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Operational low-flow forecasting
using LSTMs

Jing Deng1,2*, Anaïs Couasnon1, Ruben Dahm1,

Markus Hrachowitz2, Klaas-Jan van Heeringen1, Hans Korving1,

Albrecht Weerts1,3 and Riccardo Taormina2

1Deltares, Delft, Netherlands, 2Department of Water Management, Faculty of Civil Engineering and

Geosciences, Delft University of Technology, Delft, Netherlands, 3Hydrology and Environmental

Hydraulics Group, Department of Environmental Sciences, Wageningen University and Research,

Wageningen, Netherlands

This study focuses on exploring the potential of using Long Short-Term Memory

networks (LSTMs) for low-flow forecasting for the Rhine River at Lobith on

a daily scale with lead times up to 46 days ahead. A novel LSTM-based

model architecture is designed to leverage both historical observation and

forecasted meteorological data to carry out multi-step discharge time series

forecasting. The feature and target selection for this deep learning (DL) model

involves evaluating the use of di�erent spatial resolutions for meteorological

forcing (basin-averaged or subbasin-averaged), the impact of incorporating past

discharge observations, and the use of di�erent target variables (discharge Q

or time-di�erenced discharge dQ). Then, the model is trained using the ERA5

dataset as meteorological forcing, and employed for operational forecast with

ECMWF seasonal forecast (SEAS5) data. The forecast results are compared to

a benchmark process-based model, wflow_sbm. This study also explores the

flexibility of the DL model by fine-tuning the pretrained model with limited

SEAS5 dataset. Key findings from feature and target selection include: (1) opting

for subbasin-averaged meteorological variables significantly improves model

performance compared to a basin-averaged approach. (2) Utilizing dQ as the

target variable greatly boosts short-term forecast accuracy compared to using

Q, with amean absolute error (MAE) of 25m3 s−1 andmean absolute percentage

error (MAPE) of 0.02 for the first lead time, ensuring reliability and accuracy at

the onset of the forecast horizon. (3) While incorporating historical discharge

improves the forecasting of Q, its impact on predicting dQ is less pronounced

for short lead times. In the operational forecast with SEAS5, compared to the

wflow_sbm model, the DL model exhibits skill in forecasting low flows as

evidenced by Continuous Ranked Probability Skill Score (CRPSS) median values

of all lead times above zero, and better accuracy in forecasting drought events

within short lead times. The wflow_sbmmodel shows higher accuracy for longer

lead times. In the exploration of fine-tuning approach, the fine-tuned model

generates marginal short-term enhancements in forecasting low-flow events

over a non-fine-tuned model. Overall, this study contributes to advancing the

field of low-flow forecasting using deep learning approach.
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1 Introduction

Since the beginning of the twenty-first century, Europe has

experienced a series of severe droughts (2003, 2015, 2018, and

2022), affecting a wide range of socio-economic sectors including

agriculture, energy production, waterborne transportation, public

water supply and freshwater ecosystem (EEA, 2010; Ionita et al.,

2017; WMO, 2020). Under future warmer climate, drought events

are projected to occur more frequently with increasing impacts in

many regions and river basins (Prudhomme et al., 2014; Wanders

and Van Lanen, 2015; van der Wiel et al., 2019; Cammalleri et al.,

2020). Given the potential widespread impacts of droughts, better

understanding and preparing for this hazard is important.

Droughts are generally classified into four categories, closely

linked to water (shortage) moving through the water cycle and

its use (Wilhite and Glantz, 1985; Tallaksen and Van Lanen, 2004;

Van Loon, 2015): meteorological drought, soil moisture drought,

hydrological drought, and socioeconomic drought. It has both

natural and human drivers (Van Loon et al., 2016). Streamflow

drought or low flow, which is a part of hydrological drought,

is here defined as below-normal river discharge. It is a result of

climate variability, catchment characteristics and anthropogenic

influences (Van Loon and Van Lanen, 2012; Van Lanen et al., 2013;

Van Loon, 2015). The Netherlands has experienced severe drought

events during the summer in recent years. The 2018 drought event,

especially, was marked by a country-average annual precipitation

of 607mm, 240mm less than normal, and prolonged low river

discharges which had significant impact on shipping and external

salinization (Kramer et al., 2019).

The Netherlands heavily relies on a large transboundary

river, i.e., the Rhine, for freshwater supply. The Rhine enters

the Netherlands at Lobith, making it a key location for water

management decisions in the country. Knowing how much

water enters the Netherlands at Lobith and how much to

expect over subsequent days and weeks determines the navigable

depth for shipping and the water distribution, especially for the

Klimaatbestendige Wateraanvoer (KWA, Climate-Resilient Water

Supply system), in a large part of the country. When the discharge

at Lobith drops below specific thresholds, operational measures

need to be taken to distribute river water according to the priority

water use sequence defined by the national water authorities

(Rijkswaterstaat, 2019). Therefore, a reliable and robust forecasting

of low flows at Lobith is essential for Dutch water managers and

stakeholders to develop robust strategies for drought mitigation

and adaptation. Different drought impact sectors require different

forecasting lead times. Two-week forecasts are generally required

by the freight shipment sector, while longer lead time forecasts

of several weeks or months are crucial references for water

distribution strategies (Demirel et al., 2013; Van Loon, 2015).

Forecasting low flows for the Rhine River for longer lead times

has been subject of several studies (Demirel et al., 2013; e.g., Yossef

et al., 2013; Klein and Meißner, 2018; Hurkmans et al., 2023). Most

of these studies report some skill for predicting low flows with lead

times of up to 6–8 weeks for the spring and early summer periods

when low flows are driven by snowpack and/or wetness of soil and

groundwater system. However, the forecast skill tends to diminish

for other times of the year with lead times ranging from 2–4 weeks.

All the mentioned studies make use of conceptual hydrological or

land surface models, except for Demirel et al. (2013) who used a

simple regression analysis.

Over the past few years, data-driven approaches, such as

deep learning (DL) models, have been explored and tested for

applications in hydrology (Shen, 2018; Shen et al., 2021). In

particular, studies have shown that Long Short-Term Memory

(LSTM) models have the potential to be effective tools for the

dynamic modeling of streamflow (Kratzert et al., 2019b) and soil

moisture (Fang et al., 2017), which has led to an increase in the use

of DL techniques across all domains of hydrology. Most studies on

drought forecasting using DL focus on predicting drought indices

such as meteorological drought indices Standardized Precipitation

Index (SPI) and Standardized Precipitation and Evapotranspiration

Index (SPEI) (Dikshit et al., 2022), as well as hydrological drought

indices Streamflow Drought Index (SDI) (Borji et al., 2016;

Shamshirband et al., 2020; Aghelpour et al., 2021) on a monthly

scale. On the other hand, there are relatively few studies using

DL techniques to forecast low-flow time series on a daily scale.

Sahoo et al. (2019) developed LSTMs and other recurrent neural

network models to predict one-step-ahead monthly low-flow time

series using the past 2 months’ low-flow values. Amanambu et al.

(2022) used a transformer and a LSTM model with past daily

stage level as input to predict stage levels multiple steps ahead

(i.e., 30, 60, 90, 120, and 180 days), which were then post-

processed to generate the numbers of drought days using the

threshold approach. However, these studies feature only strictly

autoregressive models without incorporating predictors such as

the meteorological forcing. More importantly, very few studies

consider the deployment of trained DL models in an operational

framework where forecasted meteorological forcing data can

provide additional information for long-term, multi-step ahead

time series forecasting. Hauswirth et al. (2023) employed five

different machine learning models, including LSTMs, trained on

historical observations of discharge, precipitation, evaporation,

and seawater levels. These models were then run with seasonal

(re)forecast data of these driver variables in a hindcast setting to

predict hydrological variables and were assessed on the capability

to simulate low-flow events using the threshold approach. Franken

et al. (2022) used a LSTM-based encoder-decoder approach to

integrate historical and forecasted meteorological data as well as

discharge observations for low-flow forecasts in Flanders on short

(72 h) and long (30 days) time horizons. Similar encoder-decoder

approaches have also been used by several other research on

operational streamflow forecasting, such as Google’s operational

flood forecasting system (Nevo et al., 2022) and the study by Kao

et al. (2020) on multi-step-ahead flood forecasting.

This study aims to investigate the potential of LSTMs for

low-flow forecasting for the Rhine River at Lobith on a daily

scale, with lead times up to 46 days ahead which is in line

with the current forecasting system used by the national water

authorities with European Center for Medium-Range Weather

Forecasts (ECMWF) extended range forecasts. To do this, we

design a model architecture that can leverage both historical

observations and forecasted meteorological data to predict the

discharge at Lobith multiple days ahead. The search for the optimal

model architecture involves an evaluation of multiple factors,
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FIGURE 1

Eight subbasins of the Rhine River basin upstream of Lobith.

FIGURE 2

River discharge climatology at Lobith based on di�erent 10-year periods (Data source: Rijkswaterstaat Waterinfo; see footnote1).
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including different spatial resolutions of meteorological forcing,

the impact of incorporating past discharge observations, and the

use of different target variables. Then, the model setup is used

for operational forecast with ECMWF seasonal forecast (SEAS5)

data. The forecast results are compared to a benchmark process-

based model, the wflow_sbm model, a state-of-the-art distributed

hydrological model set up for the Rhine (Imhoff et al., 2020). This

study also explores the flexibility of the DL approach by fine-

tuning the pretrained model with limited SEAS5 dataset, aiming to

make the most of the available data. The forecast results from the

fine-tuned model are compared with the ones without fine-tuning.

The paper is structured in the following way: Section 2

describes the study area, the data, and themodel architecture tested.

Next, three experiment designs are described: the first experiment

explores the effect of selecting different feature and target variables

on the DLmodel performance. The second experiment investigates

the capability of the DL model for operational forecast with the

SEAS5 data. The third experiment tests whether the SEAS5 fine-

tuned model can help to enhance the forecast performance. Section

3 presents the results and discussions of the experiments. Section 4

shows the limitations of this study and proposes future works. The

paper concludes with a summary in Section 5.

2 Materials and methods

2.1 Study area

The Rhine originates in Switzerland, flowing along a 1,230 km

course before draining into the North Sea. The Rhine basin has an

area of around 185,000 km2, covering major parts of Switzerland

and Luxembourg, and parts of Germany, France, Italy, Austria, and

the Netherlands. The elevation of the basin varies from around

4,000m above sea level in the Alps to sea level in the Netherlands.

The Rhine River basin upstream of Lobith can be divided into

eight subbasins shown in Figure 1, displaying different discharge

behaviors. The southern alpine area is a snow-driven regime,

characterized by the interplay of winter snow cover, summer

snowmelt, and relatively high summer precipitation. As a result,

low flows in this region occur mainly in winter and flood events

mainly in summer. Subbasins such as the Neckar, Main, and

Moselle, which drain the lower, pre-alpine hill regions, exhibit a

rain-driven regime. This regime is characterized by a dominance

of winter floods and summer low flows. In downstream areas of

the Middle and Lower Rhine, including Lobith, where the snow

regime and rain regime overlap, a combined regime is observed.

The discharge is more evenly distributed throughout the year

(International Commission for the Protection of the Rhine, 2018).

The river discharge climatology at Lobith based on different 10-

year periods is shown in Figure 2. The average discharge at Lobith

is highest in winter months (around December to March), most

of which originates from tributaries in the subbasins Neckar, Main

and Moselle characterized by intense rainfall and low evaporation.

Only 30% of the discharge at Lobith during winter months is from

the Alps, as winter precipitation falls as snow (Middelkoop and

van Haselen, 1999). During the summer months (around July to

September), more than 70% of the discharge at Lobith originates

from the Alps (Middelkoop and van Haselen, 1999). Less is from

TABLE 1 River discharge threshold at Lobith for scaling up from level 0

(normal management) to level 1 (impending water shortages).

Month Rhine discharge at Lobith

(daily average in m3 s−1)

January - April 1000

May 1400

June 1300

July 1200

August 1100

September - December 1000

This includes the expectation that the situation will last longer than three days. The discharge

threshold is important for being able to meet the water demand of, among others, agriculture,

nature, industry, drinking water, process and cooling water and for a number of surface water

functions such as shipping. Modified from De Vries et al. (2021).

other parts of the basin, as much of summer precipitation in other

subbasins evaporates before it reaches the river.

2.2 Data

In this study, we design a deep learning model to forecast

daily discharge at Lobith with lead times up to 46 days

ahead. Three meteorological variables – daily total precipitation

(tp), daily average 2-meter temperature (t2m), and daily total

potential evaporation (pev) – are used as predictors to describe

the meteorological conditions over time. We also explore the

incorporation of past daily average discharge observations at Lobith

as additional predictor. An overview of the data used in this

research is presented hereafter, while detailed data processing steps

are provided in the Supplementary material.

2.2.1 Discharge at Lobith
The daily average discharge observations at Lobith for

the period 1979–2022 were obtained from the Rijkswaterstaat

Waterinfo website1. During dry periods, when the discharge at

Lobith is lower than a certain threshold (Table 1), operational

measures need to be taken to distribute the available water among

all water users. Therefore, in this study, we define low-flow events

at Lobith as instances when the discharge falls below the river

discharge threshold outlined in Table 1.

2.2.2 Meteorological data
For the observation data of daily meteorological variables for

the period 1979–2022, we used two different products, the E-

OBS and ERA5 datasets. Section 2.4 further details how they

were used in each experiment. The E-OBS dataset (Cornes et al.,

2018) provides spatially interpolated estimates derived from in-

situ observations at meteorological stations across Europe which

are provided by the National Meteorological and Hydrological

Services (NMHSs) and other data holding institutes, with spatial

1 https://waterinfo.rws.nl/#/nav/index
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resolutions of 0.1 degree. The ERA5 dataset (Hersbach et al., 2023)

is the fifth-generation climate reanalysis of ECMWF providing

atmospheric variables with global coverage at a spatial resolution

of 0.25 degree. Recent research suggests that ERA5 can be an

effective input for rainfall-runoff modeling using LSTMs, despite

its coarser resolution compared to local forcing datasets (Wilbrand

et al., 2023).

For the forecast data of meteorological variables, we use the

SEAS5 dataset (Johnson, 2019). The SEAS5 is the fifth generation

of the ECMWF seasonal forecasting system. It is initialized every

first day of each month, and provides forecasts up to 7 months

ahead for 51 ensemble members on a daily scale. The SEAS5 dataset

used in this study has a spatial resolution of 0.25 degree and has

been bias corrected using scaled distribution mapping (Switanek

et al., 2017) with ERA5 dataset as observational dataset which is

also used to initialize the wflow_sbm model. Since SEAS5 does not

provide potential evaporation information directly, the Makkink

method (De Bruin, 1987) is applied to compute gridded potential

evaporation using the 2-m temperature and incoming shortwave

radiation, both of which are directly available from the dataset. Note

that there can be a difference between the Makkink method used

here and the method employed in ERA5 for generating potential

evaporation. However, previous research (van Osnabrugge et al.,

2019) found that the impact of potential evaporation forcing type

on the Rhine River streamflow forecast is limited.

2.3 Model architecture

In the field of streamflow modeling, more recent studies have

found DL techniques, such as LSTM, to be a promising approach,

providing improvements in prediction accuracy, scalability, and

regional generalization compared to conventional conceptual

models (e.g., Mosavi et al., 2018). LSTM models, specifically

designed for processing sequential data like time series, have been

successfully applied by Kratzert et al. (2018, 2019a) in over 500

basins across the United States, demonstrating that LSTMs trained

on large-sample hydrological datasets are effective tools for rainfall-

runoff modeling. Since then, these recurrent neural networks have

been widely adopted as the preferred data-driven methods for

streamflow prediction and forecasting (Frame et al., 2022; Hunt

et al., 2022; Nearing et al., 2023; Wilbrand et al., 2023). Therefore,

in this study, the decision is made to build a DL model based on

the LSTM architecture. A detailed description of LSTM architecture

can be found in Kratzert et al. (2018).

We design a novel model architecture based on LSTMs,

addressing the need to (1) effectively leverage both historical

observation and forecast data within a single DL model, and (2)

carry out multi-step time series forecasting. An illustration of the

model structure is shown in Figure 3. The architecture utilizes

two LSTMmodels, with one LSTM (LSTM-1) processing historical

observation data and another LSTM (LSTM-2) processing forecast

data. The outputs of LSTM-2 are then fed into the Dense layer,

which produces the final output of 46 predictions simultaneously.

This model structure is inspired by the historical and forecast

modes of operation in process-based operational streamflow

forecast model (Weerts, 2009). LSTM-1 processes sequential

observation data from past L days (X1). The processing continues

up until the forecast initialization time (t). The final cell state

and hidden state of LSTM-1 are passed through a fully connected

layer FCc and FCh respectively, and the resulting states are used

as the initial cell state and hidden state for LSTM-2. The use of

fully connected layers to transfer states between the two LSTMs

is inspired by Gauch et al. (2021) where the transferred states

allow the generation of predictions at multiple timescales. The

resulting hidden state is also concatenated with the input of LSTM-

2 (X2) at each time step, aiming to help LSTM-2 retain and utilize

the historical information summarized by LSTM-1. This choice is

inspired by the work of Wang et al. (2019), where a sequence-to-

sequence model is used with a vectorized history representation

of dialog history to enhance response generation for generative

conversational agents. Along with this additional context, LSTM-

2 processes forecast data and returns the full sequence of outputs to

the Dense layer. The Dense layer subsequently changes the output’s

dimensionality from the preceding layer to 46 predictions.

The model uses a historical sequence length of 270 days

(Kratzert et al., 2019b) for X1, and a forecast sequence length

of 46 days for X2. A less extensive hyperparameter tuning is

conducted for this model architecture, as the hyperparameters of

the LSTM model for streamflow prediction have been studied and

optimized by several studies (Kratzert et al., 2018, 2019b; Gauch

et al., 2021; Nevo et al., 2022) which provide a starting point for the

hyperparameter values used in this study. We use a hidden size of

128 units for both LSTM-1 and LSTM-2, a linear state transfer for

both cell state and hidden state, and a hidden size of 46 units for the

Dense layer. Details on the hyperparameters and training settings

are presented in Supplementary Table 1.

2.4 Experimental design

2.4.1 Experiment 1: feature and target selection
The first experiment explores different spatial resolutions of

meteorological forcing, the use of different target variables, and

the impact of incorporating historical discharge observations. More

specifically, we explore the influence of:

• Spatial resolution. Meteorological variables contain both

spatial and temporal information. The spatial resolution of

these variables can play a crucial role in studying and utilizing

spatial differences. Therefore, we process and utilize the

spatially distributed variables in two different resolutions:

either as averaged values across the entire Rhine basin

(referred to as basin-averaged approach), or as averaged values

over the eight subbasins upstream of Lobith depicted in

Figure 1 (referred to as subbasin-averaged approach).

• Target variable. For model target (output), this study

investigates two options: (1) training the model to forecast

discharge (Q) directly, and (2) training the model to forecast

time-differenced data (dQ), i.e., discharge differences between

two consecutive days. The latter, to predict value changes, is a

common approach used in machine learning.

• Incorporating discharge observations. This study tests the

impact of introducing historical discharge observations at
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FIGURE 3

Schematic illustration of the model architecture used in this study.

Lobith into the initial LSTM (LSTM-1) and its effect on

forecast performance. The approach followed for large-

sample hydrology, developed for prediction in ungauged

basins, omits historical discharge observations, considering

that these can hinder the model ability to comprehend

the underlying physical processes, potentially skewing

the prediction. However, in the context of hydrological

forecasting, the integration of observed data is important for

enhancing forecast performance. It helps adjust model states

to closely align with actual hydrological conditions. Using

the observed discharge allows the network to access recent

information about current hydrological state at the time of

forecast, similar to how process-based hydrological models

using real time discharge observations for state updating.

In this experiment, the meteorological forcings from the E-OBS

and ERA5 datasets are tested sequentially as X1 (inputs of LSTM-

1) and X2 (inputs of LSTM-2) in the DL model. The discharge

data are log-transformed to put more emphasis on the low-flow

parts. The datasets are split into training (1979-10-01 to 2013-

09-30), validation (2013-10-01 to 2016-09-30), and testing (2016-

10-01 to 2019-09-30) subsets. Training and validation subsets are

used to facilitate the learning of data relations and obtain optimal

model parameters. The trained model is then tested on the unseen

testing dataset to provide a fair evaluation of its performance.

This testing period (2016–2019) is selected to include the severe

drought event in 2018, enabling us to assess the model’s ability

to forecast extreme low-flow conditions. The model performance

evaluation is conducted during the testing period, against observed

discharges. Note that for the model trained on dQ, after obtaining

the predicted values of dQ, during the data post-processing phase,

the dQ needs to be added to the discharge from the previous day to

get the predicted discharge. Mean absolute error (MAE) and mean

absolute percentage error (MAPE) are used as evaluation metrics

which are described in detail in Section 2.5.

2.4.2 Experiment 2: operational forecast
The second experiment investigates the capability of the DL

model for low-flow forecasting with SEAS5 data, benchmarked

against the wflow_sbm hydrological model. The optimal feature

and target variables that have emerged from Experiment 1 are used.

During model training and validation, the meteorological forcings

for both X1 (inputs of LSTM-1) and X2 (inputs of LSTM-2) are

from the ERA5 dataset, to ensure consistency with the datasets used

by the wflow_sbm hydrological model. The training period is from

1979-10-01 to 2013-09-30, and the validation period is from 2013-

10-01 to 2016-09-30. During operational forecast, for the trained

model, the historical meteorological forcing for X1 is from the

ERA5 dataset, and the forecasted meteorological forcing for X2 is

from SEAS5. The model processes one ensemble member at a time,

generating 51 predictions for each forecast corresponding to the

51 ensemble members from SEAS5. The forecasts are initialized

from 2017-10-01 to 2022-04-01, on the first day of each month. In
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TABLE 2 Overview of the experimental setup for Experiment 2:

operational forecast.

DL model wflow_sbm
model

Input variables Optimal features from

Experiment 1

tp, t2m, pev

Meteorological dataset Training mode:

X1 and X2 (inputs of

LSTM-1 and LSTM-2):

ERA5 or E-OBS

Forecast mode:

X1: ERA5 or E-OBS

X2: SEAS5

Historical mode:

ERA5

Forecast mode:

SEAS5

Evaluation metrics CRPS, CRPSS, precision, recall, F1 score (see

Section 2.5 for details)

total, there are 55 forecast results. The use of the E-OBS dataset

instead of the ERA5 dataset is also explored in this experiment

as meteorological forcings during model training and validation

as well as operation (from 2017-10-01 to 2020-05-01 based on

data availability).

The DL model forecasts are benchmarked against the

wflow_sbm hydrological model (van Verseveld et al., 2022), a

process-based distributed hydrological model, previously set up

for the Rhine (Imhoff et al., 2020). The wflow_sbm hydrological

model uses a kinematic wave approach for lateral subsurface

and overland and river flow processes. The wflow_sbm model

for the Rhine is currently undergoing experimental testing as a

potential replacement or complement of the current operational

HBV96 model used in the Dutch operational forecast system. In its

historical mode, the model is forced with meteorological data from

ERA5. The internal model states at the end of the historical run are

used as initial conditions for the forecast run. Notably, the current

operational version of this wflow_sbm model does not incorporate

real-time observations for state updates.

The evaluation focus on the results initialized during the

dry season, that is, 25 of the 55 forecast results. In this

experiment, both the DLmodel and the wflow_sbmmodel generate

ensemble forecasts, which are probabilistic forecasts. To assess and

compare their performance, the evaluation employs two metrics:

Continuous Ranked Probability Score (CRPS) and Continuous

Ranked Probability Skill Score (CRPSS) (see Section 2.5 for details).

Furthermore, to compare the performance of both models in

forecasting low-flow events, the model results are post-processed

into the drought or non-drought class. Drought as used here, refers

only to the instances where the discharge falls below the river

discharge threshold outlined in Table 1, without considering the

drought impact. The metrics precision, recall, together with F1

score are used to assess the performance of the modeled binary

classification (drought and non-drought) in comparison to the

actual classification based on observed discharges.

An overview of the experimental setup is provided in Table 2.

2.4.3 Experiment 3: fine-tuning using the SEAS5
dataset

The third experiment explores the flexibility of the DL approach

by fine-tuning the pretrained model with limited SEAS5 dataset,

TABLE 3 Overview of the experimental setup for Experiment 3:

fine-tuning using SEAS5.

DL model

Input variables Optimal feature from Experiment 1

Pre-training Period: training (1979-10-01,

2013-09-30), validation

(2013-10-01, 2016-09-30)

Meteorological dataset:

X1 and X2 (inputs of LSTM-1 and

LSTM-2): ERA5

Fine-tuning Period: training (2019-11-01,

2022-04-01), validation

(2017-10-01, 2018-12-01)

Meteorological dataset:

X1: ERA5

X2: SEAS5 ensemble mean

Testing Period: (2017-10-01, 2018-12-01)

Meteorological dataset:

X1: ERA5

X2: SEAS5

Evaluation metrics CRPS, CRPSS, precision, recall, F1

score (see Section 2.5 for details)

aiming to make the most of the available data and evaluate

its impact on the forecast performance. The DL model is first

pre-trained using the ERA5 dataset. Subsequently, the LSTM-2

and Dense layers of the pre-trained model are fine-tuned, i.e.,

the trainable parameters of the layers are updated, using SEAS5

ensemble mean data. The fine-tuning employs a training subset

from 2019-11-01 to 2022-04-01 and validation subset from 2017-

10-01 to 2018-12-01, with a learning rate of 5e-5. This validation

period is specially chosen to include the severe drought event in

2018. Other model layers are kept frozen. The fine-tuned model is

then tested using SEAS5 ensembles from 2017-10-01 to 2018-12-

01. The test results are compared to the ones from Experiment 2

without fine-tuning.

An overview of the experimental setup is provided in Table 3.

2.5 Evaluation metrics

The evaluation specifically focuses on the results obtained

during the low-flow season, which spans from April to September

when low flows are most likely to occur at Lobith.

In the first experiment, the models are evaluated on the

mean absolute error (MAE) and mean absolute percentage

error (MAPE). MAE, in the same unit as the target (m3 s−1),

offers a straightforward interpretation and is commonly used

in deterministic forecast. This study involves varying discharge

values across different seasons. MAPE, expressed in unit 100%,

normalizes errors by expressing them as a percentage of the

actual demand, which facilitates a more equitable comparison of

forecasting performance across seasons. MAE and MAPE are more

suitable for low flows, as they prevent larger errors, primarily

associated with high flows, from disproportionately influencing the

results, as is the case with MSE or RMSE due to their quadratic

terms. In this study, MAE and MAPE are calculated for each time
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step (lead time) and averaged over the entire forecast time series

within the dry season.

In the second and third experiments, the models are evaluated

on the forecasts initialized during the dry season using the

CRPS and compared with the benchmark using CRPSS. CRPS

quantifies the dissimilarity between the cumulative density function

of the ensemble forecast and the Heaviside function of the true

observation. If there is only one predicted time series (deterministic

prediction), the CRPS is equivalent to the MAE. The optimal value

is 0, and the score increases with the increasing inaccuracy of the

probabilistic forecast. The CRPS can serve as a Skill Score (CRPSS)

by comparing it to a reference forecast. The CRPSS is calculated

using Equation (1). If the model forecast is perfect, its CRPS will be

0, and the CRPSS with regard to reference forecast will become 1.0.

If both forecasts demonstrate equal accuracy, the CRPSS will be 0.

If the model forecast outperforms the reference forecast, the CRPSS

will yield a positive value. Conversely, the CRPSS will be negative.

CRPSS = 1−
CRPSmodel

CRPSreference
(1)

To evaluate the model performance on forecasting low-flow

events during the second and third experiments, the metrics

precision, recall and F1 score are used. For probabilistic forecasts,

we firstly compute drought occurrence probabilities using the river

discharge threshold outlined in Table 1. The drought occurrence

probability is calculated as the ratio of predicted ensemblemembers

that fall below the threshold value. Then, we classify the results

into drought or non-drought. A threshold of 0.5 is applied to

the drought occurrence probabilities. If the drought occurrence

probability is equal or greater than 0.5, the result is classified as

drought. If the drought occurrence probability is smaller than 0.5,

the result is classified as non-drought. Finally, the precision, recall

and F1 scores for different lead times are computed based on

the forecasted binary classification (drought and non-drought) in

comparison to the actual classification from observed discharges.

Precision, also known as positive predictive value, is calculated as

TP/(TP+FP). Recall, also referred to as hit rate or true positive

rate, is calculated as TP/(TP+FN). TP stands for true positive, FP

stands for false positive, and FN stands for false negative. F1 score

is the harmonic mean of the precision and recall, thus representing

both precision and recall in one metric. An F1 score of 1.0 indicates

perfect precision and recall, and the lowest possible value is 0, if

either precision or recall are zero.

3 Results and discussion

In this section, we first present the results and analysis of

Experiment 1 on the selection of feature and target variables. This

is followed by the results of Experiment 2, for which we investigate

the capability of the DL model for operational forecast with SEAS5

and benchmark the DL model against the wflow_sbm hydrological

model in forecasting low flows and drought events. Lastly, for

Experiment 3, we examine whether the fine-tuned approach using

SEAS5 enhances the forecast performance.

3.1 Feature and target selection

The first experiment explores different spatial resolutions of

meteorological forcing, the use of different target variables, and the

impact of incorporating historical discharge observations. Figure 4

shows the MAE andMAPE of test results from Experiment 1, using

the E-OBS dataset and meteorological forcing as input variables on

different combinations of spatial resolutions and target variables.

The experiment results using the ERA5 dataset are presented in the

Supplementary material.

Comparing line (a) and (b), when using Q as target, the MAE

of the subbasin-averaged approach decreases by approximately 25

m3 s−1 for all lead times compared to the basin-averaged approach.

Comparing line (c) and (d), when using dQ as target, the MAE

differences between the two approaches are minor for the first

few lead times but keep increasing with an increasing lead time,

i.e., the forecast horizon. Similar trends are obtained using the

ERA5 dataset. The results indicate that using the subbasin-averaged

approach for the meteorological forcing significantly improves

the model performance regardless of the target variables. This

aligns with expectations since the discharge at Lobith originates

from different subbasins in different seasons, and a subbasin

spatial resolution allows the model to capture the information

from various subbasins at different times. In contrast, using the

basin-averaged approach would obscure this crucial information.

Also, when averaging to the whole basin, many precipitation

rates, especially, become very low and irrelevant. This finding is

consistent with previous studies (Troutman, 1983; Shah et al., 1996;

Khakbaz et al., 2012) which have shown that considering the spatial

variabilities of meteorological forcing, particularly precipitation,

has a significant impact on the hydrologic response of basins.

Regarding the target variables, from Figure 4 we can see that

employing dQ as target greatly improves themodel performance for

short lead times (1–6 days) compared to using Q as target, which is

crucial for operational forecast as it ensures the forecast starts from

an accurate state. However, after lead time = 21, the improvement

provided by using dQ as a target variable diminishes for longer

lead times due to error propagation along the forecast horizon,

while the performance of using Q as target becomes stable for

longer lead times. A similar trend is found using the ERA5 dataset,

except that the MAE crossover point using different targets occurs

earlier, around lead time = 11. For the application to real-world

operations, we can leverage both approaches. For stakeholders

involved in operational decision-making that prioritizes accurate

short-term forecasts, emphasizing the use of dQ as the target

variable ensures reliability and accuracy at the onset of the forecast

horizon. On the other hand, for stakeholders involved in long-term

planning, focusing on Q as the target variable provides a stable

forecasting performance for extended lead times.

We also explored incorporating historical discharge at

Lobith into LSTM-1 in the DL model. The experiment results,

using the E-OBS dataset (Figure 5) and the ERA5 dataset

(see Supplementary Figures 2, 3), show the positive impact of

incorporating historical discharges (Q_his) on the overall model

performance, regardless of the target variables used. From

Figure 5, we can see that when using Q as target, the inclusion

of historical discharges leads to a substantial improvement

in model performance, particularly for short lead times. In
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FIGURE 4

MAE and MAPE of Experiment 1 results using the E-OBS dataset and meteorological forcing as input variables on di�erent combinations of spatial

resolutions and target variables.

contrast, when using dQ as a target variable, the improvement

in performance is not as pronounced for short lead times (1–

11 days), which shows the model’s ability in forecasting low

flows using only meteorological inputs. Nonetheless, as lead time

increases, the benefit of incorporatingQ_his becomesmore evident.

A comparison between line (e) and (f) in Figure 5 illustrates that,

even when incorporating Q_his, using dQ as the target variable

continues to outperform using Q as target for short lead times, and

the performance gap between using dQ and Q as respective target

variable diminishes as lead time increases.

It should be noted that in this experiment, we use a 270-

day length, also called a lookback window, of historical discharge

(Q_his) as an input variable, aligning it with the sequence length of

the meteorological variables. The influence of using other lookback

windows for this specific application has not been performed.

Further investigation is necessary to understand the effect of

varying Q_his lengths on model performance as it can help identify

and prevent input redundancy.

In Experiment 1, two datasets are tested, i.e., E-OBS and ERA5,

to explore their impacts on the model performance. From Figure 6,

when using Q as target, the performances of models using E-OBS

and ERA5 are comparable, regardless of whether Q_his is included

in the inputs. The maximum MAE difference is around 25 m3 s−1.

However, when using dQ as target, the performance of the model

using the ERA5 dataset is notably inferior to that using E-OBS,

especially for longer lead times, where the average MAE difference

can reach beyond 30–50 m3 s−1. This observation suggests that dQ

is more sensitive to the dataset used.

3.2 Operational forecast

The second experiment investigates the capability of the DL

model for low-flow forecasting with SEAS5 data, benchmarked

against the wflow_sbmmodel. Based on the findings of Experiment

1, we continue our analysis using DL models with subbasin-

averaged meteorological forcing and Q_his as inputs, and dQ as

target. If no further clarification is provided, the results shown in

this section are using the ERA5 dataset for X1 (inputs of LSTM-1)

and the SEAS5 dataset for X2 (inputs of LSTM-2.

The example presented in Figure 7 demonstrates the forecast

results of the DL model and wflow_sbm model with SEAS5

initialized on 2018-08-01. In this forecast, the DL model exhibits

a strong performance in predicting this low-flow event. The

forecast of the DL model begins with an accurate initial state,

resulting in well-predicted discharge values for the first 6 days

compared to the observed data. The median values closely align

with the observed values throughout the entire forecast horizon.

And all 46 observations fall within the 33–66% band of the

DL model forecasts. In contrast, for the wflow_sbm model, the

initial state is not corrected using near real time observations

leading to an initial offset from the ground truth in the first few

days. As the lead time increases, the wflow_sbm model tends to

underestimate the discharge, thereby overestimating the severity of

the drought conditions.

The forecast results initialized during the dry season are

evaluated using CRPS. The DL model exhibits lower CRPS

values compared to the wflow_sbm model for both short

and long lead times, indicating higher forecast accuracy (see

Supplementary Figure 4). To facilitate the comparison, the CRPSS

of the DL model is computed relative to the wflow_sbm forecast

results and shown in Figure 8. The median values for all lead

times are above zero, indicating that the DL model exhibits skill

in forecasting discharge during the dry season, with improved

performance over the wflow_sbm model.

The discharge forecast results are post-processed into drought

occurrence probability using the river discharge threshold in

Table 1, based on which the forecasted event classifications

(drought or non-drought) are obtained. Figure 9 shows an example

forecast result of drought occurrence probability initialized on

2018-08-01. Within a lead time of up to 31 days, both the DLmodel

and the wflow_sbm model accurately predict drought events, even

though the drought occurrence probabilities from the wflow_sbm

model are slightly higher than those from the DL model. However,

for lead times after 31 days, both models struggle to classify the

event between lead times 36–41 days.
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FIGURE 5

MAE and MAPE of Experiment 1 results using E-OBS dataset and subbasin-averaged approach on di�erent combinations of input variables and target

variables. Q_his stands for historical discharge observations. Lines (b) and (d) in this figure are taken from Figure 4.

FIGURE 6

MAE of Experiment 1 results using di�erent dataset, i.e., E-OBS and ERA5. The left figure presents the results using Q as target and a

subbasin-averaged approach, while the right figure presents the results using dQ as target and a subbasin-averaged approach.

FIGURE 7

Forecast results of the DL model and the wflow_sbm model with SEAS5 initialized on 2018-08-01.

Figure 10 presents the F1 score of drought forecasting results

from the DL model and the wflow_sbm model across different

lead times. The results of precision and recall values can be found

in Supplementary Figure 5. In the initial lead times (1–11 days),

the DL model has higher F1 scores compared to the wflow_sbm

model which as mentioned before does not have initial state

update using near real time observations. This suggests that the

DL model exhibits better accuracy in forecasting drought events
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within short lead times. For lead times 11-21 days, the F1 scores

of the wflow_sbm model are equal or higher than those of the DL

model. In the subsequent lead times 21–31 days, the DL model

maintains slightly higher F1 scores. But for lead times after 31 days,

the wflow_sbm model has higher scores.

In this experiment, the comparison between the DL model

and the wflow_sbm model might not have been conducted under

the most optimal conditions for the two models. This is because

the wflow_sbm model used in this comparison does not have any

state update mechanism, potentially causing it to initiate from an

incorrect initial state. This discrepancy could have influenced its

performance across the entire forecast horizon. If the wflow_sbm

results were corrected for this initial bias, it potentially would

provide a stronger basis for benchmarking the DL model.

Furthermore, the DL model is trained on data from the

year 1979 to 2016, and the trained model is then used for all

forecasts. However, for operational use, it is preferable to train

the model using as much data as possible prior to initialization.

Different training strategies could impact the forecast skill of the

DL model, and it is hypothesized that utilizing more training data

can improve its performance in the forecast mode. Although this

study does not explore this aspect, it presents an opportunity for

future improvements.

Another crucial point to discuss is the choice of data sources in

this experiment. During training, ERA5 is used for both LSTMs in

the model, while in the forecast mode, ERA5 is used for X1 (inputs

of LSTM-1) along with SEAS5 for X2 (inputs of LSTM-2). SEAS5

data is not used for training due to the limited number of samples

available. Although this setup leaves the forecast mode vulnerable

to biases present in SEAS5, this might be mitigated to some extent

since ERA5 and SEAS5 are both generated using the atmospheric

model ECMWF Integrated Forecast System (IFS). Additionally,

using SEAS5 in the forecast mode allows for testing the robustness

of the DLmodel when utilizing a different dataset from the training

phase. The same experiment is conducted using E-OBS instead

of ERA5. The results of using E-OBS (Supplementary Figure 6)

indicate a deterioration in the DL model’s performance compared

to the experiment with ERA5 (Figure 8), especially for lead times

beyond 31 days. This underscores the importance of using same or

similar data sources for both training and forecasting phases.

In terms of computational efficiency in this experiment, it is

worth mentioning that, in forecast mode, the DL model’s runtime

for one forecast result is around 2 s including pre- and post-

processing when using Google Colab with a T4 GPU, while the

wflow_sbm model runtime is around 2 h for one forecast result

with a 7-month lead time using CPU. However, the DL model

only predicts a single variable at a specific location, whereas the

wflow_sbm model generates multiple variables for every model

grid cell.

3.3 E�ect of fine-tuning

As mentioned in the precious experiment, SEAS5 data is not

used for training due to the limited data available. The third

experiment explores the flexibility of the DL approach by fine-

tuning the pretrained model with limited SEAS5 dataset, aiming to

FIGURE 8

CRPSS of the DL model forecasts compared to the wflow_sbm

model forecasts. The dashed line indicates the CRPSS value of zero.

make the most of the available data and evaluate its impact on the

forecast performance. The experiment employs the same setup of

Experiment 2, utilizing the same feature and target variables. The

historical meteorological inputs are from the ERA5 dataset. The

fine-tuned model is tested using SEAS5 ensembles from 2017-10-

01 to 2018-12-01. In total, there are 15 forecast results, 6 of which

are initialized during the dry season from April to September.

The test results from the fine-tuned model are evaluated

against the non-fine-tuned model on the same period using CRPSS

(Figure 11). The median CRPSS values for lead times from 2 to

18 days indicate small improvement attributed to fine-tuning.

Nevertheless, the median values for lead times beyond 18 days fall

slightly below zero, suggesting that fine-tuning brings about a slight

degradation rather than enhancement in forecasting skill for longer

lead times.

The F1 score of drought forecasting results from the fine-

tuned model and the non-fine-tuned model are shown in

Figure 12. The precision and recall results can be found in

Supplementary Figure 7. For lead times from 1 to 31 days, the

F1 score of the two models exhibit close alignment. Notably,

the fine-tuned model demonstrates higher precision for certain

lead times, while the non-fine-tuned model shows higher recall

for specific lead times. Nevertheless, for lead times beyond

31 days, the fine-tuned model registers zero F1 scores, in

contrast to the non-fine-tuned model which maintains non-

zero scores. This discrepancy suggests that the fine-tuned model

encounters difficulty in forecasting drought events for longer

lead times.

The fine-tuning using SEAS5 ensemblemean appears to worsen

the forecast performance for lead times beyond 31 days. One

plausible explanation for this phenomenon could be attributed to

the use of the ensemble mean forecasted data for fine-tuning. The

meteorological forecast ensembles exhibit limited spread during

the initial lead times, for which the ensemble mean serve as an

estimate of the expected values for each ensemble. However, as the
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FIGURE 9

Drought forecasting results (drought occurrence probabilities and classifications) of the DL model and the wflow_sbm model with SEAS5 initialized

on 2018-08-01. The dashed line indicates the threshold of 0.5 applied to the drought occurrence probabilities. The observed event classes (drought

or non-drought) are provided with the background orange bar color.

FIGURE 10

F1 score of drought forecasting results from the DL model and the wflow_sbm model with SEAS5.

lead time increases, themeteorological forecast ensemble variability

increases significantly, making the ensemble mean insufficient to

represent the full spectrum of forecast probabilities. Furthermore,

we use a relatively small dataset for the fine-tuning process.

Consequently, the utilization of the limited ensemble mean dataset

for fine-tuning might inadvertently introduce biases into the

model predictions.

The experiment involves a relatively small sample of the SEAS5

dataset. A total of 30 samples are allocated for training and 15

samples for validation, leaving only 15 samples available for testing.

Moreover, to establish a validation dataset, the ensemble means

of the 15 validation samples overlapping with the testing period

are employed during the fine-tuning process. Despite the limited

dataset, the experiment findings underscore the influence of fine-

tuning on model performance.

4 Limitations and future works

This study aims to explore the potential of LSTMs for low-flow

forecasting for the Rhine River at Lobith with a lead time of up to 46

days. Based on the results and discussions, several limitations of this

study are identified, along with recommendations for improvement

and future research.

Regarding the input data, the study utilizes three

meteorological variables – total precipitation (tp), 2-meter

temperature (t2m), and potential evaporation (pev) – to describe

the meteorological conditions over time. However, the influences

of these variables on the DL models are not studied. It is therefore

suggested to conduct a SHAP (SHapley Additive exPlanations)

analysis (Lundberg and Lee, 2017) to assess how these three

variables impact the model results. Furthermore, future studies
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might explore the integration of a broader set of variables from

sources such as ERA5 or E-OBS.

In addition to the historical discharges utilized in this study,

other hydrological variables such as snow melt, soil moisture or

water levels from Lake Constance or information on reservoir

operations might be valuable to explore as input to the DL model,

given that the water storage in snowpack and large lakes particularly

in Switzerland influence the contribution of discharge at Lobith

during dry periods (Demirel et al., 2013).

Regarding the choice of a loss function, the study uses the

mean squared error (MSE), which is commonly employed in the

FIGURE 11

CRPSS of the fine-tuned DL model forecasts compared to the

non-fine-tuned DL model. The dashed line indicates the CRPSS

value of zero.

DL models. However, it is recommended to explore alternative

objective functions that are suitable for time series forecasting of

non-stationary signals and multiple future steps prediction. One

promising alternative is the DILATE function developed by Le

Guen and Thome (2019). The DILATE function aims to accurately

predict sudden changes and incorporates terms that facilitate

precise shape and temporal change detection. This loss function

would be beneficial for predicting the timing, specifically the start

and end of drought events in this study. Additionally, in the case

of using dQ as the target variable, it might be beneficial to explore

a directional loss function, which has the potential to guide the

model in focusing on not only the magnitude but also the direction

of changes.

In Experiment 1 – feature and target selection, it has been found

that the best performance is obtained when using dQ as the target

variable, along with tp, t2m, pev, and Q_his as input variables. This

finding specifically applies to the Rhine River at Lobith, where long-

term continuously measured discharges are available. However,

for predictions in ungauged basins where observed discharges are

lacking, only general meteorological forcing (e.g., tp, t2m, pev)

may be accessible. As a result, there is potential to investigate

the viability of forecasting ungauged basins through transfer

learning. This involves training a rainfall-runoff model on large-

sample dataset with onlymeteorological variables as inputs, thereby

contributing to a broader applicability of the developed model.

Regarding the fine-tuning approach, it would be valuable to

explore with more SEAS5 data. Also, instead of using the forecasted

ensemble mean, incorporating various time series outputs from

the ensembles, such as the minimum, 25th percentile, median,

75th percentile and maximum, could yield worthwhile insights

and improvements.

For the application of the DL model in real-world operations,

it is important to provide a prediction interval that captures the

FIGURE 12

F1 score of drought forecasting results from the DL with and without fine-tuning.
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uncertainty of the predicted values. It is recommended that this be

included in future works. Also, adapting the model for hourly time

steps and training with meteorological datasets used in operation

can be valuable for smaller catchments.

5 Conclusion

This research explores the potential of using LSTMs for low-

flow forecasting for the Rhine River at Lobith on a daily scale

with lead times up to 46 days ahead. A novel LSTM-based model

architecture is designed to leverage both historical observations and

forecasted meteorological data to carry out multi-step discharge

time series forecasting.

The investigation into feature and target selection yields

the following key insights: (1) Opting for subbasin-averaged

meteorological variables significantly improves model performance

compared to a basin-averaged approach. (2) Utilizing time-

differenced data (dQ) as the target boosts short-term forecast

accuracy compared to Q, but this advantage diminishes after a lead

time of 20 days due to error propagation. In contrast, using Q as

the target variable results in a stable performance for longer lead

times. (3) While incorporating historical discharge improves the

forecasting of Q, its impact on predicting dQ is less pronounced

for short lead times, highlighting the model’s ability in generating

accurate forecasts using only meteorological inputs.

In the operational forecast with SEAS5, the DL model exhibits

skill in forecasting low flows, with improved performance over

the benchmark wflow_sbm model, as evidenced by CRPSS median

values of all lead times above zero. The assessment of drought

forecasting precision and recall reveals that the DL model exhibits

better accuracy in forecasting drought events within short lead

times. The wflow_sbm model shows higher accuracy for longer

lead times. From operational perspective the point DL model

is significantly faster than the wflow_sbm model, although the

wflow_sbm model provides multiple modeled state variables for

each grid cell.

In exploring the fine-tuning approach with the SEAS5 dataset,

the fine-tuning makes small improvement over non-fine-tuned

model for short lead times, but encounters difficulty in forecasting

drought events for longer lead times. Despite the limited dataset,

the experiment underscores the influence of fine-tuning on model

performance. For future research, it would be valuable to explore

the fine-tuning approach with more SEAS5 data and incorporating

various time series outputs from the ensembles.

Compared to the previous studies on forecasting low flows for

the Rhine River for longer lead times (e.g., Demirel et al., 2013;

Yossef et al., 2013; Klein andMeißner, 2018; Hurkmans et al., 2023),

the DL model in this study shows skills for forecasting low flows

with lead times up to 5–6 weeks, not only during the spring and

early summer periods but also extending to the late summer and

early autumn periods.

Overall, this study contributes to advancing the field of low-

flow forecasting using a deep learning approach. Future research

could explore additional improvements to the model performance,

investigate the viability of forecasting ungauged basins through

transfer learning, add prediction intervals for each lead time, and

adapt for hourly time steps for smaller catchments.
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