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Freshwater ecosystems, including lakes, wetlands, and running waters, are

estimated to contribute over half the natural emissions of methane (CH4) globally,

yet large uncertainties remain in the inland water CH4 budget. These are related to

the highly heterogeneous nature and the complex regulation of the CH4 emission

pathways, which involve di�usion, ebullition, and plant-associated transport. The

latter, in particular, represents a major source of uncertainty in our understanding

of inland water CH4 dynamics. Many freshwater ecosystems harbor habitats

colonized by submerged and emergent plants, which transport highly variable

amounts of CH4 to the atmosphere but whose presence may also profoundly

influence local CH4 dynamics. Yet, CH4 dynamics of vegetated habitats and their

potential contribution to emission budgets of inland waters remain understudied

and poorly quantified. Here we present a synthesis of literature pertaining CH4

dynamics in vegetated habitats, andwe (i) provide an overviewof the di�erentways

the presence of aquatic vegetation can influence CH4 dynamics (i.e., production,

oxidation, and transport) in freshwater ecosystems, (ii) summarize the methods

applied to study CH4 fluxes from vegetated habitats, and (iii) summarize the

existing data on CH4 fluxes associated to di�erent types of aquatic vegetation and

vegetated habitats in inland waters. Finally, we discuss the implications of CH4

fluxes associated with aquatic vegetated habitats for current estimates of aquatic

CH4 emissions at the global scale. The fluxes associated to di�erent plant types

and from vegetated areas varied widely, ranging from−8.6 to over 2835.8mg CH4

m−2 d−1, but were on average high relative to fluxes in non-vegetated habitats.We

conclude that, based on average vegetation coverage and average flux intensities

of plant-associated fluxes, the exclusion of these habitats in lake CH4 balances

may lead to a major underestimation of global lake CH4 emissions. This synthesis

highlights the need to incorporate vegetated habitats into CH4 emission budgets

from natural freshwater ecosystems and further identifies understudied research

aspects and relevant future research directions.
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1 Introduction

Freshwater ecosystems, including wetlands, lakes, reservoirs,
rivers, and streams, play an important role in global carbon
cycling and are estimated to contribute roughly 50% to global
methane (CH4) emissions: 149 ± 15 Tg CH4 yr−1 for wetlands
and 151 (± 73.0) Tg CH4 y−1 for lakes (Saunois et al., 2020;
Rosentreter et al., 2021). Estimates of CH4 emissions are, however,
highly variable, and freshwater systems represent a major source of
uncertainty in the global CH4 budget (Saunois et al., 2020). Within
freshwater systems, there are several major sources of uncertainty,
that include the large temporal and spatial heterogeneity that
characterizes CH4 fluxes, as well as system and geographic biases
in the extant data bases (Rosentreter et al., 2021). One additional
source of uncertainty is CH4 emissions from vegetated habitats
within inland waters. Aquatic plants, and in particular emergent
macrophytes, which colonizemany inlandwaters, have been known
for a relatively long time to be potentially important sources of
CH4 (Carmichael et al., 2014). Studies focusing on single systems
have shown that fluxes from vegetated areas can disproportionately
contribute to the total CH4 emissions, up to 78% even when the
only a limited area of the entire system is vegetated (Dacey and
Klug, 1979; Holzapfel-Pschorn et al., 1986; Larmola et al., 2004;
Desrosiers et al., 2022), yet these habitats are seldom accounted
for in aquatic CH4 budgets, whether at the ecosystem, regional, or
global scales. A notable exception is the recent study on emergent
vegetation in arctic-boreal lakes which indicates that accounting for
the vegetation increases CH4 emission estimates by 21% (Kyzivat
et al., 2022). The general omission of vegetated habitats in aquatic
CH4 budgets is partly a consequence of the fact that the distribution
of aquatic vegetation is itself highly heterogeneous, the information
on greenhouse gas dynamics associated to this aquatic vegetation
is fragmented, biased geographically and by ecosystem type, and
the approaches used are often not comparable. As a result, the
contribution of aquatic vegetation to whole ecosystemCH4 budgets
remains largely unquantified, and this is perhaps one of the
largest sources of uncertainty in the current global inland water
CH4 budget.

Clearly, the contribution of vegetated areas to total system
emissions from inland waters depends on the extent of vegetation
coverage on the one hand and the impact of plants on
CH4 dynamics on the other. CH4 emissions reported from
vegetated sites vary widely—being higher or lower—than those of
surrounding unvegetated sites (see an overview in e.g., Kosten et al.,
2016), although they tend to be in the upper range of aquatic fluxes
(Kyzivat et al., 2022). This large variability has been attributed to
differences in the influence on CH4 production, CH4 oxidation,
and CH4 transport (Fritz et al., 2011; Dean et al., 2018; Grasset
et al., 2018). The influence of vegetation on these processes varies
among plant species (Holzapfel-Pschorn et al., 1986; Yoshida et al.,
2014; Villa et al., 2020) and depends on a variety of variables,
including plant biomass (particularly below-ground biomass; e.g.,
Liu et al., 2019), CH4 concentration around the roots (Struik et al.,
2022), plant growth dynamics (Kankaala et al., 2003), plant tissue
composition (Grasset et al., 2019), sediment temperature (Kankaala
et al., 2004), sediment composition (Kankaala et al., 2005), water
depth (Ding et al., 2002) and herbivory (Dingemans et al., 2011),

all of which vary seasonally, leading to seasonal differences in
CH4 emissions. This long list highlights the complexity of the
mechanistic underpinnings of plant impacts on CH4 fluxes and
the challenges associated with understanding and predicting these
processes, to be able to accurately extrapolate and upscale CH4

emissions from aquatic vegetated areas across ecosystems at
regional and even global scales.

Insight into the quantitative effect of aquatic vegetation on CH4

fluxes is in part hampered by the wide range of different approaches
that have been used to assess plant effects on CH4 emissions,
which vary in the type of fluxes they include. Some studies have
focused exclusively on the flow of CH4 through the plant tissue—
mostly in emergent plants (Sanders et al., 2007) -, whereas other
studies have assessed CH4 fluxes more generally within vegetated
habitats. Within the latter, a few have made the distinction between
direct and indirect plant effects; some have included the effect
of plants on ebullition (Davidson et al., 2018; Desrosiers et al.,
2022), others have explicitly excluded ebullition (e.g., Petruzzella
et al., 2015). This diversity of approaches complicates comparison
among studies, and is also reflected in the rather inconsistent
use of the term “plant-mediated” or “plant-associated” fluxes to
indicate both direct plant-mediated emissions (direct transport by
the plants), and emissions that occur in habitats that are dominated
by plants, which include both direct fluxes from plants and other
effects plants have on CH4 emissions in the habitat. While both
definitions are linguistically correct, the pathways and implications
are very different. To avoid ambiguities, we use the term plant-
associated CH4 fluxes generically to denote CH4 fluxes occurring in
vegetated habitats, and these include direct plant-mediated fluxes
and other CH4 emission pathways that occur in these vegetated
habitats. In this work, we aim to advance the understanding of the
effect of aquatic vegetation on the CH4 dynamics and emissions in
inland waters, to advance the quantification of CH4 emissions from
vegetated habitats, and to identify knowledge gaps. We conducted
a semi-quantitative literature review, aiming at (i) providing an
overview of the different ways aquatic vegetation can influence
CH4 production, consumption, and transport (Section 2), (ii)
providing an overview of approaches applied to measure CH4

fluxes associated to aquatic plants and the determine the potential
effect of aquatic vegetation on CH4 dynamics (Section 2), and (iii)
summarizing the extant data on CH4 fluxes of vegetated areas and
its variation (Section 3). Finally, we discuss the implications of CH4

fluxes from vegetated habitats in inland waters for current global
CH4 estimates (Section 4).

2 The impact of vegetation on CH4

dynamics

This section summarizes the effects of aquatic vegetation on
CH4 production, oxidation, and transport (Figure 1). For a more
elaborate discussion on plant effects on CH4 emissions in different
ecosystems, we refer to Bastviken et al. (2023). More details on the
physiology of plant CH4 transport can be found in Vroom et al.
(2022).
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FIGURE 1

Plant-mediated processes that influence methane (CH4) emissions from freshwater systems. The depicted plant represents a hybrid of emergent,

floating, and submerged vegetation to illustrate the main processes of these three di�erent functional groups. The water layer is divided into an oxic

(light blue) and anoxic (dark blue) zone. The processes illustrated are related to CH4 production (1-6, red), CH4 oxidation (a-d, blue) and CH4

transport (I-III, yellow). Plant-associated e�ects on CH4 production include the provision of organic carbon through root exudates (1) and decaying

organic matter (2), sediment accumulation due to reduced water flow (3), dissolved carbon release followed by oxic methanogenesis in the water

column (4), CH4 production within the plant (5) and reduced sediment resuspension (6). CH4 oxidation is a�ected by radial oxygen loss (ROL) in the

root zone (a) potentially related to photosynthesis (b), CH4 oxidation by epiphytic and endophytic methanotrophs (c), and oxygen (O2) availability in

the oxic water or sediment layer (d). Plants can alter the transport of CH4 by serving as a bypass between the anoxic sediment and the atmosphere (I),

by impeding the movement of bubbles from the water to the atmosphere (II), and by reducing water-atmosphere gas exchange (III).

2.1 CH4 production

CH4 is for a large part a final product of organic matter
decomposition bymethanogenic archae in anaerobic environments
and is produced mainly in sediments (Bastviken, 2009). Plant-
associated effects on CH4 production are described below and
include the provision of organic carbon through root exudates
and decaying organic matter and sediment accumulation due to
reduced water flow. In addition, plants release dissolved carbon in
the water column—potentially followed by oxic methanogenesis—
and CH4 production may take place within the plant (Figure 1).

Decaying plant matter can enhance CH4 production in the
sediment by promoting anoxia, and by providing organic substrates
for methanogens (Webster and Benfield, 1986; Segers, 1998;
Marinho et al., 2015). The intensity of methanogenesis depends on
plant species and composition of the decaying matter. In a study
of a boreal lake, for instance, Lemna trisulca detritus produced
twice as much CH4 per gram biomass as Phragmites australis

detritus (Kankaala et al., 2003). Bottles incubation experiments

showed that CH4 production was positively related to a plant’s
water content, and negatively related to its C:N and C:P ratio
(Grasset et al., 2018, 2019). Root exudates also form an important
pool of labile carbon substrates, such as acetate potentially fueling
methanogenesis (Joabsson et al., 1999; Ström et al., 2003). Acetate
exudation per gram root can vary considerably between plant
species. For instance, Eriophorum vaginatum may release over
seven times more acetate than Carex rostrata and Juncus effusus

(Ström et al., 2005). The release of labile organic carbon could fuel
methanogenesis not only in the sediment, but also in the oxic water
column, as has been suggested for algae in rivers and lakes (Bogard
et al., 2014; Donis et al., 2017; Mei et al., 2020). Besides enhancing
methanogenesis, root exudates may suppress CH4 oxidation by
competition for electron acceptors, as was found in a thermokarst
bog (Turner et al., 2020).

In addition to producing organic matter that can serve as
a precursor for methanogenesis, aquatic vegetation can increase
sedimentation rates by reducing water flow velocity and turbulence
(Sand-Jensen and Pedersen, 1999; Clarke, 2002). In particular, fine
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organic sediments form an optimal environment for methanogens
due to high sediment surface area and a high potential for microbial
biofilm formation (Sanchez et al., 1994; Grasset et al., 2019;
Bodmer et al., 2020). Methanogenesis may therefore be enhanced
in vegetated areas of water bodies due to high sedimentation rates
(Kankaala et al., 2005; Crawford and Stanley, 2016).

An additional CH4 production pathway could be oxic, non-
enzymatic production of CH4 within plants (Keppler et al., 2006;
Bruhn et al., 2012). This process has been observed in living and
litter material of several terrestrial plant species and is likely related
to the oxic chemical breakdown of pectin when a plant is exposed
to UV radiation or other stressors (Keppler et al., 2008; Wang et al.,
2011). This process has been suggested to take place inmacrophytes
as well (Hilt et al., 2022).

2.2 CH4 oxidation

Aerobic CH4 oxidation (i.e., consumption), performed by
methane-oxidizing bacteria, is most extensive at the oxic–anoxic
interface where both O2 and CH4 are available (Bastviken, 2009).
Plants affect CH4 oxidation by radial oxygen loss (ROL) in the
root zone (potentially related to photosynthesis), CH4 oxidation by
epiphytic and endophytic methanotrophs, and O2 availability in the
oxic water or sediment layer (Figure 1).

To overcome anoxia-related problems in waterlogged soils,
many vascular wetland plants transport oxygen from their shoots
to below-ground tissues. O2 is transported within gas-filled
aerenchyma via diffusion and/or pressurized flow (Armstrong,
1980; Colmer, 2003; Vroom et al., 2022). This process supplies O2

to roots and rhizomes and can also result in radial O2 loss (ROL)
to the rhizosphere. ROL enables the detoxification of harmful
substances (e.g., sulphide), enhances nutrient uptake, and alters the
microbial community structure (Galand et al., 2005; Robroek et al.,
2015). The increased O2 availability in the rhizosphere enhances
aerobic CH4 oxidation (Aben et al., 2022). The importance of
ROL in regulating CH4 emissions is strongly dependent on plant
species and developmental stage (van der Nat and Middelburg,
1998). For example, Ström et al. (2005) showed that Carex-
dominated vegetation in peat monoliths emitted more than twice
as much CH4 as Eriophorum-dominated vegetation due to a lower
degree of rhizospheric CH4 oxidation in Carex. In a Patagonian
bog colonized by cushion plants (Astelia pumila and Donatia

fascicularis), intense CH4 oxidation as a result of ROL suppressed
CH4 emissions completely (Fritz et al., 2011). ROL can also occur
in floating plants and adventitious roots, reducing dissolved CH4

concentrations in the water column (Visser et al., 2000; Kosten
et al., 2016; Fonseca et al., 2017).

Besides enhancing CH4 oxidation, ROL can suppress
methanogenesis, as O2 availability results in the oxidation of
the alternative electron acceptors nitrate, manganese (IV), iron
(III), and sulphate. The use of these alternative electron acceptors
in organic matter decomposition is energetically favorable
compared to methanogenesis. O2 release in the rhizosphere can,
therefore, indirectly repress methanogenesis, depending on the
pool of alternative electron acceptors and the magnitude of ROL
(Laanbroek, 2010).

The presence of vegetation can alter O2 concentrations not only
in the sediment but also in the water column. Floating vegetation
forms a barrier at the water-air interface, limiting gas exchange.
This reduces O2 diffusion into the water column and dissolved
CH4 release to the atmosphere (Attermeyer et al., 2016; Kosten
et al., 2016). Additionally, light limitation by overlying vegetation
can reduce O2 supply by primary production, thereby potentially
reducing CH4 oxidation (King, 1990). On the other hand, the lower
light intrusion may also increase CH4 oxidation by preventing light
inhibition (Thottathil et al., 2018). The physical barrier formed
by floating plants also captures bubbles, enhancing their residence
time and potential dissolution and subsequent oxidation of CH4

(Kosten et al., 2016).
In addition to impactingmicrobial processes through alteration

of their physical environments, certain plant species also harbor
methanotrophs directly on or within their tissues. Epiphytic
methanotrophs have been found on the shoots of a range of
emergent and submerged plant species (Heilman and Carlton,
2001; Sorrell et al., 2002; Yoshida et al., 2014; Ávila et al.,
2019). Endophytic methanotrophs have been found in Sphagnum

mosses and several vascular peatland plants (Raghoebarsing
et al., 2005; Stepniewska et al., 2018). Iguchi et al. (2019)
showed that duckweed colonizing freshwater lakes are not only
inhabited by methanotrophs, but the duckweed plant actually
has an enhancing effect on methane oxidation. Duckweed may
stimulate methanotrophic growth, presumably by contributing
certain metabolites (Iguchi et al., 2019).

2.3 CH4 transport

Besides affecting CH4 production and consumption processes,
aquatic vegetation plays a key role in CH4 transport. On the
one hand, plants can affect two main pathways of CH4 emission
from freshwater ecosystems to the atmosphere diffusion across the
air-water interface and ebullition (escape of CH4 in gas bubbles
directly from the sediments to the atmosphere) (Figure 1) On
the other hand, emergent rooted aerenchymous plants represent
a direct conduit for CH4 from the sediment to the atmosphere,
allowing CH4 to bypass oxidation in oxic sediment and water
layers (Chanton and Dacey, 1991; Vroom et al., 2022). This has
also been observed for floating plants rooting in the sediments of
shallow waters (Oliveira-Junior et al., 2018). As CH4 transport is
a side effect of ROL, it can be affected by plant functional traits
and the presence of pressurized flow (Brix, 1993). Similar to ROL,
plant-mediated CH4 transport is affected by, among other factors,
temperature, light intensity, plant tissue porosity, ambient rates
of photosynthesis, and stomatal conductance, and may therefore
vary diurnally and seasonally (Yavitt and Knapp, 1995;Whiting and
Chanton, 1996; Kim et al., 1999). Damage or herbivory may result
in enhanced CH4 transport: CH4 emissions of damaged (clipped)
plants increased to 160% of control values for Carex aquatilis

(Schimel, 1995), and similar results were observed for herbivore-
induced damage in a wetland plant community (Dingemans et al.,
2011). This “chimney effect” has in fact been the focus of the
plant impact on CH4 fluxes and has been measured in a relatively
large number of emergent and floating plant species. Although
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measured rates vary widely as a function of both the species and the
environmental condition, overall, the results agree that emergent
vegetation has the capacity to sustain extremely high fluxes of CH4

to the atmosphere. For example, it is estimated that direct plant-
mediated transport may contribute 55 to 85% to total CH4 fluxes
in peatlands (Dean et al., 2018). Analysis of paired measurements
in open water and emergent vegetation in a compiled dataset of
66 lakes furthermore indicated that on a per-area basis emissions
from emergent vegetation is 6.1 times higher than from open
water (Kyzivat et al., 2022). However, aquatic vegetation not only
affects the emission intensity, but also may affect the emission
pathway. Plant-mediated transport may reduce sediment CH4

concentrations to such an extent that it reduces ebullition. For
example, in an experimental set-up with Phragmites australis, plant
clipping resulted in a 5 to 10-fold increase in ebullition, whereas the
total emission, including plant-associated transport, was about 1.8
times higher in the presence of intact plants (van den Berg et al.,
2020).

2.4 E�ect of plants on overall CH4

emissions: a whole habitat perspective

The effect of aquatic plants on the whole habitat CH4 budget
is at present difficult to predict, because as discussed in the
sections above, the presence of plants influences CH4 dynamics
and emissions in multiple ways, and in addition, there have been
relatively few studies that have assessed the complete CH4 budget
of vegetated habitats in freshwaters. The common denominator of
studies that have assessed total CH4 fluxes from vegetated habitats
in lakes and wetlands is that these tend to be high relative to
adjacent, non-vegetated sites and to open water, pelagic habitats
(Kankaala et al., 2004; Larmola et al., 2004; Wang et al., 2006;
Marinho et al., 2015; Jeffrey et al., 2019; Desrosiers et al., 2022).
It is interesting to note that whereas total CH4 emissions tend
to be consistently high in vegetated habitats, the pathways that
contribute to these emissions are highly variable. For example,
Jeffrey et al. (2019) reported an average annual contribution of
plant-mediated fluxes to total habitat CH4 emissions of around 59%
in a tropical wetland dominated by floating lilies, with diffusion
and ebullition each accounting for roughly 20%, and studies in
temperate vegetated lake habitats have also reported dominance
of direct plant-mediated fluxes (Chu et al., 2014). A recent study
showed that in vegetated habitats in a boreal lake colonized by
Typha sp., ebullitive and diffusive fluxes were suppressed because
their dense root mats acted as both a barrier for the vertical flux of
bubbles and also greatly suppressed turbulence, yet CH4 emissions
from the habitat were nevertheless extremely high, driven by direct
plant-mediated CH4 transport (Desrosiers et al., 2022). In contrast,
in an adjacent vegetated habitat in the same lake dominated by the
rooted, floating Brassenia sp., the authors reported extremely high
ebullitive fluxes, presumably driven by plant-enhanced sediment
methanogenesis, with direct plant-mediated fluxes contributing
much less to total CH4 fluxes in this habitat (Desrosiers et al.,
2022). Ebullitive flux was reported to be of the same magnitude
as plant-mediated emissions at the outermost Phragmites reed
band but contributed much less within the Phragmites bed in a

boreal lake (Kankaala et al., 2004), and Marinho et al. (2015) also
reported elevated rates of CH4 ebullition in littoral habitats of
tropical lake colonized by the emergent Schoenoplectus californicus,
yet total CH4 emissions were nevertheless dominated by diffusion.
The pattern that emerges is that the dominant pathway of
CH4 emission may vary greatly between ecosystems and even
between habitats within the same ecosystem, as a function of the
plant functional type and density, sediment and water properties,
and other environmental factors, and also seasonally with plant
succession and climatic factors. Direct plant-associated transport
often dominates the CH4 budget in these habitats, but not always
depending on the season and dominant plant type. Modeling and
upscaling total CH4 fluxes from vegetated freshwater habitats is
therefore challenging, involving multiple pathways and complex
interactions, yet this is important because regardless of what the
main pathways of emission are, there is increasing evidence that
vegetated habitats in lakes, wetlands and rivers, tend to contribute
disproportionately to whole ecosystem emissions (Juutinen et al.,
2003; Desrosiers et al., 2022). The large influence of vegetated
habitats on overall CH4 fluxes extends to seasons when plants
may not be present. For example, the vegetated littoral contributed
disproportionately (66–78%) to winter CH4 emissions from two
boreal lakes (Larmola et al., 2004).

2.5 Methods to assess CH4 fluxes of
vegetated areas

A wide variety of methods have been used to assess CH4 fluxes
in vegetated areas, all with different strengths and drawbacks. The
main differences between the approaches are the different CH4

flux pathways that they incorporate, and the spatial and temporal
resolution of this coverage (Table 1). These approaches can be
grouped into four main categories: (1) Those that quantify the
plant-associated fluxes with whole plant chambers (Figure 2A),
and those focusing on plant-mediated fluxes including submerged
whole plant chambers (Figure 2B), leaf chambers (Figure 2C),
inverted water filled bottles to capture stem flux (Figure 2D),
stacked chambers to capture both submersed and emergent plant
fluxes (Figure 2E), gas sampling from plant tissue (Figure 2F),
experimental determination of diffusion potential of specific plant
parts (Figure 2G), porewater sampling to determine potential
root transport (Figure 2H) and incubation of plant material to
measure potential CH4 production (Figure 2I); (2) approaches
to determine ebullitive fluxes, which include inverted funnels
(Figure 2J) and porewater sampling (Figure 2H); (3) approaches
to quantify diffusive fluxes, which include floating chambers
(Figure 2A) and measurements of gas concentration in the surface
water combined with gas exchange (Figure 2K); (4) approaches
to estimate whole habitat CH4 emissions, which include eddy
covariance towers (Figure 2L). Note that some of these approaches
overlap: Floating chambers, which are typically used in aquatic
studies to measure diffusive fluxes and gas exchange, have also
been used to determine ebullition and plant-mediated fluxes,
whereas porewater sampling has been used for multiple purposes,
including quantification of sediment CH4 production, diffusion
from sediment, ebullition, and plant-mediated transport.
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TABLE 1 Summary of methods used to determine CH4 fluxes of vegetated areas with some examples of method related pros and cons.

Method Description Pros Cons Exemplary references

Chamber (Figure 2A) Transparent plexiglass chamber with a fan placed over the
vegetation (floating or on a frame/base; measurement of
headspace CH4 increase over time)

Relatively straight forward, enables
multiple measurements across different
vegetation within reasonable time

Captures a mix of plant-mediated CH4 and
diffusive CH4 fluxes (and potentially ebullition)

Joabsson and Christensen, 2001;
Öquist and Svensson, 2002;
Ribaudo et al., 2012; Davidson
et al., 2016

Submerged chamber (or bag)
(Figure 2B)

Capturing CH4 release of submerged plants by submerged bags
(e.g., made of a multi-layer clear film of saran and PVC with low
CH4 permeability)

Captures specifically plant-mediated
CH4 flux

Labor and time intensive, only individual
submerged plants can be measured

Dacey and Klug, 1979; Heilman
and Carlton, 2001

Leaf chamber (Figure 2C) Transparent plastic storage boxes sealed with rimmed weather
stripping and large binder clips (measurement of headspace CH4

increase over time)

Enables targeting specific parts of a plant Generalization of fluxes to vegetated habitat area is
limited

Villa et al., 2020

Inverted water-filled vial
(Figure 2D)

Clipping of main stem and placing an inverted water-filled vial
over it (leaving vial for a defined amount of time)

Enables targeting specific parts of a plant Intrusive method with potential effect of clipping
deviating from natural plant-mediated CH4 flux

Sanders et al., 2007

Stacked chamber (Figure 2E) Installing two chambers with different diameters: larger one
covering water surface with lid sealed around the plant, smaller
one only enclosing plant

Clear distinction of diffusive and
plant-mediated CH4 flux possible

Dealing with different vegetation and vegetation
heights is challenging

Butterbach-Bahl et al., 1997; van
Bodegom et al., 2001

Gas sampling from plant
tissue (Figure 2F)

Measurement of CH4 concentration within plant stem (e.g., 1 cm
below the waterline via a syringe)

Enables targeting specific plant parts Converting concentrations to fluxes requires
several assumptions; generalization of fluxes to
vegetated habitat area is limited

Chanton et al., 1992, 1993

Diffusion potential of specific
plant parts (Figure 2G)

A single plant part (e.g., leaves, panicles, nodes, or internodes) is
inserted in the hole of a rubber stopper fitted onto a flask filled
with CH4 enriched water; the flask stands in a water-filled
container to provide a water lock for the chamber covering the
plant part. CH4 emission rates are determined by temporal
increase in concentration in the chamber.

Enables targeting specific parts of the
plant

As plant parts are detached, diffusion potential
may be altered; generalization of fluxes to
vegetated habitat area is limited

Wang et al., 1997

Porewater sampling
(Figure 2H)

Sampling of CH4 concentration in porewater near and away from
roots (with vials connected to rhizons)

When combined with flux
measurements, it provides insight in
plant effects on processes within the
sediment

Estimating the effects of plants on CH4 fluxes
based on this method requires several assumptions

van der Nat and Middelburg, 2000;
Davidson et al., 2016

Bottle incubation (Figure 2I) Measuring plant-associated CH4 production and/or oxidation by
incubating in the dark, e.g., roots, rhizomes, or tillers in glass
bottles measuring headspace CH4 partial pressure over time

Enables to manipulate environmental
variables; enables targeting specific parts
of the plant

As plant parts are detached processes may be
altered; generalization of fluxes to vegetated
habitat area is limited

Frenzel and Rudolph, 1998

Inverted funnel (Figure 2J) Using an inverted funnel to trap, and measure volume and
concentration of CH4 bubbles (e.g., placed at the surface and a
deeper depth)

Insight into effects on plant-associated
effects on ebullition

Only covers ebullition; when applied in areas with
floating vegetation it is unclear if bubbles captured
by the funnel would reach the atmosphere or be
trapped in the plants

Sugimoto and Fujita, 1997; Sanders
et al., 2007; Flury et al., 2010

Concentration measurement
and k value (Figure 2K)

Developing a model based on laboratory and field results to
estimate the gas exchange coefficient based on temperature and
wind speed.

Concentration measurements are fast,
enabling multiple measurements across
different vegetation within reasonable
time

Assessing gas exchange coefficient is complex and
strongly plant-cover and wind dependent

Barber et al., 1988

Eddy covariance (EC) flux
tower (Figure 2L)

Place in such a way that the EC footprint represents vegetated
and/or unvegetated areas

Efficient way of assessing integrative
CH4 flux from vegetated areas

Costly; footprint varies with wind speed and
direction complicating attribution of fluxes to
vegetated area; not applicable for small vegetation
patches

Kim et al., 1998; Chu et al., 2014;
van den Berg et al., 2020
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FIGURE 2

Methods to investigate CH4 fluxes of vegetated areas (field and laboratory): Chamber (A), Submerged chamber (B), Leaf chamber (C), Inverted

water-filled vial (D), Stacked chamber (E), Gas sampling from plant tissue (F), Di�usion potential of specific plant parts (G), Porewater sampling (H),

Bottle incubation (I), Inverted funnel (J), Concentration measurement and k value (K), Eddy covariance flux tower (L).

3 Analysis of extant data from
vegetated areas in freshwaters

In this section we discuss existing plant-associated CH4 fluxes
of a semi-quantitative literature search. Specifically, we discuss
a compilation of the frequency of measurement approaches
used and their specificities and limitations. In addition, we
provide an overview of flux intensities associated with vegetated
habitats among aquatic ecosystems, seasons, and plant types, and
geographic regions.

3.1 Literature review and data compilation

To obtain an overview of studies on CH4 fluxes of vegetated
areas in inland waters, we used two approaches. First, we selected
four key papers (cited at least 200 times in Google Scholar; 4th

of April 2023) dealing with the topic in distinct ways: Laanbroek
(2010), reviewing microbial processes, Brix et al. (1996), focusing
on Phragmites, Sebacher et al. (1985), investigating a large range
of aquatic plants, and Ström et al. (2005), focusing on carbon
turnover in multiple wetland plant species. We then exported the
references citing these key papers. Secondly, a literature search
was carried out using Web of Science on the 4th of April 2023.
Search inquiry for Web of Science consisted of the following
keywords: plant∗ or macrophyte∗ and aquatic or freshwater, and
methane (asterisks where used to consider singular and plural),
mediated, and methane. The combination of keywords resulted
in the following formula: “TS = ((plant∗ OR macrophyte∗) AND
(aquatic OR freshwater) AND methane)” TS = (plant∗ AND

mediated AND methane), TS meant that the search was done in
the title, keywords, and the abstract of research papers. The search
terms were used with no restriction on publication year. Lastly,
we added papers from an earlier search with slightly different
keywords (see Bodmer et al., 2021) and other relevant papers that
we encountered while evaluating above-mentioned papers.

The data from the search inquiry, together with studies that
had cited above mentioned key papers and the additional papers,
were integrated into a database, and we retained CH4 flux data
that were not associated to experimental manipulations (e.g.,
nutrient additions). We point out that the data collected in
our search have been derived from papers that focused mostly
on determining direct, plant-associated CH4 fluxes, usually of
individual plant taxa, sometimes of mixed stands. There is a
limited number of studies that have focused more broadly on
various pathways of CH4 emission in vegetated habitats in inland
waters, and there is often overlap between these two categories
since the latter sometimes also determine direct plant-associated
fluxes. Although we have not quantitatively reviewed other CH4

related processes in vegetated habitats (e.g., ebullition) because
of the sparseness of available data, we do discuss the potential
significance of these processes in the section below. Data were
taken from the main text or from the Supplementary material
of the retained papers. If the relevant data was not reported in
the text, we used the WebPlotDigitizer tool (https://automeris.
io/WebPlotDigitizer/) to read values from graphs. Some studies
reported CH4 emissions e.g., under different circumstances or
plant genera and hence have multiple entries, whereas other
studies only reported averages of multiple observations and hence
have only one entry in the database. Non-English and non-
peer-reviewed papers were excluded, the rest of the papers were
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screened according to the title (if the title was not clear, the
abstract was screened). If publications did not include original
CH4 flux data (e.g., reviews) or did not include vegetation, we
did not include them in the dataset. Additionally, we constrained
this review by focusing on natural freshwater ecosystems or
mesocosmsmimicking natural systems. Hence papers on rice fields,
constructed wetlands receiving wastewater, and water treatment
facilities were not considered. Although we excluded papers dealing
with CH4 fluxes from rice fields from our vegetated habitat flux
database, we did review the methods used in rice field research and
discuss their applicability in other freshwater systems.

Based on the data from relevant articles (188), we compiled
a database with specific information (437 entries), including the
genus of the dominated plant, range of CH4 fluxes, description
of study site, and—when applicable—the type of experimental
approach. To explore the geographical distribution of the
studies, climate zones were assigned according to the latitude of
reported coordinates: 60–90◦ northern; 60–40◦ temperate; 40–20◦

subtropical; 20–0◦ tropical (Delwiche et al., 2021). For experimental
studies (e.g., based on mesocosms), we considered the location
of the experiment, which does not necessarily represent the
geographical location of the mimicked ecosystem.

3.2 Data analysis

After compiling the data obtained from the literature, we
conducted the following steps: First, for 37% of the 437 entries, we
calculated the average for each entry when this was not given (but
when a range was published, for example). This was done by using
the minimum and maximum value (geometric mean to consider
mostly skewed data; applied in 31% of the cases), a time range
presented (60%) or from replicates (9%). Second, all fluxes were
converted to mg CH4 m−2 d−1. Third, we classified studies into
three main groups: running waters (stream + river), lakes (ponds
+ lakes), and wetlands (bog+marsh+ fen+mire+ swamp).

In a first linear mixed-effect model (LME), we tested the fixed
effects ecosystem type (running waters, lakes, wetlands), study
period (growing, non-growing), plant type (emergent, submerged,
floating), and climate zone (northern, temperate, subtropical;
tropical) on CH4 fluxes of vegetated areas (response variable). In
a second LME, we zoomed in on the emergent plants, for which we
hadmost data.We tested the fixed effects plant genus (48 individual
genera), ecosystem type (lakes, wetlands; there were no studies
of emergent plants in running waters), study period (growing,
non-growing season), and climate zone (arctic, boreal, temperate,
tropic) on CH4 fluxes of vegetated areas (response variable). We
used the “lmer” function of the R-package “lme4” (Bates et al., 2015)
with Maximum Likelihood estimation. For the LMEs, we included
study ID as a random effect on the intercept to account for the fact
that one study can have multiple entries. Statistical significances
of fixed effects were assessed with likelihood ratio tests using the
function “drop1” (Zuur et al., 2009). The LMEs were followed by
a model validation, checking the residuals for normal distribution
and homogeneity of variances. For both LMEs, we transformed
the response variable [log10(plant_flux) + min(plant_flux) + 1]
to improve the model performance and validity. Both LMEs were

followed by a pairwise comparison posthoc test (Tukey adjustment
for multiple comparisons), comparing the individual levels of the
significant fixed effects using the R-package “emmeans” (Lenth,
2019).

3.3 Geographical distribution of studies and
methods used in the literature

We found that out of the screened literature (a total of
188 studies, 437 entries), the majority of studies used chamber
measurements (162 studies; 382 entries), mostly with the objective
of determining plant-associated fluxes. In a practical sense, this
method seems straightforward, but it comes along with certain
issues. Firstly, it is difficult to place the floating chamber on
top of emerging and floating vegetation without disturbing
the plants. Disturbance of vegetation may liberate gas bubbles
therefore artificially inflating emissions; in addition, the chamber
alters moisture, light, temperature, and carbon dioxide (CO2)
concentrations which impacts stomata and may consequently
influence CH4 fluxes. Secondly, often the chamber does not
capture the plant’s entire root system; when part of the root
system exchanges gas with the overlying water outside the chamber
area or other plant shoots with which they are connected (e.g.,
in case of Typha), these fluxes may be missed (e.g., Bansal
et al., 2020). Thirdly, and more importantly, fluxes measured in
floating chambers integrate direct plant-associated, diffusive water-
atmosphere and potentially ebullitive pathways that are not always
easy to differentiate, although some studies have attempted to
disentangle these pathways, for example by modeling diffusive
fluxes based on surface water concentrations (e.g., Desrosiers
et al., 2022). The stacked chamber approach, used in rice studies
(Butterbach-Bahl et al., 1997; van Bodegom et al., 2001) could
be used to better differentiate between actual plant-associated
CH4 fluxes, diffusion, and/or ebullition, avoiding the potentially
misleading integration discussed above. The diffusion potential
method (Wang et al., 1997) can be used to scan for possible within-
plant hotspots of CH4 flux, but these approaches have been applied
much less frequently.

The remainder of the studies used one or more of the
other approaches listed in Table 2, sometimes singly, often in
combination: porewater sampling (17 studies; 27 entries), eddy
covariance flux tower (14 studies; 23 entries), inverted funnel (12
studies; 22 entries), concentration measurement and k value (9
studies; 18 entries), gas sampling from plant tissue (6 studies;
10 entries), bottle incubation (3 studies; 11 entries), submerged
chamber (3 studies; 4 entries), leaf chamber (1 studies; 3 entries),
and inverted water-filled bottles (1 study; 1 entry). Most of these
approaches, but not all, target direct plant-associated fluxes, so they
are not all strictly comparable, and there are very few studies that
have reported the total CH4 emission from vegetated habitats (i.e.,
diffusive+ ebullitive+ plant-mediated).

Of the reviewed studies (188 studies, 437 entries; 7 studies
contained a field andmesocosm component), most were performed
in the field (157 studies; 333 entries) compared to mesocosm
experiments (38 studies; 104 entries). Studies on all scales are
valuable to both obtain mechanistic understanding and enable
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TABLE 2 Results of the linear mixed model testing e�ects of ecosystem type (running water, lake, wetland), study period (growing, non-growing), plant

type (emergent, floating, submerged), climate zone (arctic, boreal, temperate, tropic) on CH4 fluxes of vegetated areas (A), and testing the e�ects of

plant genus (48 individual genera), ecosystem type (lake, wetland), study period (growing, non-growing), and climate zone (arctic, boreal, temperate,

tropic), on CH4 fluxes of vegetated areas of emergent plants (B).

Response variable Fixed e�ect χ
2 (1) p

(A) Testing combined CH4 fluxes of vegetated areas

CH4 fluxes of vegetated areas∗ Ecosystem type 3.12 0.210

Study period 2.70 0.100

Plant type 4.18 0.123

Climate zone 9.62 0.022

(B) Testing CH4 fluxes of vegetated areas of emergent plants

CH4 fluxes of vegetated areas∗ Plant genus 139.68 <0.001

Ecosystem type 0.27 0.602

Study period 2.28 0.131

Climate zone 7.77 0.051

Study ID was included as a random effect on the intercept. Significances of fixed effects were assessed with likelihood ratio tests with degrees of freedom = 1. Significant p values <0.05 are

in bold.
∗Transformation: log10 (CH4 fluxes of vegetated areas + abs (min (CH4 fluxes of vegetated areas)) +1); (A) Marginal R2 = 0.049, conditional R2 = 0.628, sample size = 363; (B) Marginal R2

= 0.233, conditional R2 = 0.777, sample size= 320.

upscaling efforts. Furthermore, mesocosm experiments can be used
to simulate running waters/flow conditions, which would help
to constrain and to understand CH4 fluxes of vegetated areas in
running waters.

From the 188 compiled studies (of which seven studies were
performed on two continents), 79 were performed in North
America (162 entries), followed by 67 in Europe (171 entries), and
36 (84 entries), 7 (10 entries), 5 (9 entries), and 1 (1 entry) in Asia,
South America, Oceania, and Africa, respectively (Figure 3). For
some regions we found but one study—e.g., Africa, and in other
regions there are only a handful of studies conducted, e.g., in South
America (e.g., Silva et al., 2016; Oliveira-Junior et al., 2020), yet
this is where some of the most extensive inland aquatic systems
are located (e.g., Amazon and Pantanal). In addition, there is a
strong bias toward growing season-only data and focus on a small
subset of genera and plant types. These biases all contribute to
the large uncertainty of freshwater systems in global CH4 budgets
(Saunois et al., 2020). Consequently, our current understanding of
the magnitude of CH4 fluxes of vegetated areas is strongly biased.

3.4 CH4 flux intensity and variability from
vegetated areas

Although our systematic literature review points to major
spatial and temporal data gaps, and differences in methods that
complicate data comparisons, we nevertheless attempt here to
provide an overview of the extant CH4 flux estimates for freshwater
vegetated habitats. We should reiterate that most of the data
that we were able to collect were derived from chamber-based
measurements involving emergent plants, which likely include both
water-atmosphere diffusive fluxes that are more or less impacted
by the plants and direct plant-mediated fluxes. These literature
fluxes do mostly not fully capture ebullitive fluxes, and therefore

likely significantly underestimate total CH4 emissions from these
vegetated habitats, as we have discussed in previous sections.

From an ecosystem perspective, of total 188 studies (437 entries;
seven studies were performed in two different ecosystems), 156
were carried out in wetlands (357 entries), whereas only 37 (78
entries) in lakes and 2 (2 entries) in running waters. This implies
that the available data are strongly imbalanced in terms of the
habitats covered, and there is a clear need for more studies in
standing and running waters.

CH4 fluxes of vegetated areas ranged from−8.6 (uptake) to
2835.8 (emission) mg CH4 m−2 d−1 {65.0 (9.3, 194.4); median
[interquartile range (IQR)]} in wetlands, from 0.2 to 971.8mg CH4

m−2 d−1 [86.1 (28.0, 235.0)] in lakes, and from 5.4 to 39.0mg CH4

m−2 d−1 in running waters [22.2 (13.8, 30.6)] (Figure 4). There was
no significant effect of ecosystem type on CH4 fluxes of vegetated
areas, whereas climate zone was a significant driver (p = 0.022;
Table 2A).

Of all the 188 studies (437 entries), only 11 studies (16 entries)
are from the non-growing season, compared to 146 studies (347
entries) performed in the growing season, while 36 studies (69
entries) include measurements throughout the year. The very
similar median fluxes (Figure 5) in the growing and non-growing
season calls for more attention to CH4 fluxes of vegetated areas
outside the growing season. For example, the genus Phragmites

does not grow in winter but may facilitate CH4 emissions by
creating a direct pathway or “chimney“ from the sediments to
the atmosphere while the water column is sealed off from the
atmosphere by ice. Fluxes outside the growing period may be
considerable and need further attention.

Study period did not significantly influence CH4 fluxes of
vegetated areas (p= 0.100; Table 2A) with fluxes ranging from−8.6
to 2835.8mg CH4 m−2 d−1 (62.0 [9.0, 203.3]) in the growing
season, and from 0.1 to 553.2mg CH4 m−2 d−1 (51.4 [7.7, 140.0])
in the non-growing season (Figure 5). Also, when we zoom in on
emergent macrophytes alone, we find no significant effect of study
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FIGURE 3

Geographical distribution of studies related to CH4 fluxes of vegetated areas (A) with a zoom-in of Europe (B). The number of studies is indicated on

the respective countries accompanied by di�erent color intensities indicating the higher frequency (higher color intensity) and lower frequency

(lower color intensity) of performed studies. Grey areas indicate no available studies according to our literature search parameters.

FIGURE 4

CH4 fluxes of vegetated areas of di�erent ecosystem types (wetlands, lakes, and running waters). Boxplots represent median (black line), first and

third quartiles (hinges), range (whiskers), and outliers (black dot).
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FIGURE 5

CH4 fluxes of vegetated areas from di�erent plant types combined, measured in 3 di�erent seasons (growing and non-growing season, and

year-round studies). Boxplots represent median (black line), first and third quartiles (hinges), range (whiskers), and outliers (black dot).

period (p = 0.131; Table 2B). One explanation for the absence of a
significant effect might be that organic matter supply rate (Grasset
et al., 2021), e.g., due to dying vegetation, could actually be more
relevant in driving CH4 production and emissions than the actual
presence of growing plants. Alternatively, there may be geographic
biases location of annual studies that minimize potential seasonal
differences. Regardless, these annual patterns certainly deserve
more attention.

There was a strong imbalance in the focus on different plant
growth forms/types, with the majority of studies focusing on
emergent plants, with only a few studies focusing on floating plants
and barely any on submerged vegetation (Figure 6).

The fluxes for habitats with emergent plants ranged from−8.6
to 2835.8mg CH4 m−2 d−1 (66.7 [12.2, 194.6]), for floating plants
from 3.9 to 1612.3mg CH4 m−2 d−1 [74.0 (17.7, 365.4)], and for
submerged plants from 4.2 to 457.3mg CH4 m−2 d−1 [48.6 (15.7,
184.7)]. Fluxes from mixed stands ranged from 4.2 to 9.9mg CH4

m−2 d−1 [7.1 (5.6, 8.5)] (Figure 6). These differences however did
not lead to a significant effect of plant type on CH4 fluxes of
vegetated areas (p = 0.123; Table 2A). This result underlines that
none of the plant types is of lesser importance in terms of CH4

emissions. Different processes may underlie the high emissions
from areas with floating plants, particularly the low oxygen
conditions below the floating plants resulting from the inhibition of
water column photosynthesis and the decreased oxygen exchange
imposed by floating plants (see also Section 2). The low oxygen
availability in the water column and sediment creates favorable
circumstances for methanogenesis and may impede CH4 oxidation
and thus large CH4 build up. When floating plants are rooted
in the sediment, connecting sediments and bottom waters with
high CH4 concentrations directly to the atmosphere through plant-
associated transport, emissions may be particularly high (Oliveira-
Junior et al., 2018, 2020). However, only a small fraction of studies
indicated whether the studied floating plants were free-floating or
rooted in the sediment. Especially since some species can be both

rooted or not rooted (see e.g., Oliveira-Junior et al., 2020), this
information should be definitely better considered and reported in
future studies.

Within the emergent plants (384 entries), most data
are from mixed plant stands (32.3%), followed by Carex

(16.1%), Eriophorum (8.9%), Phragmites (8.6%), and Typha

stands (5.2%). Not surprisingly, as seen in the distribution
of the studies (Figure 3), emphasis has been on plants widely
occurring in the subarctic, boreal and temperate regions.
The remaining 43 genera/combination of genera represent
<4.0% of the entries (Supplementary Table S1). Within floating
plants (33 entries), 32.3% of the data are from the genus
Nuphar, followed by Eichhornia (21.2%), mixed plant stands
(12.1%), and Nelumbo, Nymphaea, and Trapa with 9.1% each
(Supplementary Table S1). Finally, most data for submerged
plants (18 entries) are from Myriophyllum (33.3%), and
Ceratophyllum, Ranunculus, and Vallisneria with 11.1% each
(Supplementary Table S1).

CH4 fluxes from different genera within the different plant
types are highly variable (Figure 7 and Supplementary Figure S1).
Genus was the strongest predictor of fluxes of emergent plants in
the LME run of emergent plants (p< 0.001; Table 2B). Hence, there
are differences among genera, e.g., Panicum had significantly higher
emissions than Betula, Mimulus, Cassiope, Salix, and Sphagnum,
respectively (pairwise comparison posthoc p< 0.05). Asmentioned
above, there is a strong imbalance related to the number of entries
of individual genera. A higher number of entries for a specific genus
(e.g., for Phragmites) likely leads to higher variability since it has
been studied in very different systems, which creates a certain bias
and an imbalanced model. We are therefore currently unable to
predict CH4 fluxes based on occurring genera on a large scale.
Given the large variability in CH4 fluxes within genera it is also
questionable if reasonable genera inferred predictions of CH4 fluxes
can be developed. Predictions made based on vegetation types—
aggregating several genera at a specific site, thereby “controlling”
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FIGURE 6

CH4 fluxes of vegetated areas from di�erent plant types. Emergent: 171 studies, 384 entries; floating: 22 studies, 33 entries; submerged: 8 studies, 18

entries; mixed: 1 study, 2 entries. Boxplots represent median (black line), first and third quartiles (hinges), range (whiskers), and outliers (black dot).

FIGURE 7

CH4 fluxes of vegetated areas from individual genera of investigated emergent plants. Boxplots represent median (black line), first and third quartiles

(hinges), range (whiskers), and outliers (black dot).

for climate and soil type—are likely more promising (see e.g.,
Juutinen et al., 2003; Robroek et al., 2015).

4 Plant e�ects on CH4 fluxes:
implications for current global CH4

estimates from freshwaters

The extent to which CH4 emissions from vegetated habitats
have been incorporated into current local, regional, and global
freshwater CH4 budgets varies greatly and is not always specified.
In the following sections we discuss some of the challenges and

implications of incorporating fluxes from vegetated habitats into
current global estimates of CH4 emissions from inland waters.

4.1 Incorporating vegetated habitats into
lake CH4 budgets

Recent global lake CH4 emission estimates range from 24.0
± 8.4 Tg CH4 yr−1 (Zhuang et al., 2023), over 41.6 ± 18.3 Tg
CH4 yr−1 (Johnson et al., 2022), up to 150.9 ± 73.0 Tg CH4

yr−1 (Rosentreter et al., 2021). These global estimates differ in
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various aspects, such as lake size cut-off, global lake cartographies,
upscaling approach, and consideration of seasonality and ice cover.
However, these estimates have one thing in common: none of
them considers plant-associated CH4 emissions from vegetated
areas. In a recent overview study on the global regulation of CH4

emissions from lakes, the emission via vegetation is even explicitly
excluded, and only open water fluxes are considered (Sanches
et al., 2019). The median of plant-associated CH4 emissions in
lakes (Figure 4) is 86mg CH4 m−2 d−1, i.e., 1.8 to 1.3 times
higher than the median open-water lake emission estimated by
Rosentreter et al. (2021; i.e., 46mg CH4 m−2 d−1 extracted
from Figure 1) or the estimated diffusive summer emissions by
Johnson et al. (2022; 68mg CH4 m−2 d−1; July data extracted
from Supplementary Figure S2), respectively. Vegetated areas tend
to make up a considerable portion of total area of many lakes—
for example the vegetated habitat (either floating, emergent, or
submerged, or different combinations of these) had a median
coverage of 33% in 109 lakes around the world (Zhang Y. et al.,
2017). Given the consistently high emissions that characterize
those areas, incorporating CH4 fluxes from vegetated habitats will
likely result in significant increases in current estimates of global
CH4 emissions.

The magnitude of plant-associated CH4 fluxes likely varies
regionally, depending on the proportion of vegetated habitat
coverage. For example, Kyzivat et al. (2022) recently showed that
neglecting vegetated areas leads to an underestimation of 21% of
the CH4 emission for lakes across four Arctic-boreal study areas. As
pointed out in the sections above, it is important to emphasize that
the median flux of 86mg CH4 m−2 d−1 for vegetated areas that we
report here does not reflect the total CH4 emissions of these habitats
(e.g., the ebullitive flux is often missing, see Section 2.5), although
it is still unclear what proportion of these emissions are accounted
for by the existing data. Hence, we argue that our estimate of the
importance of vegetated areas is very conservative.

4.2 Incorporating vegetated habitats into
river CH4 budgets

The current global annual CH4 emission for rivers is estimated
to be in the order of 27.9 (16.7–39.7) Tg CH4 yr−1 (Rocher-
Ros et al., 2023). These fluxes exclude emissions from emergent
vegetation, and it is unclear to what extent they include submerged
vegetation. Our literature search, unfortunately, yielded only two
studies (Sanders et al., 2007; Kuhn et al., 2017) where both CH4

emissions from vegetated river sections and unvegetated sections
were explicitly included. It is therefore difficult to speculate on the
relevance of vegetation for riverine CH4 fluxes, but many rivers
worldwide develop extensive vegetated habitats, particularly in
lowland tropical and subtropical regions, and there is no question
that global river CH4 emissions will have to be eventually adjusted
for fluxes from these habitats as new information is acquired on
the extent and composition of these riverine habitats. One of the
difficulties ahead is that the distinction between vegetated river
habitats and wetlands is not always clear, so avoiding double
accounting while effectively capturing these riverine features
remains a major challenge.

4.3 Wetlands

Current estimates of global wetland CH4 emissions are in
the order of 149 Tg CH4 yr−1 (Rosentreter et al., 2021), and
global models of wetland-methane feedbacks indicate that wetland
CH4 emissions could play a significant role in driving 21st-
century climate forcing, with global wetland emissions potentially
matching or exceeding anthropogenic emissions by 2100 (Zhang
B. et al., 2017). It is therefore of key importance to improve
our understanding of the magnitude, regulation and sources of
uncertainty of wetland CH4 emissions, which necessarily implies
a better accounting for the role of vegetation. Contrary to the
situation with lakes and rivers, where vegetated habitats have
been systematically excluded from estimates of whole ecosystem
CH4 emission, and therefore from global inland CH4 budgets,
wetland CH4 budgets have variously incorporated emissions from
plants and from vegetated habitats. Regional (Ito, 2021) and
global (Ito and Inatomi, 2012) wetland CH4 estimates have been
derived using process-based models. For example, the VISIT
(the Vegetation Integrative Simulator for Trace gases) and other
wetland process models (Cao et al., 1996; Walter and Heimann,
2000; Hodson et al., 2011; Arora et al., 2018; Parker et al., 2018) have
incorporated wetland CH4 modules that integrate CH4 diffusive,
ebullitive, and plant-mediated CH4 fluxes. The latter have been
modeled on the basis of vegetation coverage and composition (e.g.,
Bubier et al., 1995; Dias et al., 2010; Robroek et al., 2017), and
primary production of vegetation as it fuels carbon stocks that
are subsequently available for decomposition. Only a handful of
models have explicitly incorporated the transport through plants
in wetlands (e.g., Riley et al., 2011; Ito and Inatomi, 2012; Kleinen
et al., 2020). Potentially influential factors such as the impact of
vegetation community composition on transport through plants,
as well as plant effects on CH4 oxidation, are generally not included
in larger-scale models (but see Knoblauch et al., 2015 and Zhang
B. et al., 2017, the latter included CH4 oxidation during plant-
associated transport in their global wetland model). Modeled
wetland CH4 emissions vary greatly and not always coherently
(Melton et al., 2013; Ciais et al., 2014), and it is clear that there
is still much to be learnt concerning the role of vegetation in
CH4 production, oxidation, and transport (Berrittella and van
Huissteden, 2011; Riley et al., 2011). These uncertainties may partly
underlie the large discrepancies that still exist between inverse
modeling and bottom-up estimates of the global and regional CH4

budgets, which have been at least in part attributed to problems
with estimates of wetland emissions (Bohn et al., 2015; Saunois
et al., 2017, 2020). These uncertainties are related to the extent of
global wetland distribution, as well as to our lack of understanding
of the key underlying CH4 processes, notably the contribution
of plants themselves (Bloom et al., 2017; Peltola et al., 2019). In
wetlands in particular, herbaceous plants (Carmichael et al., 2014)
and trees (Covey and Megonigal, 2019) are emerging as major
contributors to wetland CH4 emissions, yet their role has yet
to be fully quantified and incorporated in wetland models. The
literature that we collected and the statistical models we developed
of plant-associated fluxes do not allow us to further speculate
on a potential impact of plant associated fluxes on wetland CH4

emissions, because on the one hand, we do not have herbaceous and
tree flux data, and on the other, it is at present, very difficult to assess
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to what extent the aquatic plant fluxes are explicitly incorporated
in current global wetland emission estimates, and if they are, how
accurate they are.

5 Conclusions and outlook

CH4 fluxes from vegetated areas in inland waters, especially
in lakes and rivers, are largely understudied and neither well
understood nor quantified. Our review represents, to our
knowledge, the first attempt to synthesize the many ways in
which submerged, floating, and emergent vegetation may influence
CH4 fluxes in different freshwater ecosystems, combined with
a compilation of methodological approaches used to assess
vegetation effects on CH4-related processes. Moreover, we provide
an overview of published CH4 fluxes from vegetated habitats from
various types of ecosystems across a geographical, seasonal, and
vegetation types, and assess the potential significance of CH4 fluxes
from vegetated areas for global lake CH4 emissions.

From a methodological perspective we urge for a more
standardized approach of measuring CH4 fluxes from vegetated
areas. We emphasize the importance of considering not only the
growing season in order to obtain more robust annual estimates,
since the influence of plants extends well beyond their growing
period. To specifically capture direct plant-associated CH4 fluxes
we suggest the stacked chamber method (Table 1) as the most
appropriate one, since it allows to separate the direct plant-
mediated emission from the diffusive flux. Further, we suggest
assessing if plants are rooted or non-rooted when measuring
fluxes from floating plants, since this information is relevant
for future upscaling or generalization efforts. More importantly
perhaps, our review highlights the need for studies that capture
total CH4 emissions from the vegetated habitats, by simultaneously
measuring diffusion, ebullition, and direct plant-associated—also
referred to as plant-mediated—fluxes. The few studies that have
done so suggest that the magnitude of these pathways and their
contribution to overall CH4 emission can vary greatly between
vegetated habitats, and therefore focusing on any given pathway
yields an incomplete and biased perspective of CH4 dynamics in
these systems.

The presence of emergent and submerged vegetation influences
CH4 dynamics in multiple ways. Although it is challenging,
disentangling the effects of plants on CH4 production, oxidation,
and transport is important to understand and model CH4

emissions from vegetated areas, and particularly to predict how
plants will affect future CH4 emissions. Aerenchyma development
and root organic carbon release, for instance, will respond
differently to increasing atmospheric carbon dioxide levels, warmer
temperatures, and altered precipitation and soil moisture patterns
(Armstrong, 1980; Gregory et al., 1995; Cheng, 1999; Visser et al.,
2000; Leakey, 2009) thereby influencing the plant effects on CH4

emission in potentially synergistic but possibly also antagonistic
ways. Future studies should therefore focus on vegetation-related
aspects of CH4 production, oxidation, and/or transport in the
light of global and land-use change and link these processes to
quantifiable plant traits as a way to facilitate modeling of CH4

dynamics in vegetated habitats.

Although beyond the scope of this study, we recommend
incorporating CO2 and N2O fluxes besides CH4 pathways to fully
capture the role of vegetated areas in the carbon and greenhouse
gas balance of inland waters (see e.g., Aben et al., 2022). It is
important to consider that these vegetated habitats, while generally
being hotspots of CH4 emission, may also take up and store
significant amounts of carbon, and also have variable roles in terms
of N2O dynamics; their radiative balance can therefore only be
determined if a complete GHG is carried out. For example, it has
been shown that CH4 emissions partially offset “blue carbon” burial
in mangroves (Rosentreter et al., 2018), yet similar assessments in
freshwater systems are scarce (but see Bastviken et al., 2011; van
Bergen et al., 2019).

At present, upscaling CH4 fluxes from vegetated areas to the
ecosystem, landscape, and global scale is challenging [but see
Kyzivat et al. (2022) for an example of how vegetated areas can be
included on a regional scale]. We have shown here that although
plant-associated fluxes are extremely variable, depending on plant
type and habitat, they tend to be consistently high relative to pelagic
non-vegetated areas (Desrosiers et al., 2022; Kyzivat et al., 2022),
such that vegetated habitats in inland waters tend to contribute
disproportionately to whole ecosystem CH4 emissions on an
areal basis. In this regard, our preliminary assessment suggests
that inclusion of vegetated habitats would likely increase current
estimates of global lake CH4 emissions.We cannot at present derive
a similar assessment for rivers, but in all likelihood, it will not be
negligible either because many lowland rivers in the world develop
extensive vegetated areas, so efforts should be made to collect the
data necessary to carry out this exercise in the near future.

To narrow down estimates of the global contribution of this
source depends on (i) more standardized methods with clear
accounting for and disentangling of different CH4 flux pathways
or making sure that the vegetated habitat is captured as a whole,
(ii) flux measurements taken across the complete geographic extent
and vegetation type (i.e., emergent, floating, and submerged), and
(iii) a better and more complete assessment of vegetation cover, for
example using remote sensing techniques (e.g., Silva et al., 2008;
Melack and Hess, 2023). General trends in plant coverage in inland
waters as a function of environmental and climate change are
difficult to predict (Zhang Y. et al., 2017), and differ among types
of vegetation (i.e., emergent, floating, submerged) and regions.
Specifically, global change seems to favor floating over submerged
vegetation (Netten et al., 2011; Peeters et al., 2013) and may lead
to an increase in invasive vegetation (Shih and Finkelstein, 2008;
Emilson et al., 2018) which may profoundly impact CH4 budgets
of aquatic systems (Tong et al., 2012; Beyene et al., 2022). Hence,
the understudied and likely globally underestimated CH4 emissions
from vegetated areas might become more relevant due to global
warming, land-use change, and shifts in species distributions. CH4

emissions from vegetated habitats are largely unaccounted for in
current global estimates of lake and river CH4 emission, and it is
clear that these emissions merit more attention.
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