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The presence of arsenic in water bodies poses a significant risk to both
human health and the environment. Arsenic (As) contamination in water sources
is a global environmental concern caused by both natural processes and
human activities. Due to its toxic and persistent nature, arsenic has detrimental
e�ects on ecosystems and human wellbeing. This study aimed to elucidate
the mechanisms behind arsenic accumulation in water bodies. In aquatic
environments, arsenic concentrations in drinking water have been reported as
high as 1,320 µg/L (Nicaragua), while groundwater levels exceeded 5,000 µg/L
(Thailand), and wastewater contained up to 134,000 µg/L (landfill leachate in
Brazil). Furthermore, bioaccumulation of arsenic (µg/g) in fish species ranges
from 0.4 (catfish in the Paraná River Delta, Brazil) to 362 (Pteromylaeus

bovinus, Northern Adriatic Sea). Recent research has predominantly focused on
removing arsenic from aqueous solutions through adsorptionmethods. Notably,
nanoparticle adsorbents and graphene-based adsorbents demonstrate a high
capacity for arsenic removal from water bodies.
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1 Introduction

As the global demand for clean water rises, the importance of water resources is
increasing. Factors such as population growth, pollution, and climate change are reducing
the usability of limited water resources. Urbanization, agriculture, and industry have a
significant impact on water quality. Pollutants, such as heavy metals, disrupt aquatic
ecosystems, thereby undermining their sustainability (Sener et al., 2023). The presence of
metal pollution, such as arsenic (As), has a harmful impact on the ecosystem because of its
toxic, non-biodegradable, and persistent characteristics. Arsenic rapidly accumulates in the
soil, water, and sediment, posing a threat to the environment (Prasad Ahirvar et al., 2023).
The presence of As in the water is a result of weathering processes that occur in rocks
and sulfidic minerals. One of these processes involves the oxidation of sulfidic minerals
like arsenopyrites, which releases arsenic into water sources. Additionally, anthropogenic
activities such as agriculture, mining, and industrial waste also contribute to the release of
As into the environment (Irunde et al., 2023).
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Arsenic, a harmful contaminant, is a toxic substance that is
both colorless and odorless (Abedi and Mojiri, 2020). It can be
found in elevated concentrations in water bodies across different
countries worldwide. Exposure to high levels of arsenic can result in
severe immediate and long-term health issues, including diarrhea,
vomiting, diabetes, heart disease, cancer, miscarriage, childhood
cancer, and even fatalities (Nguyen and Mulligan, 2023). To
ensure safe drinking water and protect public health, the World
Health Organization (WHO) recommends a maximum allowable
concentration (MAC) of As in drinking water at 10µg/L. This limit
is legally defined in the European Union DrinkingWater Directive.
However, certain countries like Denmark and Ireland have set
even lower limits (5 µg/L and 7.5 µg/L, respectively). Arsenic
concentrations in groundwater and surface water have been found
to range from 100 to 5,000 µg/L. In certain cases, particularly
near hydrothermal systems close to shorelines, extremely high
concentrations of 1,386 and 5,850 µg/L have been reported. This
widespread contamination of As in aquatic systems is recognized
as a significant global environmental issue, with impacts observed
worldwide (Zhang et al., 2022).

Increasingly, more states are adopting stricter As standards
based on the severity of As issues, population exposure, and
the availability of improved removal technologies (Nikić et al.,
2023). Adsorption is a widely used and promising technique for
removing As from water (Fang et al., 2023). Adsorption has gained
significant recognition as a cost-effective method for As removal.
It offers several advantages, including high removal efficiency,
lower cost, and simpler operation compared to alternative methods
(Moradi et al., 2023). In this review manuscript, our study aims
to study the fate of As in water bodies around the world as well
as comprehensively evaluate the effectiveness of adsorption as a
method for As removal from water.

2 Arsenic contamination in water
bodies

Once released into the environment, arsenic becomes
part of the biogeochemical cycle and cannot be degraded. In
aquatic environments, arsenic undergoes complex chemical
speciation, resulting in various inorganic and organic arsenic
species. Inorganic forms include arsenite As(III) and arsenate
As(V), while organic forms encompass methylarsonate
(MMA), dimethylarsinate (DMA), tetramethylarsine (TMA),
trimethylarsine oxide (TMAO), arsenocholine (AsC),
arsenobetaine (AsB), thiolated arsenic, arsenosugars (As-Sug), and
arsenolipids (Zhang et al., 2022).

Commonly, in water, As exists in various redox states,
predominantly as inorganic species such as As(III) and As(V).
However, the presence of organic species is more common
when there is anthropogenic contamination (Fuoco et al.,
2022). As(III) is widely recognized for its higher toxicity
compared to As(V) (Wu et al., 2023). The fate and mobility of
arsenic in water bodies are influenced by various processes: (1)
redox reactions, (2) adsorption and desorption, (3) competitive
adsorption (ion exchange), (4) solid-phase precipitation and
dissolution, and (5) biological activity. These interconnected
processes, along with factors such as redox potential (Eh), pH,

chemical composition, and reaction kinetics, collectively determine
the behavior of arsenic under specific conditions (Mohan and
Pittman, 2007; Cheng et al., 2009). This redox sensitivity of
arsenic is depicted in Figure 1, which illustrates the Eh-pH
diagram for arsenic specie. In oxidizing conditions, arsenate
(H2AsO4) is the predominant form at low pH levels (below
approximately 6.9), while at higher pH levels, it exists in the
form of HAsO2−

4 . Conversely, under reducing conditions at
pH levels below approximately 9.2, the dominant form is the
uncharged arsenite species (H3AsO3) (Smedley and Kinniburgh,
2002).

The problem of arsenic contamination in aquatic environments
is a worldwide concern (Singh et al., 2020). In the area near Lomé
(in Togo), surface water samples exhibited elevated concentrations
of arsenic, reaching as high as 6,460 µg/L. Similarly, in Prestea,
Ghana, a wide range of arsenic concentrations ranging from 150
to 8,250 µg/L were reported in surface waters (Ahoulé et al.,
2015). Table 1 presents the concentration of As reported in aquatic
environments worldwide. According to the data presented in
Table 1, the highest recorded arsenic concentration (µg/L) in
drinking water was 1320 in Nicaragua. In Taiwan and Thailand,
the maximum arsenic concentrations (µg/L) in groundwater were
5,000 and 1,820, respectively. Furthermore, the highest arsenic
concentration (µg/L) in surface water was 2,650 in Nicaragua. In
Brazil, the maximum arsenic concentration (µg/L) in wastewater
was 134,000, observed in landfill leachate. Additionally, a notable
concentration of arsenic (14.8 µg/L) was reported in seawater near
Tarut Island in the Persian Gulf.

When aquatic organisms come into contact with arsenic
through their diet and various sources like water, they have the
ability to accumulate, retain, and convert different forms of arsenic
within their bodies (Azizur Rahman et al., 2012). The primary
bioaccumulation processes encompass the uptake, assimilation,
biotransformation, and elimination of arsenic (Figure 2). Once
absorbed by an organism, arsenic has the potential to undergo
biotransformation, converting into a less toxic form. Notably, AsB
is recognized for its low toxicity among aquatic organisms across
different trophic levels (Zhang et al., 2022).

The toxicity of arsenic varies among living organisms
depending on their resistance capabilities and detoxification
mechanisms. In terms of toxicity, inorganic arsenic (iAs) is more
harmful than organoarsenic and has been classified as a proven
carcinogen for humans. Arsenite (AsIII) is typically more toxic
than arsenate (AsV), whereas dimethylarsinous acid (DMAAIII)
and monomethylarsonous acid (MMAAIII) exhibit higher toxicity
compared to their respective parent compounds (Azizur Rahman
and Hasegawa, 2012). Azizur Rahman et al. (2012) stated that
while it is commonly known that iAs is typically more toxic
than organoarsenic species, the toxicity of iAs species toward
aquatic organisms is still a topic of debate. Interestingly, there
are exceptions to this generalization. Marine phytoplankton, for
instance, often exhibit higher sensitivity to arsenite (AsIII), whereas
freshwater phytoplankton are highly sensitive to arsenate (AsV).
As an illustration, the marine phytoplankton species Dunaliella

sp. and Polyphysa peniculus demonstrate greater sensitivity to
AsV compared to AsIII. Table 2 shows the bioaccumulation As
in aquatic organisms, which indicates that up to 362µg/g of As
reported in fish tissues.
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FIGURE 1

Redox potential (Eh)–pH diagram for aqueous arsenic species in the AsO2-H2O system at 25◦C and 1 bar total pressure (Akter et al., 2005; copyright
permission received from Elsevier).

Garai et al. (2021) stated that prolonged exposure of freshwater
fish to low concentrations of arsenic leads to the accumulation
of this toxic element primarily in the liver and kidney tissues.
The exposure to arsenic causes histopathological changes in the
gills and liver tissue of tilapia (Oreochromis mossambicus), a type
of freshwater fish. The observed alterations in the gills include
epithelial hyperplasia, lamellar fusion, epithelial lifting, edema,
desquamation, and necrosis.

3 Removal of As with Adsorption
method

In recent decades, various treatment techniques have been used
to remove heavy metals like As, including chemical precipitation,
membrane filtration, extraction, and electrochemistry. However,
these methods have drawbacks such as poor selectivity, high
energy consumption, and high costs, limiting their application
in engineering. As a result, adsorption has become a favored
choice for heavy metal removal due to its broad applicability,
low cost, and environmental friendliness (Di et al., 2023).
On the other hand, the main advantages of the adsorption
technique include its adaptability, user-friendly nature, cost-
effectiveness, and its ability to accommodate a diverse range
of adsorbents sourced from minerals, as well as biological and
organic origins (Rajendran et al., 2022). Adsorption begins by
transferring heavy metal ions from the aqueous solution to
the surface of adsorbents. Subsequently, these ions bind to the
surface through physical or chemical interactions. To facilitate
this process, adsorbents must possess a large accessible surface
area, which ensures the presence of numerous exposed active

sites for effective and selective binding with heavy metal ions
(Fei and Hu, 2023). A wide range of adsorbents have been
employed for the adsorption of heavy metals (such as As)
from wastewater and natural water (Chakraborty et al., 2022).
These include engineered adsorbents like nano-adsorbents and
metals coated adsorbents, as well as low-cost options. Among
low-cost adsorbents, natural materials such as zeolites, and clay
are commonly used. Additionally, agricultural waste materials
and biochar serve as prominent sources of bio-adsorbents
(Abdollahi et al., 2022; Oladoye, 2022). According to Ariffin

et al. (2017), the most advantageous aspects of adsorption

methods include their simplicity, flexibility in design, ease of

operation, and resistance to toxic contaminants. However, a

notable disadvantage of this method is the need for regeneration

processes. The adsorption mechanism can involve physical

entrapment (absorption) or chemical binding through weak

Van der Waals forces, dipole-dipole and ion-dipole interactions,
cation exchange, or strong covalent bonding (Mojiri et al.,

2020). Physisorption occurs when the absorbent and adsorbate

are united by van der Waals forces. Chemisorption takes
place when the adsorbate forms chemical bonds with the
surface of the adsorbent. Electrostatic attraction occurs when
the adsorbent surface carries negative or positive charges. Ion
exchange happens between divalent metal cations and oxygen-
containing functional groups, taking advantage of the cation
exchange capacity. Surface complexation occurs when heavy
metals exceed the available sites on the adsorbent surface, and
this involves the formation of multiatom assemblies during the
reaction activities (Mahesh et al., 2022). The removal of As
through adsorption methods is presented in Table 3. According
to Table 3, the maximum adsorption capacity of engineered
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TABLE 1 Occurrence of As in water bodies.

Water sources Concentrations
(ranges or mean;

µg/L)

Locations References

Drinking water 0–220 Great Hungarian Plain, Hungary Rowland et al., 2011

2 to 250 Vojvodina, Serbia Jovanovic et al., 2011

<1 to 610 Osijek-Baranja and Vukovar- Syrmia counties, Crovatia Rowland et al., 2011

<0.5–175 Romania Neamtiu et al., 2015

30–105 Kutahya, Western Turkey Sener and Karakuş, 2017

<1–118 Spain Medrano et al., 2010

0.02–27.2 Italy Zuzolo et al., 2020

0.03–25.3 Aarhus, Denmark Alarcón-Herrera et al., 2020

0.88–17.9 San Rafael Las Flores, Guatemala Marcillo et al., 2020

10–1,320 Nicaragua Delgado Quezada et al., 2020

Groundwater 40.0 (Hand pump water)
49.0 (Tube Well water:)

District Jamshoro, Sindh, Pakistan Baig et al., 2009

481 (Boreholes) Vietnam Sø et al., 2018

209 (well) Kandal, Cambodia Lawson et al., 2016

13.8 (well) R. Y. Khan, Pakistan Farooqi et al., 2017

285.6 (Tube-well) Nawalparasi, Nepal Mueller and Hug, 2018

36.8 (well) Kurdistan, Iran Sharifi and Sinegani, 2012

104.3 (well) Kuitun, China Chen et al., 2018

160 (tube-well) Ganges, Bangladesh Mukherjee et al., 2018

1146 Anhui, China Sanjrani et al., 2019

up to 300 South China Luo et al., 2021

As(III): <0.5–208 Pannonian Basin, Hungary Rowland et al., 2011

0.10–168 West Romania Senila et al., 2017

<0.05–2,230 Tampere, Finland Pedretti et al., 2019

<0.4–431 Italy Carraro et al., 2013

0.1–1320 Nicaragua Delgado Quezada et al., 2020

0.1 Platería Puno, Peru George et al., 2014

3.2–116.6 Okavango delta, Botswana Mladenov et al., 2014

21.4–278 Ethiopia Rango et al., 2010

<5.2–69.4 Ghana Bhattacharya et al., 2012

0.5–123 Central Tanzania Nwankwo et al., 2020

53.8±93.4 Sindh, Pakistan Ahmed Baig et al., 2010

10–1,820 1–>5,000 Groundwater of 200,000 population, Taiwan
Groundwater of 15 000 population, Thailand

Sarkar and Paul, 2016

<2–1,300 Verde Valley, Arizona, USA Camacho et al., 2011

450 (maximum) Baja California Sur, Mexico Wurl et al., 2014

25.7–137.8 Banat, Serbia Devic et al., 2014

41.4 Bolivia Ramos Ramos et al., 2012

As(III): 12.24 As(V): 6.54 Rayong
province, eastern Thailand

Boonkaewwan et al., 2021

253 Namaqualand, South Africa Abiye and Bhattacharya, 2019

(Continued)
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TABLE 1 (Continued)

Water sources Concentrations
(ranges or mean;

µg/L)

Locations References

6,150 West of Johannesburg, South Africa

500 Karoo, South Africa

As(V): 20.29 Total As: 251 Mexico Ortiz Letechipia et al., 2022

Surface water (River
Lake)

0.23–105 El Salvador Bundschuh et al., 2021

14.6–42.5 Platería Puno, Peru George et al., 2014

200–2,200 Ankobra, Volta and Densu river, Ghana Gbogbo et al., 2017

4.0±1.60 Sindh, Pakistan Ahmed Baig et al., 2010

7.04 Changjiang River, china Wang et al., 2011

23.88 Diyarbakir, Turkey Varol and Sen, 2012

2.354 Tigris River, Turkey

1.08 (Upriver:) 1.93
(Downriver:) 2.14
(Wet season:)

Pardo River, Brazil Alves et al., 2014

0.938 Oghji, river, Armenia Gabrielyan et al., 2018

2.72± 2.51 27 subtropical rivers, China Deng et al., 2018

0.66–4.01 Bandama river, West Africa Ouattara et al., 2018

0.56–5.06 Comoé river, West Africa

1.45–6.19 Bia river, West Africa

13.4± 1.2–13.8± 1.8 Sinos River (Brazil) Weber et al., 2013

9.7 the Antequera River, Bolivia Ramos Ramos et al., 2012

4.6 Lasha River (L.R.), downstream, China Li et al., 2013

52.75 The middle parts of the Zarshuran stream, IRAN Sharifi et al., 2016

23.45 the Sarouq River in the downstream station, IRAN

130 Yamuna River, Delhi, India Rahman and Singh, 2018

39± 3 Snake River below Lewis River Wang et al., 2010

45± 4 Snake River above Lewis River

<6 Yangzonghai Lake, Yunnan, China McCleskey et al., 2022

97.5± 28.5 Manchar lake, Sindh, Pakistan

As(V): 2.16 As(III): 0.34 Zhushan Bay, Lake Taihu, china Yan et al., 2016

4.18 Waihai, Lake Dianchi, china Zhang N. et al., 2013

170 Handle Lake, Canada Palmer et al., 2019

60 Lower Martin, Canada

35 Long Lake, Canada

0.99–2650 Nicaragua Delgado Quezada et al., 2020

<1–188 Okavango delta, Botswana Mladenov et al., 2014

0.21–3 Ethiopia Dsikowitzky et al., 2013

<1–82 Tanzania Nyanza et al., 2014

3.26–22.7 Rift lake (Lake Elementaita and Naivasha), Kenya Yang et al., 2017

1.47–1.89 Lake Victoria, Kenya Outa et al., 2020

12.0±2.20 Sindh, Pakistan Ahmed Baig et al., 2010

305.6 20.6 Mapam Yumco, China
Yangzuoyongcuo, China

Li et al., 2013

(Continued)
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TABLE 1 (Continued)

Water sources Concentrations
(ranges or mean;

µg/L)

Locations References

972 Ontario, Canada Sprague and Vermaire, 2018

200.1 1,588.3 River Niger Upstream, Onitsha, Nigeria
River Niger Central Drainage, Onitsha, Nigeria

Ezeabasili et al., 2014

Total As: <6.0 Taihu, Chaohu, and Dianchi lakes, China Yang et al., 2016

As(III): 0.8 Utinoie lake (hot-springs), Mutnovsky volcano on the
Kamchatka peninsula, Russia

Ilgen et al., 2011

Wastewater and landfill
leachate

Gohagoda leachates: ND-2
Acetogenic

leachates: <100–300
Methanogenic
leachates: <1–2

Sri Lanka Wijesekara et al., 2014

45.2 Simpang Renggam Landfill Site, Johor, Malaysia Mohd-Salleh et al., 2020

1.6520 Backwash
Sludge, West Bengal, India

Koley, 2021

1,360 China Liu et al., 2018

As(V): 42,000 South Korea Lee et al., 2015

134,000 the Maringá landfill (Paraná, Brazil) Scandelai et al., 2021

Minimum:0.2 Maximum:
928

Romania Schiopu and Gavrilescu, 2010

Landfill A: 1,180 Landfill
B: 2,870

South Africa Mosai et al., 2022

As(III): 108 Pennsylvania (PA), USA (effluent) Zhao et al., 2013

Seawater T-As: 1.71± 0.35 Kagoshima Bay, southwestern Japan Tomiyasu et al., 2021

0.46–1.55 Jordanian Gulf of Aqaba Al-Taani et al., 2014

1.2 to 4.3 southern Taiwan Lin et al., 2013

8.55–14.88 Tarut Island, Arabian Gulf El-Sorogy et al., 2016

As(III): 0.09–0.51 Total As:
0.20 to 0.66

Todos os Santos Bay, Salvador, Bahia, Brazil dos Santos et al., 2018

0.6 China Sea Wang et al., 2022

0.6–1.6 Atlantic Ocean

0.8–1.1 Indian Ocean

0.94–1.56 Atlantic Ocean

1.0 Pacific Ocean

1.4 Galway Bay, Ireland

1.8 Krka estuary, Yugoslavia

2.81–4.48 1.78–3.42 surface seawater, subtropical bay of China

bottom seawater, subtropical bay of China

Zhang et al., 2018

1.26 Caspian Sea Abadi et al., 2018

2.41 Al-Khobar Alharbi et al., 2017

0.300 Mediterranean Sea El-Sorogy and Attiah, 2015

1.18 Dingzi Bay, Yellow Sea Pan et al., 2014

2.19 Jinzhou Bay Wang et al., 2012

2.60 World Ocean (mean) Famil Yusif et al., 2015

7.420± 0.742 the Jordanian coastline of the Gulf of Aqaba, Red Sea Al-Absi et al., 2019
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FIGURE 2

Processes of arsenic bioaccumulation in aquatic organisms (Zhang et al., 2022; open access paper under the terms of the Creative Commons CC-BY
license).

adsorbents is significantly higher than that of single adsorbents.
For example, engineered nanoparticles can exhibit adsorption
capacities exceeding 100 mg/g.

3.1 Removal of As with carbon-based
adsorbents

Carbon-based adsorbents possess significant potential as
adsorbent materials due to their large specific surface area, high
porosity, substantial pore volume, and adjustable morphological
and functional group properties. These characteristics make them
suitable for various applications, including water purification.
The adsorption efficiency of carbonaceous materials is influenced
by factors such as the raw material, production technique,
and environmental variables (Mahesh et al., 2022). The main
mechanisms of As removal with carbon-based adsorbents are
shown in Figure 3. Sabzehmeidani et al. (2021) reported that
activated carbon, biochar, and graphene-based adsorbents are
commonly utilized for the removal of arsenic (As) from
water sources.

Activated carbon (AC) is a versatile and widely available carbon
material used for adsorption. It comes in different forms, such
as granular, powder, pellet, and spheres. These materials exhibit
efficient and selective adsorption of toxins and heavy metals.
Compared to other adsorbents, activated carbon-based materials
are cost-effective, highly effective, and easy to use (Lan et al.,
2023). AC has a structure that includes well-defined micro, meso,
and macropores, as well as diverse surface functional groups. The
surface area of activated carbon ranges from 500 to 3,000 m2/g
(Sultana et al., 2022). In a study, Gao et al. (2023) utilized modified
AC to effectively remove both As(III) and As(V). The maximum
adsorption capacities were found to be 10.9 mg/g for As(III) and

16.0 mg/g for As(V). The maximum adsorption capacity (mg/g)
observed for As(V) removal using As was 1.2 (Yürüm et al., 2014).

Graphene is a 2D lattice of carbon atoms with high surface
area, thermal conductivity, Young’s modulus, and charge carrier
mobility. It exhibits the quantum Hall effect due to electron
confinement in 2D materials (Sabzehmeidani et al., 2021).
Graphene oxide (GO), a derivative of graphene, is a single sheet of
graphite with a 2D honeycomb crystal plane structure. It exhibits
a high specific surface area of up to 2,620 m2/g (Bian et al.,
2015). GO is characterized by diverse functional groups on its
surface, including epoxy, lactol, carboxyl, phenol, and hydroxyl
groups, along with large π-stacking. These features enable GO to
possess a high sorption capacity through strong interactions such
as hydrogen bonding, electrostatic forces, and π-π interactions
(Gabris et al., 2022). In the study (Bian et al., 2015), GO
was synthesized using a modified Hummers method. A solution
containing 1.0 g of NaNO3 dissolved in 50ml of concentrated
H2SO4 was prepared, and then 1.0 g of natural graphite was slowly
added to the solution while stirring in an ice-water bath. After
complete dissolution, 18.0 g of KMnO4 was gradually added over
a period of 30min. The mixture was stirred for 2 h at 309 ± 1K
and then heated in a water bath at 368K for 30min. Following
this, 180ml of deionized water was added, and a suspension of
20ml of H2O2 (30 wt%) was slowly introduced. The desired
products were washed with 10% v/v HCl and ultrapure water,
undergoing centrifugation and ultrasonication until a constant
pH value was reached. The resulting GO was dried at 333K for
24 h. Chandra et al. (2010) removed As(III) and As(V) using
modified GO (magnetic GO). The maximum adsorption capacity
(mg/g) based on the Langmuir isotherm was found to be 10.2
for As(III) and 5.2 for As(V), respectively. Their study revealed
that the adsorption process of As using magnetic-GO primarily
followed surface complexation. In a study conducted by Wu et al.
(2018b) GO-based adsorbent (GO/CuFe2O4) was used to remove
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TABLE 2 Bioaccumulation of As in fish/shrimp.

Fish/shrimp Concentrations
(µg/g)

Remarks Location References

Micropterus salmoides 1.39± 0.22 Liver Emory River mile 1.0; U.S. Otter et al., 2012

Pomoxis annularis 4.66± 0.82

Lepomis macrochirus 1.76± 0.21

Lepomis microlophus 6.83± 0.726

Rabbitfish S. fuscescens 1.04± 0.09 Muscle China, under control conditions Zhang et al., 2016

Seabass L. japonicus 2.59± 0.67

Pteromylaeus bovinus 36.3–362 Muscle Northern Adriatic Sea Šlejkovec et al., 2014

Myliobatis aquila 32.4–69.8

Freshwater fish 0.748± 0.651 Muscle Xiang River, Jia et al., 2018

Green tiger shrimp (Penaeus
semisulcatus)

29.254± 0.473 Muscle Iskenderun Bay, Turkey Kaya and Turkoglu, 2017

Common sole (Solea solea) 4.397± 0.311

Whiting fish (Merlangius

merlangus)
10.320± 0.518

E. suratensis 3.0–3.4 Kidney Sri Lanka Perera et al., 2016

A. testudineus 4.1–4.7

C. striata 4.0–4.3

Meretrix lusoria 7.6–10.7 NR∗ Putai county Liu et al., 2007

Catfish 0.45–4.93 Gill Paraná River Delta (PRD, Argentina)
and in Paranaguá Estuarine Complex
(PEC, Brazil)

Avigliano et al., 2020

Anadara sp. 13–23 American Samoa Peshut et al., 2008

Gafarium sp. 20-68

Labeo calbasu (Calbasu) 1.86± 0.02 Muscle (wet weight) Manchar Lake Shah et al., 2009

Cirrhinus mrigala (Mrigala) 0.54± 0.04

Mystus gullio (Gullio) 1.72± 0.24

Oreochromis niloticus 5.70± 2.10 As(III); 8.79±
4.46 As(IV)

Liver; after 1 week
analysis

NR Ferreira et al., 2019

∗NR, Not reported.

both As(III) and As(V). The maximum adsorption capacities
(mg/g) achieved were 51.64 for As(III) and 124.69 for As(V)
removal. Their study demonstrated that both As(III) and As(V)
adsorptions on the GO-CuFe2O4 adsorbent followed an inner-
sphere complex mechanism. In another study conducted by Su
et al. (2017), a modified GO called iron oxide-graphene oxide
was used to successfully remove 99.9% of both As(III) and As(V).
The maximum adsorption capacities were 147 mg/g for As(III)
and 113 mg/g for As(V). The results of their study showed that
the adsorption of As onto modified-GO takes place through a
mechanism known as surface complexation.

Biochar is produced through the thermal treatment of natural
organic feedstocks in an oxygen-limited environment. Huang
et al. (2019) emphasized that biochar offers numerous advantages,
such as its ion exchange capacity, expansive surface area, high
porosity, and presence of surface functional groups, which make
it promising for wastewater treatment. Biochar is composed of
various elements, including carbon, sulfur, hydrogen, oxygen,

nitrogen, and minerals found in the ash fraction. Although
biochar shares similar properties and structure with AC, AC
has a considerably larger surface area. The primary surface
functional groups found in biochar include carboxyl, hydroxyl,
phenolic hydroxyl, and carbonyl groups (Mojiri and Zhou, 2023).
In a research, Wang et al. (2015) used a modified version of
biochar called manganese oxide-modified biochars to successfully
remove As(V). They discovered that the biochar had a maximum
adsorption capacity of 0.59 mg/g, with the main adsorption
mechanism being the interaction between the biochar and As(V).
Navarathna et al. (2019) employed a modified biochar known
as magnetic Fe3O4/Douglas fir biochar composites to effectively
remove over 68% of As(III). The maximum adsorption capacity of
the modified biochar was determined to be 6.9 mg/g. Their study
suggested that the adsorption process was primarily governed by
a chemisorption mechanism. In a research study, wood biochar
exhibited remarkable efficiency in removing 92–100% of As. The
maximum adsorption capacity for As(III) removal was measured
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TABLE 3 Removal of arsenic with adsorption method.

Arsenic Adsorbent Maximum
adsorption
capacity
(mg/g)

Adsorption
isotherm

Remarks References

As(III) Activated carbon
(AC)

184 Langmuir As concentration was 20 mg/L; Anion
exchange and physiochemical adsorption
were the primary mechanisms of adsorption;
The removal of As(III) reached 92% with
powdered activated carbon (PAC).

Sabzehmeidani et al.,
2021

As(III); As(V) Granular activated
carbon (GAC)

0.03; 0.05 NR∗ As(V) undergoes adsorption on an oxide
surface through a ligand exchange
mechanism, forming an inner sphere surface
complex. The removal of As(III) and As(V)
reached 44% and 71% respectively with GAC.

Mondal et al., 2008

As(III) AC 1.0 Langmuir Ion exchange, complexation and
physiochemical adsorption were the primary
mechanisms of adsorption

Budinova et al., 2009

As(III) AC 6.5 Langmuir The adsorption of As(III) by AC is a complex
process that is not solely controlled by
electrostatic attraction.

Mondal et al., 2007

As(III); As(V) Fe-modified-AC 38.8; 51.3 Langmuir NR Chen et al., 2007

As(III) Fe–Zr@AC 556 Langmuir Surface functional groups –OH, NH2,
COO–, Fe–O, ZrO were involved for As (III)
removal.

Sahu et al., 2021

As(V) Fe-AC 17 Langmuir Surface functional groups were involved for
As(V) removal

Lodeiro et al., 2013

As(III); As(V) Biochar (derived
from peanut shell)

7.6; 7.9 Langmuir Both hydroxyl (-OH) and aromatic surface
functional groups (such as C=O, C=C-C,
and -C-H) played a significant role in the
sorption of both species of arsenic. The
removal of As(III) and As(V) reached 95%
and 99% respectively with biochar.

Sattar et al., 2019

As(III) Magnetic
Fe3O4/Douglas fir
biochar

5.4 Sips isotherm Both surface complexation and
pH-dependent chemisorption mechanisms
played a significant role in the sorption of
As(III).

Navarathna et al., 2019

As(V) Fabrication of
engineered biochar
(derived from paper
mill sludge)

22.8 Langmuir Specific surface interactions played a
significant role in the sorption of As(V)

Yoon et al., 2017

As(V) Activated biochar 24.4 Langmuir The primary sorption mechanism is the
chemical interaction between the metal ions
and the surface functional groups of biochars.

Jin et al., 2014

As Activated biochar 8.6 Langmuir The main adsorption mechanism was the
functional groups.

Saikia et al., 2017

As(V) Biochar (derived
from sewage
sludge)

0.03 Langmuir 53% of As(V) was removed. The primary
mechanisms responsible for heavy metal
immobilization were the electrostatic
interactions between the negative surface
charge of biochar and metal cations, as well
as metal precipitation in the case of anionic
metals.

Agrafioti et al., 2014

As(V) Zerovalent iron
composited
biochars

26.5 Langmuir Electrostatic interactions, surface
complexation and diffusion were sorption
mechanisms.

Ahmad et al., 2020

As(V) Magnetic graphene
oxide

59.6 Langmuir The adsorption of As(V) on MGO is mainly
governed by the electrostatic attraction or
repulsion interaction
of As(V) species with the MGO surface.

Sheng et al., 2012

As(III) Fabricated
crumpled graphite
oxides

47.3 Langmuir >98% of As(III) was removed. The both
electrostatic interaction and surface
complexation were the main sorption
mechanism.

Son et al., 2018

(Continued)
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TABLE 3 (Continued)

Arsenic Adsorbent Maximum
adsorption
capacity
(mg/g)

Adsorption
isotherm

Remarks References

As(III); As(V) Graphite oxides 19.0; 28.0 Langmuir Both surface complexation mechanism,
rather than electrostatic interactions were the
main sorption mechanisms.

Su et al., 2017

As(III) Combination of
Graphene Oxide
(GO) and Granular
Ferric Hydroxide
(GFH)

0.2 Langmuir Chemisorption was the main sorption
mechanism.

Tolkou et al., 2023

As Modified bentonite 0.6–2.8 Langmuir The electrostatic adsorption, the ligand
exchange and precipitation were the main
sorption mechanism.

Hua, 2015

As(III) Modified bentonite
(hydroxyapatite-
bentonite
clay-nanocrystalline
cellulose)

51.0 Langmuir >95% of As(III) was removed. Ion-exchange
mechanism was the main sorbent
mechanism.

Hokkanen et al., 2019

As Co-modified
bentonite with
manganese oxides
and
poly(dimethyldiallylammonium
chloride)

9.1–99.9 Langmuir Both electrostatic attraction and inner-sphere
complexation were main sorption
mechanisms.

Hua, 2018

As(V) Bentonite-
Anthracite@Zetag
(BT-An@Zetag)
composite

38.6 Freundlich The electrostatic, ion exchange and
functional surface groups were main sorption
mechanism.

El-Aassar et al., 2022

As(III) Fe-exchanged
zeolite

100 Langmuir The ion exchange was the main sorption
mechanism.

Li et al., 2011

As(III); As(V) Copper exchange
zeolite

1.3; 1.4 Langmuir The ion exchange was the main sorption
mechanism.

Pillewan et al., 2014

As(III) Zeolitic imidazolate
frameworks

108.1–122.0 Langmuir Hydroxyl substitution was the main
mechanism for arsenic removal.

Liu et al., 2015

As(III); As(V) Cellulose@iron
oxide nanoparticles

23.1; 32.1 Langmuir Both electrostatic and functional groups
governed the sorption mechanism.

Yu et al., 2013

As Copper (II) oxide
nanoparticles

10.8 Langmuir Chemisorption was the main sorption
mechanism.

Goswami et al., 2012

As(III); As(V) Iron oxide
nanoparticles

42.0; 83.0 Langmuir The removal of arsenic on nanosized iron
oxide occurs through chemisorption,
specifically via inner-sphere surface
complexation.

Cheng et al., 2016

∗NR, Not reported.

at 3.1 mg/g, while for As(V) removal, it was 3.8 mg/g. The
main identified adsorption mechanisms were chemisorption and
physicosorption (which involve the filling of pores in the biochar)
(Niazi et al., 2018).

One of the methods to analyze the structural properties and
identify functional groups on biochar and other sorbents is FTIR
spectroscopy. It enables the differentiation of functional groups
between the original feedstock material and the resulting biochar,
as well as the assessment of any changes in functional groups
before and after As sorption (Amen et al., 2020). The FTIR
spectrum of Oak wood biochar (OW-BC) before and after As
removal is shown in Figure 4. In OW-BC, spectral bands indicated
the presence of -OH and non-ionic carboxyl groups, as well
as aliphatic methylene/methyl groups and C-O/C-O-C surface

functional groups. After As sorption, slight shifts and intensity
changes were observed. Notably, in As(III)-loaded OW-BC, peak
shifts and transformations were observed at specific wavelengths.
These changes were relatively smaller in As(V)-loaded OW-BC
(Niazi et al., 2018).

3.2 Removal of As with mineral-based
adsorbents

Researchers have been increasingly drawn to natural mineral-
based adsorbents as an alternative source. These adsorbents have
garnered significant attention due to their low cost, abundance,
easy retrievability, and exceptional adsorption capabilities. Among
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FIGURE 3

Schematic representation of heavy metal adsorption mechanisms on carbon adsorbents (Yang et al., 2019; copyright permission received from
Elsevier).

FIGURE 4

FTIR absorbance spectra of Japanese oak wood-derived biochar (OW-BC) prepared at 500◦C: (A) OW-BC_As-Unloaded (solid black line), (B)
OW-BC_As(V)-Loaded (solid pink line), and (C) OW-BC_As(III)-Loaded (solid green line); (Niazi et al., 2018; copyright permission received from
Elsevier).

the numerous natural minerals found on Earth, zeolite and clays,
particularly bentonite, have been extensively studied for their
effectiveness in removing heavy metals (Zaimee et al., 2021). Clay
minerals are phyllosilicates composed of T (tetrahedral) and O
(octahedral) sheets in a 1:1 or 2:1 ratio. Due to isomorphous
substitution, the layers of certain 2:1 clay minerals (such as smectite
and vermiculite) carry a negative charge, which is balanced by
cationic counterions in the interlayer space. These counterions
can be exchanged, making clay minerals efficient adsorbents
for cationic contaminants (Zhu et al., 2016). Bentonite, a clay
with a high content of montmorillonite, is widely utilized for
ion removal from water due to its bi-dimensional tetrahedral
and octahedral sheets and isomorphic substitutions. It is both
cheap and abundant, making it an ideal choice for synthesizing
functionalized clay (Barakan and Aghazadeh, 2019). Arsenic

was effectively removed using modified bentonite, achieving a
maximum adsorption capacity of 9.14–9.99 mg/g. The removal
mechanisms involved a combination of electrostatic attraction
and inner-sphere complexation, indicating a mixed removal
mechanism (Hua, 2018). A modified bentonite [Fe(III)-modified
bentonite] successfully removed As(III), exhibiting a maximum
adsorption capacity of 0.3 mg/g (Baigorria et al., 2022). A
significant removal efficiency of 84.5% was achieved for As(V)
using modified bentonite (lanthanum-modified bentonite), with a
maximum adsorption capacity of 3.8 mg/g (Cui et al., 2021).

Zeolites, whether naturally occurring or artificially synthesized,
are hydrated aluminosilicate minerals. Their porous and cage-
like structure enables them to provide significant internal and
external surface areas for efficient ion exchange. This characteristic
makes zeolites highly effective in adsorbing arsenic from water,
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FIGURE 5

Principal Mechanisms of Heavy Metal Adsorption with Natural Zeolites: (A) Ion Exchange, (B) Electrostatic Interaction (Velarde et al., 2023; open
access paper under the terms of the Creative Commons CC-BY license).

FIGURE 6

Illustration of As(III) to As(V) oxidation and adsorption of As(III) and As(V) species on the modified iron oxide surface (Siddiqui and Chaudhry, 2017;
copyright permission received from Elsevier).
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highlighting their potential as a valuable tool for eliminating this
toxic substance (Salem Attia et al., 2014; Velarde et al., 2023). The
application of a modified zeolite, the Copper Exchange Zeolite,
resulted in the removal of over 98% of both As(III) and As(V).
The maximum adsorption capacity for As(III) was measured
at 1.3 mg/g, while for As(V) it was 1.4 mg/g (Pillewan et al.,
2014). Electrostatic Interaction and ion substitution (Figure 5) are

FIGURE 7

Illustration of As(III) to As(V) oxidation and adsorption of As(III) and
As(V) species on the modified iron oxide surface. (Asadi Haris et al.,
2023; copyright permission received from Elsevier).

key mechanisms involved in the removal of arsenic (As) using
zeolite (Shevade and Ford, 2004; Liu et al., 2015). The maximum
adsorption capacity (mg/g) was 0.5, at pH=6, in As(V) removal
with a modified zeolite (Macedo-Miranda and Olguín, 2007).

3.3 Removal of As with metal oxide
nano-adsorbents

Nanoparticles are tiny particles ranging in size from 1 to
100 nanometers. They exist in the transitional zone between
individual molecules and larger materials. Due to their small
size, nanoparticles possess unique physicochemical properties,
including a high specific surface area, significant energy, and
the confinement of quantum effects (Jjagwe et al., 2023). Metal
oxide nanoparticles (NPs) as adsorbents offer numerous benefits,
including high specificity and capacity attributed to the quantum
size effect and their large surface area. Moreover, these NPs
possess unique structures, diverse pore sizes, low solubility, and
can be easily synthesized using cost-effective techniques. Their low
solubility, strong mechanical properties, and remarkable stability
against organic dyes make metal oxides highly effective adsorbents
(Hosny et al., 2023). Zinc oxide (ZnO) nanoparticles, silver oxide
(Ag2O) nanoparticles, copper oxide (CuO) nanoparticles, titanium
dioxide (TiO2) nanoparticles, and iron oxide nanoparticles are
widely usedmetal oxide nanoparticles (Naseem andDurrani, 2021).
Numerous iron-basedmaterials and processes have been developed
to address the issue of arsenic removal from drinking water.
Iron oxides, oxyhydroxides, and hydroxides, such as amorphous
hydrous ferric oxide (Fe(O)OH), goethite (FeO–OH), and hematite

FIGURE 8

Arsenic’s interactions with metal oxide-based nanoadsorbents at neutral pH (Ersan et al., 2023; copyright permission received on June 12, 2023,
from Elsevier).
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TABLE 4 Nanoparticle adsorbents for As removal.

Adsorbent Dia. (nm) Removal
(%)

adsorption
capacity
mg/g

Initial con. of As mg/L pH References

As (III) As (V)

Starch Functionalized
Maghemite Nanoparticles
(γ-Fe2O3@starch)

9.65 - 8.88 - 1-6 7 Siddiqui et al., 2020

Iron-modified activated
carbon fiber (Fe2O3/ACF)

- - 20.33 3 7 Chen et al., 2016

Zinc Oxysulfid Nanomaterials
(ZnOxS1-x)

5–6 99.9 299.4 299.4 0.01 6-8 Uppal et al., 2019

Activated Carbons Modified
with Iron
hydro(oxide)F400-M

3–36 - - 0.3-1.2 0.025-5 6-8 Vitela-Rodriguez
and
Rangel-Mendez,
2013

SiO2@Fe3O4@MBT 40 95.77 As(V) - 1 6.55 Sheikhmohammadi
et al., 2018

Fe3O4 loaded activated
carbon

- - - 204.2 - 8 Liu et al., 2010

Graphene oxide-MnFe2O4

nanohybrid
- - 146 207 - 4-6.5 Kumar et al., 2014

Zirconium-nanoscale carbon 50–70 - - 110 100 2.5 Mahanta and Chen,
2013

Nano zero valent iron
supported on Activated
carbon

<100 - 18.2 12.0 2 6.5 Zhu et al., 2009

Nanocrystal line Titanium
dioxide

6 95% AS(III)
>98% As(V)

- - 1 4-9.5 Pena et al., 2006

Functionalized Graphene
Sheets

- - 139 142 300 6-7 Mishra and
Ramaprabhu, 2011

Core/Shell structural
nZVI/Mn Oxide

- - 29.4 35.7 5 4.8 Bui et al., 2017

Fe (III)-Cu (II) binary Oxide 50 123.3 82.7 10 7 Zhang G. et al.,
2013

Ultra-small nanoparticles
(IONPs) within Electrospun
Hydrophilic Poly(vinyl
alcohol) (PVA) nanofibers

<5 - - 3.5±0.3 0.01 5 Torasso et al., 2023

Copper oxide nanoparticles 12–18 - 26.9 22.6 0.1-100 6-10 Martinson and
Reddy, 2009

Zr-UiO-66-SH-A - 90.7 98.8 - Shao et al., 2019

Nano-Alumina wrapped
Carbon Microspheres
(Al-CMs)

- - - 68.0 - 2-12 Raj et al., 2023

ZnO Nanorods Coated
Porous Ceramic Monolith

100 98 As(V) - 0.2 7 Muensri and
Danwittayakul,
2017

Alginate coated
Superparamagnetic Iron
Oxide Nanoparticles
(SPIONs)

25 99 240.08 - 6.5 7 Asadi Haris et al.,
2023

Zr-metal-organic framework
(MOF) UiO-66

- - 352.1 147.5 - 3-11 Qu et al., 2022

Zeolite-supported nanoscale
zero-valent iron (Z-NZVI)

40–60 - 11.52 - 10 6 Li et al., 2018
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TABLE 4 (Continued)

Adsorbent Dia. (nm) Removal
(%)

adsorption
capacity
mg/g

Initial con. of As mg/L pH References

As (III) As (V)

Copper Ferrite (CuFe2O4)
Foam (CFF)

- - 44 85.4 10 8.1 Wu et al., 2018a

Amine functionalization of
iron-based metal-organic
frameworks MIL-101
[NH2-MIL-101(Fe)]

- - 153.4 147.7 - 7 Fang et al., 2023

Copper-doped ZIF-8
nanomaterials (Cu-ZIF-8)

- - - 238.11 10-350 3-11 Wang et al., 2023

Cerium oxide (CeO2)
nanoparticles (NPs)

40–50 - 451 As(III) 119
As(V)

- - 3.6 Bi et al., 2020

(Fe2O3), have demonstrated their efficacy in removing arsenic from
aqueous solutions (Dhanasekaran and Sahu, 2021). Besides, in a
study (Siddiqui and Chaudhry, 2017), a Fe2O3 nano-composite
adsorbent has been functionalized to enhance arsenic (As) removal.
As illustrated in Figure 6, Fe2O3 nano-composites have proven to
be efficient adsorbents for arsenic cleanup from water. This efficacy
is attributed to the presence of a large number of hydroxyl and other
functional groups on the surface, enabling a higher capacity for the
oxidation of As(III) to As(V). The functional groups attached to
the composite material’s surface provide strong trapping sites for
arsenic across various pH levels.

In a study (Pham et al., 2020), As(V) was removed by a
ferric hydroxide-based adsorbent, the maximum removal capacity
was 2.9 (mg/g). In a separate study (Asadi Haris et al.,
2023), superparamagnetic iron oxide nanoparticles (SPIONs) and
alginate-encapsulated SPIONs (SPIONs-Alg) were synthesized for
arsenic (As) removal from water. Figure 7 illustrates key bands:
3,400 cm−1 (O–H symmetric vibration), 2,936 cm−1 (aliphatic C–
H stretching), 600 cm−1 ([Fe–O] intrinsic stretching), and 400
cm−1 (octahedral [Fe–O] vibration), confirming ferrite formation
in spinel form. Notably, SPIONs-Alg exhibited a distinct 585 cm−1

band, indicating the presence of nanoferrite.
Due to the formation of stable bidentate binuclear surface

complexes on its surface, TiO2 shows great promise as a material
for the removal of As from industrial wastewater (Qiu et al., 2019).
In a study (Deng et al., 2021), the maximum adsorption capacities
(mg/g) for the removal of As(III) and As(V) using a TiO2-
based adsorbent were 7.7 and 18.2, respectively. A study utilized
a modified metal oxide nanoparticle (Ce0.8Ti0.2O2−y) to remove
arsenic. The adsorbent demonstrated a maximum adsorption
capacity of 2×105 mg/g (Mishra and Rai, 2019). Their study
revealed that the removal procedure was primarily governed by
two mechanisms. Firstly, the redox reaction involving ceria and
titania metals facilitates the partial oxidation of the more toxic
As(III) to the less toxic As(V). The resulting As(V) can readily form
monodentate and bidentate complexes. Secondly, the adsorption
of As(III) occurs through the interaction between the surface
hydroxyl groups of the synthesized adsorbent and the As(III)
species. In the study (Mishra and Rai, 2019), Titania-doped cerium
oxide nanoparticles (Ce1−xTixO2−y) were synthesized using a
single-pot aerogel process. Cerium nitrate hexahydrate (40mM)
and stoichiometric oxalic acid were dissolved in a mixture of

ethanol and toluene. Titanium isopropoxide (10% and 20% w/w
of cerium nitrate hexahydrate) in 50mL of ethanol, along with
distilled water, were gradually added to the precursor mixture.
Vigorous stirring at 300 rpm resulted in a light yellowish gel.
The gel was transferred to a Parr reactor and heated at a
rate of 1◦C per minute. The solvents were supercritically dried
under elevated temperature and high pressure, yielding a light
yellow, low-density powder of Ce1−xTixO2−y oxide nanoparticles.
These nanoparticles were then used as adsorbents for arsenic
removal. The use of various metal oxide nanoparticles resulted
in the removal of over 92% of As(V), with an impressive
adsorption capacity of up to 305 mg/g (Hocaoglu et al., 2019).
They mentioned that the primary adsorption mechanism of
metal oxides relies on the formation of strong bonds between
the surface –OH groups of the metal oxides and the –OH
group of the arsenic(V) species. In another study (Sunil et al.,
2018), more than 96% of As was removed with Al-Ti2O6

nanoparticles. In another study (Powell et al., 2020), carbon-
coated iron carbide (Fe3C@C) was used to remove arsenic (As)
from groundwater. The maximum adsorption capacity was 168
micrograms per gram (µg/g). Figure 8 illustrates the interactions
between arsenic and metal oxide-based nanoadsorbents under
neutral pH conditions. Table 4 shows the removal of As using
various nanoparticle adsorbents.

4 Conclusions

The presence of arsenic in water bodies poses a significant
risk to both human health and the environment. Arsenic
contamination in water sources is a global environmental concern
caused by both natural processes and human activities. The high
concentrations of arsenic found in drinking water, groundwater,
wastewater, and aquatic organisms highlight the urgent need
for effective removal methods. This review manuscript critically
evaluated the effectiveness and limitations of adsorption methods
for arsenic removal from water bodies. Adsorption emerged
as a promising technique due to its cost-effectiveness, high
removal efficiency, and simplicity of operation. Various adsorbents,
including nanoparticle adsorbents and graphene-based adsorbents,
demonstrated a high capacity for arsenic removal. Additionally,
low-cost adsorbents such as zeolites, clay, and chitosan, as
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well as agricultural waste materials and biochar, have shown
potential for arsenic adsorption. Future research should focus on
optimizing adsorbent materials, understanding the mechanisms
of arsenic adsorption, and developing sustainable and efficient
regeneration techniques.
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Nikić, J., Watson, M., Tenodi, K. Z., Dalmacija, B., and Agbaba, J. (2023).
Pilot study on arsenic removal from phosphate rich groundwater by in-line
coagulation and adsorption. Journal of Hazardous Materials Advances 10, 100280.
doi: 10.1016/j.hazadv.2023.100280

Nwankwo, C. B., Hoque, M. A., Islam, M. A., and Dewan, A. (2020). Groundwater
constituents and trace elements in the basement aquifers of africa and sedimentary
aquifers of Asia: medical hydrogeology of drinking water minerals and toxicants. Earth
Syst. Environm. 4, 369–384. doi: 10.1007/s41748-020-00151-z

Nyanza, E. C., Dewey, D., Thomas, D. S. K., Davey, M., and Ngallaba, S. E. (2014).
Spatial distribution of mercury and arsenic levels in water, soil and cassava plants in
a community with long history of gold mining in Tanzania. Bull. Environ. Contam.
Toxicol. 93, 716–721. doi: 10.1007/s00128-014-1315-5

Oladoye, P. O. (2022). Natural, low-cost adsorbents for toxic Pb(II) ion
sequestration from (waste)water: a state-of-the-art review. Chemosphere 287, 132130.
doi: 10.1016/j.chemosphere.2021.132130

Ortiz Letechipia, J., González-Trinidad, J., Júnez-Ferreira, H. E., Bautista-
Capetillo, C., Robles-Rovelo, C. O., Contreras Rodríguez, A. R., et al. (2022).
Aqueous arsenic speciation with hydrogeochemical modeling and correlation with
fluorine in groundwater in a semiarid region of Mexico. Water (Basel) 14, 519.
doi: 10.3390/w14040519

Otter, R. R., Bailey, F. C., Fortner, A. M., and Adams, S. M. (2012).
Trophic status and metal bioaccumulation differences in multiple fish species
exposed to coal ash-associated metals. Ecotoxicol. Environ. Saf. 85, 30–36.
doi: 10.1016/j.ecoenv.2012.08.022

Ouattara, A. A., Yao, K. M., Soro, M. P., Diaco, T., and Trokourey, A. (2018).
Arsenic and trace metals in three west african rivers: concentrations, partitioning, and
distribution in particle-size fractions. Arch. Environ. Contam. Toxicol. 75, 449–463.
doi: 10.1007/s00244-018-0543-9

Outa, J. O., Kowenje, C. O., Plessl, C., and Jirsa, F. (2020). Distribution of arsenic,
silver, cadmium, lead and other trace elements in water, sediment and macrophytes in
the Kenyan part of Lake Victoria: spatial, temporal and bioindicative aspects. Environ.
Sci. Pollut. Res. 27, 1485–1498. doi: 10.1007/s11356-019-06525-9

Palmer, M. J., Chételat, J., Richardson, M., Jamieson, H. E., and Galloway, J. M.
(2019). Seasonal variation of arsenic and antimony in surface waters of small subarctic
lakes impacted by legacy mining pollution near Yellowknife, NT, Canada. Sci. Total
Environm 684, 326–339. doi: 10.1016/j.scitotenv.2019.05.258

Pan, J., Pan, J.-F., and Wang, M. (2014). Trace elements distribution and ecological
risk assessment of seawater and sediments from Dingzi Bay, Shandong Peninsula,
North China.Mar. Pollut. Bull. 89, 427–434. doi: 10.1016/j.marpolbul.2014.10.022

Pedretti, D., Luoma, S., Ruskeeniemi, T., and Backman, B. (2019). A geologically-
based approach to map arsenic risk in crystalline aquifers: analysis of the
Tampere region, Finland. Geoscience Frontiers 10, 1731–1741. doi: 10.1016/j.gsf.2018.
12.004

Pena, M., Meng, X., Korfiatis, G. P., and Jing, C. (2006). Adsorption Mechanism of
Arsenic on Nanocrystalline Titanium Dioxide. Environ. Sci. Technol. 40, 1257–1262.
doi: 10.1021/es052040e

Perera, P. C. T., Sundarabarathy, T. V., Sivananthawerl, T., Kodithuwakku, S. P.,
and Edirisinghe, U. (2016). Arsenic and cadmium contamination in water, sediments
and fish is a consequence of paddy cultivation: evidence of river pollution in Sri Lanka.
Achievements in the Life Sciences 10, 144–160. doi: 10.1016/j.als.2016.11.002

Peshut, P. J., Morrison, R. J., and Brooks, B. A. (2008). Arsenic speciation
in marine fish and shellfish from American Samoa. Chemosphere 71, 484–492.
doi: 10.1016/j.chemosphere.2007.10.014

Pham, T. T., Ngo, H. H., Tran, V. S., and Nguyen, M. K. (2020). Removal of As (V)
from the aqueous solution by a modified granular ferric hydroxide adsorbent. Sci. Total
Environm. 706, 135947. doi: 10.1016/j.scitotenv.2019.135947

Pillewan, P., Mukherjee, S., Kumar Meher, A., Rayalu, S., and Bansiwal, A. (2014).
Removal of arsenic (III) and arsenic (V) using copper exchange zeolite-a. Environ. Prog.
Sustain Energy 33, 1274–1282. doi: 10.1002/ep.11933

Powell, C. D., Guo, S., Godret-Miertschin, L. M., Ventura, K., Lounsbury,
A. W., Clark, C. A., et al. (2020). Magnetically recoverable carbon-coated iron
carbide with arsenic adsorptive removal properties. SN Appl. Sci. 2, 1690.
doi: 10.1007/s42452-020-03491-7

Prasad Ahirvar, B., Das, P., Srivastava, V., and Kumar, M. (2023). Perspectives of
heavy metal pollution indices for soil, sediment, and water pollution evaluation: an
insight. Total Environm. Res. Themes. 6, 100039. doi: 10.1016/j.totert.2023.100039

Qiu, S., Yan, L., and Jing, C. (2019). Simultaneous removal of arsenic and antimony
from mining wastewater using granular TiO2: Batch and field column studies. J.
Environm. Sci. 75, 269–276. doi: 10.1016/j.jes.2018.04.001

Qu, G., Jia, P., Zhang, T., Li, Z., Chen, C., and Zhao, Y. (2022). UiO-66(Zr)-derived
t-zirconia with abundant lattice defect for remarkably enhanced arsenic removal.
Chemosphere 288, 132594. doi: 10.1016/j.chemosphere.2021.132594

Rahman, Z., and Singh, V. P. (2018). Assessment of heavy metal contamination and
Hg-resistant bacteria in surface water from different regions of Delhi, India. Saudi J.
Biol. Sci. 25, 1687–1695. doi: 10.1016/j.sjbs.2016.09.018

Raj, S. K., Sharma, V., Yadav, A., Indurkar, P. D., and Kulshrestha, V. (2023).
Nano-alumina wrapped carbon microspheres for ultrahigh elimination of pentavalent
arsenic and fluoride from potable water. J. Indust. Eng. Chem. 117, 402–413.
doi: 10.1016/j.jiec.2022.10.028

Rajendran, S., Priya, A. K., Senthil Kumar, P., Hoang, T. K. A., Sekar, K., Chong,
K. Y., et al. (2022). A critical and recent developments on adsorption technique
for removal of heavy metals from wastewater-a review. Chemosphere 303, 135146.
doi: 10.1016/j.chemosphere.2022.135146

Ramos Ramos, O. E., Cáceres, L. F., Ormachea Muñoz, M. R., Bhattacharya,
P., Quino, I., Quintanilla, J., et al. (2012). Sources and behavior of arsenic and
trace elements in groundwater and surface water in the Poopó Lake Basin, Bolivian
Altiplano. Environ. Earth Sci. 66, 793–807. doi: 10.1007/s12665-011-1288-1

Rango, T., Bianchini, G., Beccaluva, L., and Tassinari, R. (2010). Geochemistry and
water quality assessment of central Main Ethiopian Rift natural waters with emphasis
on source and occurrence of fluoride and arsenic. J. Afric. Earth Sci. 57, 479–491.
doi: 10.1016/j.jafrearsci.2009.12.005

Rowland, H. A. L., Omoregie, E. O., Millot, R., Jimenez, C., Mertens, J.,
Baciu, C., et al. (2011). Geochemistry and arsenic behaviour in groundwater
resources of the Pannonian Basin (Hungary and Romania). Appl. Geochem. 26, 1–17.
doi: 10.1016/j.apgeochem.2010.10.006

Sabzehmeidani, M. M., Mahnaee, S., Ghaedi, M., Heidari, H., and Roy, V. A. L.
(2021). Carbon based materials: a review of adsorbents for inorganic and organic
compounds.Mater. Adv. 2, 598–627. doi: 10.1039/D0MA00087F

Sahu, N., Singh, J., and Koduru, J. R. (2021). Removal of arsenic from
aqueous solution by novel iron and iron–zirconium modified activated carbon
derived from chemical carbonization of Tectona grandis sawdust: Isotherm, kinetic,
thermodynamic and breakthrough curve modelling. Environ. Res. 200, 111431.
doi: 10.1016/j.envres.2021.111431

Saikia, R., Goswami, R., Bordoloi, N., Senapati, K. K., Pant, K. K., Kumar, M.,
et al. (2017). Removal of arsenic and fluoride from aqueous solution by biomass based
activated biochar: Optimization through response surface methodology. J. Environ.
Chem. Eng. 5, 5528–5539. doi: 10.1016/j.jece.2017.10.027

Salem Attia, T. M., Hu, X. L., and Yin, D. Q. (2014). Synthesised magnetic
nanoparticles coated zeolite (MNCZ) for the removal of arsenic (As) from aqueous
solution. J. Ex.p Nanosci. 9, 551–560. doi: 10.1080/17458080.2012.677549

Sanjrani, M. A., Zhou, B., Zhao, H., Bhutto, S. A., Muneer, A. S., and Xia, S.
B. (2019). Arsenic contaminated groundwater in china and its treatment options, a
review. Appl. Ecol. Environ. Res. 17, 1655–1683. doi: 10.15666/aeer/1702_16551683

Sarkar, A., and Paul, B. (2016). The global menace of arsenic and its
conventional remediation - a critical review. Chemosphere 158, 37–49.
doi: 10.1016/j.chemosphere.2016.05.043

Sattar, M. S., Shakoor, M. B., Ali, S., Rizwan, M., Niazi, N. K., and Jilani,
A. (2019). Comparative efficiency of peanut shell and peanut shell biochar

Frontiers inWater 19 frontiersin.org

https://doi.org/10.3389/frwa.2024.1301648
https://doi.org/10.1016/j.chemosphere.2018.07.024
https://doi.org/10.4028/www.scientific.net/KEM.751.766
https://doi.org/10.1016/j.scitotenv.2018.06.376
https://doi.org/10.1016/j.enceco.2020.12.001
https://doi.org/10.1016/j.jenvman.2019.109429
https://doi.org/10.1016/j.ijheh.2015.01.004
https://doi.org/10.1016/j.hazadv.2023.100285
https://doi.org/10.1016/j.scitotenv.2017.10.063
https://doi.org/10.1016/j.hazadv.2023.100280
https://doi.org/10.1007/s41748-020-00151-z
https://doi.org/10.1007/s00128-014-1315-5
https://doi.org/10.1016/j.chemosphere.2021.132130
https://doi.org/10.3390/w14040519
https://doi.org/10.1016/j.ecoenv.2012.08.022
https://doi.org/10.1007/s00244-018-0543-9
https://doi.org/10.1007/s11356-019-06525-9
https://doi.org/10.1016/j.scitotenv.2019.05.258
https://doi.org/10.1016/j.marpolbul.2014.10.022
https://doi.org/10.1016/j.gsf.2018.12.004
https://doi.org/10.1021/es052040e
https://doi.org/10.1016/j.als.2016.11.002
https://doi.org/10.1016/j.chemosphere.2007.10.014
https://doi.org/10.1016/j.scitotenv.2019.135947
https://doi.org/10.1002/ep.11933
https://doi.org/10.1007/s42452-020-03491-7
https://doi.org/10.1016/j.totert.2023.100039
https://doi.org/10.1016/j.jes.2018.04.001
https://doi.org/10.1016/j.chemosphere.2021.132594
https://doi.org/10.1016/j.sjbs.2016.09.018
https://doi.org/10.1016/j.jiec.2022.10.028
https://doi.org/10.1016/j.chemosphere.2022.135146
https://doi.org/10.1007/s12665-011-1288-1
https://doi.org/10.1016/j.jafrearsci.2009.12.005
https://doi.org/10.1016/j.apgeochem.2010.10.006
https://doi.org/10.1039/D0MA00087F
https://doi.org/10.1016/j.envres.2021.111431
https://doi.org/10.1016/j.jece.2017.10.027
https://doi.org/10.1080/17458080.2012.677549
https://doi.org/10.15666/aeer/1702_16551683
https://doi.org/10.1016/j.chemosphere.2016.05.043
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Mojiri et al. 10.3389/frwa.2024.1301648

for removal of arsenic from water. Environ. Sci. Pollut. Res. 26, 18624–18635.
doi: 10.1007/s11356-019-05185-z

Scandelai, A. P. J., Zotesso, J. P., Vicentini, J. C. M., Cardozo Filho, L., and
Tavares, C. R. G. (2021). Intensification of supercritical water oxidation (ScWO) by
ion exchange with zeolite for the reuse of landfill leachates. Sci. Total Environm. 794,
148584. doi: 10.1016/j.scitotenv.2021.148584

Schiopu, A.-M., and Gavrilescu, M. (2010). Municipal solid waste landfilling
and treatment of resulting liquid effluents. Environ. Eng. Manag. J 9, 993–1019.
doi: 10.30638/eemj.2010.133

Sener, E., Sener, S., and Bulut, C. (2023). Assessment of heavy metal
pollution and quality in lake water and sediment by various index methods
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