in between the two, and appears to be more equally

distributed (G = –0.02). A shift occurs at peak flood conditions

(22:00) and Q4 carries the highest network reliability burden for

compound (35%), fluvial (37%), and pluvial (35%) flooding. The

Gini coefficients for compound, fluvial, and pluvial flooding all

increase by 0.13, 0.23, and 0.04 respectively. Pluvial flooding always

impacts the more vulnerable half of the population throughout the

duration of the flood event, with the Gini coefficient remaining

above 0.11. Post-peak-flood, the burden of fluvial flooding returns

to the least vulnerable half of the population, predominantly on

Q2 (33–41% of the burden depending on time), suggesting that

fluvial flooding in these block groups is more persistent and recedes

at a slower rate compared to other block groups. Due to the

near opposite impacts of fluvial and pluvial flooding, compound

flooding has a more equally distributed impact, with a Gini

coefficient of less than 0.06 at all times except for the 2 h pre- and

post-peak-flood. While the compounding events of a flood may

result in a more equal distribution of impacts, the underlying flood

sources distinctly impact population groups differently.

5.1.3. Recoverability
Network recoverability shows the most unequal distribution

when compared against pluvial flooding (G= 0.12), closer to equal

for fluvial flooding (G = 0.06), and in between for compound

flooding (G = 0.1) (Figure 7). Q4 carries the greatest network

recoverability for compound (30%), fluvial (31%), and pluvial

(31%) flooding, with Q3 carrying a similarly high burden for

compound (29%) and pluvial flooding (29%). Q2 carries the second

highest fluvial burden (30%). The high burdens associated with Q4

pluvial flooding and Q2 fluvial flooding coincide with the network

redundancy and reliability behaviors.

5.2. Household scale

5.2.1. Redundancy
Household redundancy at pre-flood conditions is near perfect

equality when compared against SVI (G = –0.02), and is further

unequal for ES (G = –0.04) and SS (G = –0.14) (Figure 8).

Additionally, Q1 carries the highest household redundancy burden

when compared against SVI (27%), SS (30%), and ES (30%).

Negative G values further show that the least vulnerable portion

of the population carries the higher burden during pre-flood

conditions. However, Gini coefficients and burdens shift across

all indices to the most vulnerable half of the population at peak

flood conditions. SVI, SS, and ES Gini coefficients all increase by

more than 0.30 when comparing pre-peak to peak-flood conditions.

Additionally, the Q4 SVI, SS, and ES burdens all nearly double
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FIGURE 6

Austin, Texas network reliability during the Memorial Day flood (25 May 2015) and shown here in 4-h increments. Network reliability is calculated

every hour and shown in 4-h increments for brevity. Block group network reliability is weighted by the population per housing unit (i.e., density) and

normalized from 0 to 1.

during this time, while Q1 goes from carrying the most to the

least burden.

5.2.2. Reliability
Household reliability at initial conditions is unequal for SVI (G

= 0.1), SS (G = 0.23), and ES (G = 0.11) (Figure 9). Concurrently,

Q4 carries the highest burden for SVI (34%), SS (38%), and ES

(32%). This inequality is persistent throughout the flood event, with

the most vulnerable quarter of the population consistently having

to travel further to access critical resources. Burden values return

to their near pre-flood conditions within 6 h post-peak flood, with

Gini coefficients only having slight fluctuations and burdens staying

relatively unchanged.

Q1 and Q3 household reliability burdens strictly decrease when

comparing conditions between the pre-flood values to 6 h post-

peak, while Q2 burdens experience a mixture of slightly increasing

and decreasing values. Q4 burdens only increase during this time,
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FIGURE 7

Austin, Texas network recoverability during the Memorial Day flood

(25 May 2015). Block group network recoverability is weighted by

the population per housing unit (i.e., density) and normalized from 0

to 1.

showing that throughout the flood event burden is predominantly

transferred to the most vulnerable quarter of the population. This

result suggests the Q4 household reliability is more susceptible to

changes compared to other parts of the population. In conjunction

with this, Q1 household reliability burdens across indices never

increase from the pre-flood conditions, with the one exception of

SVI which increases by only 1–2 percentage points 10–12 h after

peak-flood. Over the entire flood event, SVI and ES are relatively

similar in terms of Gini coefficients and the distribution of burdens.

On the contrary, SS has a Gini coefficient that is between two and

three times as large, which can be attributed to the minimal burden

that Q1 carries which never exceeds 10%. This result highlights how

different vulnerability and socioeconomic indicators show different

levels of inequality based on what they specifically measure.

5.2.3. Recoverability
Household recoverability continues to show the same trends,

with burdens being distributed unequally when compared against

SVI (G = 0.11), SS (G = 0.16), and ES (G = 0.12) (Figure 10).

Q4 and Q1 carry the highest and lowest household recoverability

burdens respectively.

5.3. Household equity

We calculate household equity at peak flood conditions using

percentage weights of 25, 50, and 100% (Figure 11). As expected,

each metric becomes more unequally distributed as the percentage

weight increases. Q4 burdens approach 50–60% for the majority

of scenarios across indices, metrics, and percentage weights. At

the same time, Q1 burdens are predominantly near or below

10%. The average difference in burden that Q4 carries over Q1

across indices, metrics, and percentage weights is equal to 41

percentage points.

6. Discussion

6.1. Disproportional distribution of burdens
across scales, flood types, and indicators

Every metric shows a disproportional distribution of the effects

of flooding on an individual’s ability to access critical resources.

At peak flood conditions, Q4 carries the highest burden regardless

of flood type and vulnerability indicator (Figures 5–10). The

only exceptions are network redundancy under the influences

of compound and fluvial flooding (second highest burden) and

household redundancy when compared against social status (most

volatile, burden doubles when compared to pre-flood conditions).

Concurrently, Q1 regularly carries the lowest burden during peak-

flood conditions. At the network scale, Q1 consistently carries

the smallest burden for pluvial and compound flooding, and

the second lowest for fluvial. At the household scale, Q1 carries

two to four times less burden when compared to Q4 across all

vulnerability indicators.

Network metrics highlight the duality of fluvial and pluvial

flooding (Figures 5–7). While fluvial flooding typically impacts

the least vulnerable half of the population, pluvial flooding

typically impacts the most vulnerable half of the population.

Therefore, compound flooding appears to be relatively more

equally distributed. While the numbers of roads closed by pluvial

and fluvial flooding at peak-flood conditions are within 5% of each

other (Figure 3), there are higher magnitude inequalities across all

household metrics (Figures 8–10). This result suggests that while

compound flooding may appear to affect the network equally, its

impacts at the household level are not, further justifying the need

to analyze hazard events at multiple scales simultaneously.

Household metrics are complementary to each other,

showing a disproportionate burden distribution regardless of the

vulnerability indicator (Figures 8–10). Social status shows the most

disproportionality because it has the highest Gini coefficients with

respect to household reliability and recoverability and is the most

volatile with respect to household redundancy. The observable

volatility in household redundancy and network reliability is likely

a factor of the large number and the subsequent decrease of flooded

roads caused by fluvial flooding at and immediately after peak-flood

conditions (Figure 3). Therefore, more persistent flooding from

pluvial sources is what likely causes the longer lasting inequality

issues. Across the event we observe metrics returning close to their

pre-flood conditions 6 h after peak-flood occurs. While this was a

relatively short storm event, it is necessary to understand persistent

pluvial flooding’s role in affecting communities immediately after a

flood event. While the majority of roads have reopened within 18-h

post-peak flood conditions, Lorenz curves and Gini coefficients

only show relative disproportionality and burdens. For this specific

storm, there is still ponded water persisting along roadways and

while not deep enough to close roads, will still influence travel

time. Remaining ponded water along roadways is another source

of inequity as longer travel times to critical resources can be the
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FIGURE 8

Austin, Texas household redundancy during the Memorial Day flood (25 May 2015) and shown here in 4-h increments. Household redundancy is

calculated every hour and shown in 4-h increments for brevity. Block group household redundancy is weighted by the population per housing unit

(i.e., density) and normalized from 0 to 1.

difference in life and death (e.g., longer travel times to hospitals

can be a serious threat and is not just an inconvenience) (Ingenfeld

et al., 2018; Clark et al., 2022).

6.2. The most vulnerable are the least
resilient

Despite a large portion of flood risk communication studies

existing only in the context of theoretical frameworks (Kellens

et al., 2012), researchers have identified that stakeholders need

flood dynamics information (where and when floods will occur)

in order to make informed decisions (Rollason et al., 2018)

and are willing to accept a higher degree of uncertainty in

order to receive more timely information (McCarthy et al.,

2007). The misalignment between recent advancements in flood

inundation research and these needs has led to the slower

adoption of knowledge by flood management stakeholders,

generating a push across disciplines to move beyond the “hot

spots and hot moments” framework to better understand the
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FIGURE 9

Austin, Texas household reliability during the Memorial Day flood (25 May 2015) and shown here in 4-h increments. Household reliability is calculated

every hour and shown in 4-h increments for brevity. Block group household reliability is weighted by the population per housing unit (i.e., density)

and normalized from 0 to 1.

temporal and spatial characteristics of events as they develop,

occur, and unfold (Bernhardt et al., 2017; Coles et al., 2017).

Additionally, there are established needs for flood impact models

to consider transportation infrastructure disruptions (Yarveysi

et al., 2023), as well as for models with high speeds and

flexibility in order for multiple stakeholders to adopt new methods

in existing flood risk management systems (Leskens et al.,

2014).

Our high temporal and spatial analysis of resource accessibility

shows that the most vulnerable quarter of the population are the

least resilient to the effects of a flood. For example, Q4 household

redundancy burdens double during peak flood conditions, while

Q1 burdens are halved (Figure 8). Similarly at the network level,

a temporal analysis captures the shifting nature of burdens,

with Gini coefficients increasing and decreasing rapidly around

peak-flood conditions, highlighting the necessity to analyze the
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temporal consequences of a flood event (Figure 6). Furthermore,

by identifying the specific quarters of the population that are

most vulnerable, we are better able to capture discrepancies

amongst the total population. One specific example of this is the

household reliability metric when compared against social status

at 0:00 26/06/2015 (Figure 9). If we only examined halves of the

population, we would witness the most vulnerable half carrying

just over twice as much burden. However, comparing Q4 to Q1

we see that the most vulnerable quarter carries over five times as

much burden compared the least vulnerable quarter. These more

targeted results can better allow emergency managers to respond

with greater efficiency and precision.

Equality is not necessarily the goal when determining the

impact of a natural hazard. For example, a hazard could affect

every individual equally (G = 0), but this would be a less desirable

solution than if only a handful of individuals were impacted (G 6= 0)

(Logan et al., 2021). While a Gini coefficient between 0.3-0.4 is

typically considered a reasonable gap when strictly using income

data, evidence suggests that the threshold is less when examining

inequalities in flood risk and vulnerability (Sanders et al., 2022;

Yarveysi et al., 2023). Our peak Gini coefficients for household

redundancy (SVI at peak flooding, G = 0.32, Q4 = 47%) and

household reliability (SS 4 h post peak flooding, G = 0.30, Q4 =

45%) are two examples representing steep disproportionalities in

the distribution of impacts. While the Gini coefficient is a valuable

tool to quickly identify inequality, it is still necessary to account for

the magnitude of impacts and the disproportionate effects of that

burden to understand how to respond equitably (Osberg, 2016).

When we factor in the degree to which being vulnerable

to floods reduces an individual’s ability to cope with its

effects, the disproportionality only increases (Figure 11). While

researchers have identified the inequitable impacts of flooding and

other environmental disasters (Cutter et al., 2003; Chakraborty

et al., 2019; Moulds et al., 2021; Wing et al., 2022), the

exact combination of what sociodemographic variables that

make an individual more at risk and to what degree (i.e.,

the equity rank weight) are highly variable. A moderate

influence of 25% (Toland et al., 2023) exacerbates burdens

such that Q4 carries on average 4 times as much burden

as Q1. By analyzing multiple vulnerability indicators with

multiple rank weights, we can draw attention to the social

status variables that are more disparate in Austin during

this particular hazard event which can aid in further storm

management planning.

The exclusion of pluvial flooding from most emergency flood

mapping sources is another source of inequality/inequity

(Grahn and Nyberg, 2017). Pluvial flooding specifically

leads to ponded water on impervious surfaces, such as

roadways and intersections, that would otherwise not be

identified as being inundated using common flood risk

maps (Preisser et al., 2022). Our results show that pluvial

flooding doubles the number of closed roads at peak flood

conditions and predominantly impacts more vulnerable

communities. If we utilized inundation maps that only included

fluvial flooding, our network and household metrics would

drastically underrepresent the disproportional distribution

of burdens, perpetuating unequal and inequitable flood

risk exposures.

FIGURE 10

Austin, Texas household recoverability during the Memorial Day

flood (25 May 2015). Block group household recoverability is

weighted by the population per housing unit (i.e., density) and

normalized from 0 to 1.

6.3. Applicability for improving disaster
preparedness and future work

The model we have developed is solely built on open-

source data, which fall into three main categories: infrastructure

(road and resource locations), inundation, and socioeconomic

data. Infrastructure data retrieved from OpenStreetMap are

already available for a large portion of the world (Barrington-

Leigh and Millard-Ball, 2017). While there are certainly

gaps in data availability in some nations and rural areas,

OpenStreetMap continues to expand its global reach. There

will always be issues with accuracy with crowdsourced

road network and resource data, but strict data quality

policies continue to raise the reliability and usability of

OpenStreetMap data. Resource location data are also easily

verifiable for each study location and require minimal levels of

local knowledge.

Our framework can accept any inundation layer or road closure

information to estimate network disruptions. Users can opt to

use existing inundation estimates that they have available. Our

specific pluvial and fluvial inundation layers are reproducible

anywhere mid- or high- resolution digital elevation models exist.

Lower resolution elevation data ( 30-meters) can also be used,

with the understanding that modeling urban flooding with such

data comes with its own uncertainties and weaknesses. Our

inundation layers are created using the open source tools GeoFlood

(Zheng et al., 2018) and Fill-Spill-Merge (Barnes et al., 2021)

that estimate fluvial and pluvial flooding respectively (Preisser

et al., 2022). This process can be replicated anywhere in the

United States using data from NOAA’s National Water Model

(NWM), which contains the necessary stream flow and ponded

water data going back to the 1980s to produce the relevant
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FIGURE 11

Austin, Texas household redundancy, reliability, and recoverability metrics during the Memorial Day flood at peak flood conditions (22:00 25 May

2015) while under the influence of 25, 50, or 100% indicator rank weight. Rank weights are the degree to which equality Lorenz curves are weighted

by the block group indicator ranks.

inundation estimates. These tools can also be run without

NWM data and only require estimated/observed runoff depths

and stream flow values and can therefore be applied across

the globe.

Socioeconomic data from the 5-Year American Community

Survey are already available for the entire United States from

2009–2021 and will continue to be released in the foreseeable

future. While socioeconomic data may be less accessible in

other parts of the world, similar layers of vulnerability are

still commonly produced by other nations. While the Gini

coefficients and Lorenz curves would not be possible without

underlying vulnerability information, our model will still quantify

household and neighborhood resource accessibility disparities.

Despite the unknown degree to which sociodemographic variables

influence inequities, the resiliency metrics we computed highlight

inequalities which can directly aid emergency managers in the pre-

placement of supplies and personel before a flood event occurs.

Communities across the United States are employing resource

hubs, or “resiliency hubs,” as a way to better prepare for disasters

(Anderson et al., 2017). While studying the performance of

infrastructure networks during disasters is not new (Kameshwar

et al., 2019), there has been limited use of transportation

planning in resiliency hub placement and design (Ciriaco and

Wong, 2022). Furthermore, household metrics can be utilized

by individuals in their own emergency planning to gain a

more holistic picture of how they may or may not be able to

access necessary resources. The application of our framework to

community and regional planning can directly provide information
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about gaps in resource coverage, which can aid in data-driven

decision-making processes.

7. Conclusion

We created a model that solves the user equilibrium traffic

assignment problem that routes every household to their nearest

critical resources while under the influence of a flood event.

Our model’s capabilities to calculate hourly inundation impact

at the household level, utilizing only open-source data and low-

computational resources (i.e., without the use of high performance

computers or GPUs), is a step towards a more accessible method

for measuring the near-real time effects of floods on transportation

networks in the context. Our method is capable of discerning

the dynamic nature of resource accessibility throughout time that

would otherwise go unnoticed when only considering worse-

case scenario flood extent maps. Our matrix of metrics creates a

holistic picture of individual and network scale results which is

able to capture the multiple components of resiliency. In terms

of resource accessibility and in the context of our study area

Austin, Texas, we identified that the most vulnerable households

are the most susceptible to the effects of a flood event, the least

vulnerable carry the smallest burden, and that small inequalities

can become large inequities when considering the degree to

which being more vulnerable impacts one’s ability to cope with

a hazard.
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