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c-HAND: near real-time coastal
flood mapping
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The Texas Gulf Coast region contains significant centers of population,

infrastructure, and economy and is threatened by intensifying tropical storms.

The flooding from these tropical storms often has multiple compounding

drivers. This characteristic presents a complex numerical problem where a

simulation must consider multiple hydrologic forcings. While several procedures

exist for addressing this problem numerically, they tend to be resource-

intensive and cannot be conducted in near real-time. We extend GeoFlood, a

reduced physics approach for fluvial flood forecasting, to rapidly predict coastal

and compound fluvial-coastal inundation. This method is validated against a

numerical ocean circulationmodel (ADCIRC) simulation of Hurricane Ike, amajor

coastal flooding event that happened on the Texas Gulf Coast in 2008. We show

that the inundation map generated by coastal HAND (c-HAND) has reasonable

agreement with the ADCIRC simulation while taking about 1.7% of the time

currently needed to run ADCIRC on a supercomputer. While our model correctly

predicts 99% of ADCIRC-inundated DEM cells, it also overpredicts inundated

area by a factor of approximately 27%. We combine c-HAND with the GeoFlood

framework for fluvial flood forecasting to create a compound fluvial-coastal

inundation mapping workflow that can be run in near real-time. c-HAND’s fast

wall-clock time and low CPU requirements can support decision making by

first response personnel. The method provides timely and convenient access

to crucial information, such as the locations of flooded roads and inundated

coastal areas.

KEYWORDS

coastal compound flooding, Height Above Nearest Drainage (HAND), real-time

inundation mapping, GeoFlood, Geographic Information Systems (GIS)

1 Introduction

Tropical storms across the North Atlantic have been increasing in severity over the

past 40 years due to anthropogenic climate change, a trend which is expected to continue

(Kossin et al., 2020). Flood damage in coastal cities could cost the United States $52 billion

annually by 2050 (Hallegatte et al., 2013). The Gulf Coast region of the southern United

States is also subjected to intensifying tropical storms (Dykstra and Dzwonkowski, 2021)

and includes the Houston and Beaumont-Port Arthur metropolitan areas, where critical

energy infrastructure coexists with a socially vulnerable population (Griego et al., 2020;

Williams and Webb, 2021). Of the five costliest hurricanes in the United States, three

devastated the Gulf Coast region (Katrina, Harvey, and Ida), totalling nearly half a trillion

dollars in damage and causing over 2,000 fatalities (NOAA, 2022).

Flooding caused by tropical storms has compounding drivers–including

fluvial, coastal, and pluvial flooding–and is difficult to model conventionally
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(Zscheischler et al., 2018; Jafarzadegan et al., 2022). Modeling solely

fluvial flooding while neglecting other drivers is common (FEMA,

2017); however, this approach underestimates risk in coastal areas

(Khanam et al., 2021). Understanding fluvial-coastal compound

flooding is vital: the joint hazard of rainfall and coastal flooding

may increase up to 3,600% in the southern United States by 2100

(Gori et al., 2022).

Accurate and efficient flood maps are essential for reducing

impacts (Jafarzadegan et al., 2023). These maps are produced for

three main objectives: planning purposes such as risk mapping

and floodplain delineation (FEMA, 2017), damage assessment

(Bhuiyan et al., 2012), and emergency response (Zheng et al.,

2018a). Flood inundation mapping methods can be characterized

as empirical, hydrodynamic, or conceptual (Teng et al., 2017).

Empirical models are derived from remote-sensing data (Tellman

et al., 2021), measurements (Watson et al., 2018), or statistical

approaches (Moftakhari et al., 2017; Orton et al., 2020). Empirical

approaches reflect direct observation of flooding. However, they

depend on data availability, sensor calibration, weather conditions,

and vegetation.

Hydrodynamic models solve the Navier-Stokes equations.

Depth integrating the Navier-Stokes equations yields the shallow-

water equations, which are solved by software packages such

as ANUGA (Mungkasi and Roberts, 2013), GeoClaw (Clawpack

Development Team, 2020), LISFLOOD-FP (Horritt and Bates,

2002), and ADCIRC (Westerink et al., 1992). Integrating over both

depth and width results in the Saint-Venant equations, which are

used by 1D HEC-RAS for fluvial flood mapping (Brunner, 2002).

Hydrodynamic models have explanatory power because they rely

on physical relationships (French and Clifford, 2000); however,

they are computationally expensive to run (Miura et al., 2021).

Hydrodynamic models also have difficulty considering multiple

forcings such as coastal flooding and rainfall-runoff (Santiago-

Collazo et al., 2019; Jafarzadegan et al., 2023), and are most

appropriate for non-time prohibitive objectives such as planning

and assessment.

Finally, simplified conceptual models have been proposed to

map flood inundation in time prohibitive situations, e.g., for

first responders (Zheng et al., 2018a). Conceptual models use

approximate physical relationships and assumptions, are more

computationally efficient than hydrodynamic models, and can be

applied to high-resolution topography (Teng et al., 2017; McGrath

et al., 2018). Simplified conceptual DEM-based approaches have

been applied to calculate floodplain geometry as a power law

function of stream contributing area (Nardi et al., 2006, 2019;

Annis et al., 2022) and identify floodplains in ungaged watersheds

(Manfreda et al., 2011; Jafarzadegan and Merwade, 2017; Samela

et al., 2017, 2018).

The Height Above Nearest Drainage (HAND) method, first

described by Rennó et al. (2008), can be used to calculate

flood inundation along a river reach by converting stage height

to spatial inundation (Figure 1). HAND scales efficiently and

has been applied to the continental United States (Liu et al.,

2018). Recently, simplified conceptual models have been applied

to map the inundation from fluvial flooding, tidal flooding,

and sea level rise (Knowles, 2010; Lichter and Felsenstein,

2012; Zheng et al., 2018a; Li et al., 2022; Enriquez et al.,

2023) and to downscale hydrodynamic results (Rucker et al.,

FIGURE 1

Schematic of the HAND method at a river cross-section. The

“nearest drainage” height is h0. h1 represents the Height Above

Nearest Drainage (HAND) value for a typical streamflow, while h2

represents a HAND value that causes flooding.

2021). To the best of our knowledge, a simplified conceptual

model has not been developed yet for near real-time compound

flood mapping.

This research aims to address the following three questions: (i)

whether a simplified conceptual model can efficiently map coastal

inundation, (ii) how the model’s results agree with a hydrodynamic

and ocean circulation model (ADCIRC) simulation, and (iii)

if this coastal inundation mapping approach can be combined

with GeoFlood, a simplified conceptual fluvial inundation model

(Zheng et al., 2018a), to obtain inundation from a compound

fluvial-coastal event. To address these questions, we develop a

HAND-inspired approach to quantify coastal flooding dubbed c-

HAND (coastal HAND). We apply this method to a maximum

coastal inundation map of Hurricane Ike and validate it against

a maximum inundation backcast generated by ADCIRC. Finally,

we demonstrate that the combined GeoFlood/c-HAND method

can generate compound fluvial-coastal flood inundation maps in

near real-time.

2 Data and methods

2.1 Data

2.1.1 Study area
The study area of Southeast Texas (Figure 2) contains the

densely populated Beaumont-Port Arthur metropolitan area,

several clusters of critical energy infrastructure, and is vulnerable

to increasingly intense tropical storms. Southeast Texas has

experienced several significant coastal compound flooding events

recently, including floods caused by Hurricanes Harvey and

Ida and Tropical Storm Imelda within the past 5 years. In

addition to physical vulnerability, the region is home to socially

vulnerable populations.
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FIGURE 2

The region of Southeast Texas.

Southeast Texas is located along the Gulf of Mexico and

is typically considered to include the Texas counties of Tyler,

Jasper, Newton, Liberty, Hardin, Orange, Chambers, and Jefferson

(Figure 2). Some definitions of Southeast Texas further include

the counties of Houston, Trinity, Angelina, San Augustine, Sabine,

Madison, Walker, San Jacinto, Polk, Grimes, Montgomery, Waller,

Harris, Fort Bend, Brazoria, and Galveston (Figure 2). The low-

relief topography can be characterized as Texas Coastal Plains

and slopes gently toward the Gulf. In addition to the Sabine,

Neches, and Trinity Rivers draining into the Gulf, many smaller

streams drain into marshy bayous near the coast. The region has

two major bays: Galveston Bay and Sabine Lake. Further inland

there are pine, hardwood, and post oak forests and grasslands.

Culturally, the eastern portion of Southeast Texas is closely linked

to neighboring Louisiana.

2.1.2 Digital elevation models
We downloaded a 1/3 arc-second (about 10m) resolution DEM

with the U.S. Geological Survey online tool The National Map v2

(U.S. Geological Survey, 2018). The DEM resolution is equal in

both the x and y direction. To compare the results of c-HANDwith

the ADCIRC model, we cropped the DEM (Figure 3) to spatially

correspond to the higher resolution inland mesh of the ADCIRC

model around Southeast Texas (Section 2.2.1). This DEM covers

an area of 23,688 square kilometers and has approximately 600

million cells.

2.1.3 Tide gage data
We downloaded ocean water surface elevation data from the

Tides and Currents website maintained by NOAA CO-OPS. We

obtained the coastal water surface elevation for Hurricane Ike from

NOAA gage 8770777 at Manchester and applied it to the DEM

(Figure 3). The Manchester gage has a 6-min resolution time series

of ocean water surface elevation during the study period (Hurricane

Ike: September 2008). The gage is located relatively far inland and

in a highly developed area. Although several other NOAA gages

have been installed closer to the coast, we chose this gage to more

closely capture inland coastal inundation elevation. NOAA gage

8770777 at Manchester measured a maximum height of 3.8 m

during Hurricane Ike, deviating substantially from the predicted

tidal elevation in the absence of Hurricane Ike (Figure 4).

2.1.4 ADCIRC model results
ADCIRC is a hydrodynamic ocean circulation model that

simulates storm surge with the shallow water equations and takes

into account physical parameters such as wind direction and

atmospheric pressure (Westerink et al., 1992). We conducted an

ADCIRC simulation of Hurricane Ike (September 11–13 2008)

on an unstructured triangular mesh covering the entire United

States Eastern Seaboard and parts of Central and South America

for model validation (we provide a link to this dataset in the

data availability section) (Figure 5). The mesh has a varying spatial

resolution with a higher average resolution (maximum 30 × 30 m)

in our study area of Southeast Texas and in the Rio Grande Valley.

The ADCIRC maximum elevation output file provides each mesh

node’s topographic elevation above the geoid and the maximum

water surface elevation achieved at each node.

Another ADCIRC output file provides a time series of coastal

inundation conditions for Hurricane Ike. Hourly results are

available from 01:00 11 September 2008 to 00:00 14 September

2008 UTC time. We chose four representative timestamps from

the time series output file to characterize the dynamics of the

ADCIRC simulated coastal inundation: 12:00 12 September 18:00

12 September 00:00 13 September and 00:00 14 September. We

generated profiles by creating a Triangular Irregular Network

(TIN) surface for ADCIRC’s predicted inundation elevation at

each representative timestamp and the maximum inundation

case (Supplementary Figures S1–S3). We then extracted coastal

inundation elevations along transverse (perpendicular to the

coastline) and longitudinal (parallel to the coastline) profiles with

the generated TINs from ADCIRC (Figure 6).

2.1.5 GeoFlood data inputs
The GeoFlood workflow requires several data inputs to

generate near-real time fluvial flood inundation maps. For a

complete explanation of these inputs, see Passalacqua et al. (2010)

and Zheng et al. (2018a,b). We provide a brief description below

and in Table 1.

2.1.6 National Hydrography Dataset (NHD)
The freely accessible National Hydrography Dataset Plus

Version 2 (NHDPlusV2) is maintained by the U.S. Environmental

Protection Agency (McKay et al., 2012). It contains spatial

representations of river thalwegs and various waterbodies and their

respective catchments. We obtained the river flowline dataset used
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FIGURE 3

1/3 arc-second resolution DEM covering Southeast Texas for comparison with the ADCIRC model. NOAA gage 8770777 at Manchester was used to

obtain the coastal water surface elevation at this site.

FIGURE 4

NOAA tide gage 8770777 at Manchester, TX during Hurricane Ike.

in this study from the NHDPlusV2 Medium Resolution (MR) data

product and the catchments from the NHDPlusV2’s Watershed

Boundary Dataset (WBD) data product.

2.1.7 National Water Model (NWM) forecasts
The National Water Model (NWM) simulates streamflows

for NHDPlusV2 MR stream reaches across the continental

United States (Cosgrove et al., 2016). In this study, we used

the NWM’s hourly analysis and assimilation outputs to

compute compound fluvial-coastal inundation. Analysis and

assimilation files are a real-time snapshot of the flow rates of

all medium resolution stream reaches across the continental

United States, and they are generated from a combination

of real-time gage readings, interpolation, and empirically

calibrated relationships.
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FIGURE 5

Full ADCIRC mesh. Figure created with the maximum surface elevation information in the maxele.63.nc output file.

2.2 Methods

We develop a workflow to compute compound fluvial-coastal

flood inundation maps (Figure 7). First, we obtain a DEM

corresponding to the study area and an ocean surface elevation gage

reading. The DEM and gage reading must have the same vertical

datum (here, we use NAVD 88). Then, we apply the c-HAND

algorithm as explained below to calculate coastal inundation. In

parallel, we use GeoFlood to calculate a fluvial flood inundation

map. Finally, we combine coastal and fluvial inundation maps to

form a compound inundation map. We describe below each step of

the workflow.

2.2.1 DEM Processing
We mosaic the downloaded DEM tiles together and project

them toUTMZone 15N coordinates (EPSG:26915).We use ArcGIS

Pro’s convex hull method (Weisstein, 2018), to trace the ADCIRC

mesh’s boundary. We crop the DEM such that it is bounded by

the inland ADCIRC mesh boundary and the coast. We obtain

the coastline from the GSHHG World Vector Shorelines database

(NCEI, 2018).

2.2.2 GeoFlood workflow
GeoFlood is a suite of terrain analysis tools released as

open source software (Zheng et al., 2018a), which is capable of

computing fluvial flood inundation in near-real time. We provide a

general overview of the GeoFlood workflow below. Table 1 provides

references for further reading.

GeoFlood requires a high-resolution DEM, WBD catchments,

NHDPlusV2 MR flowlines, and NWM hourly flowrates for each

flowline as inputs. After a series of terrain operations, it converts

the flowrates to stream stage heights at segments along each stream

with Manning’s Equation and hydraulic geometry estimations

(Zheng et al., 2018b). Finally, GeoFlood converts the stage height at
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FIGURE 6

Coastal inundation profiles for each representative timestamp and for the case of maximum inundation along a transverse profile [(A) Perpendicular

to the coast] and longitudinal profile, [(B) parallel to the coast]. The left side of each plot corresponds to each profile’s eastern endpoint. All times are

UTC.

TABLE 1 GeoFlood manuscripts and their subject material.

Manuscript Topic

Zheng et al. (2018a) General overview of GeoFlood

Zheng et al. (2018b) Hydraulic geometry estimation

Passalacqua et al. (2010) Channel network extraction

Zheng et al. (2022) Application to Hurricane Harvey

each stream segment to a flood inundation map using the HAND

method.

2.2.3 c-HAND
We extend GeoFlood’s fluvial flood forecasting workflow to

include coastal inundation mapping by modifying the HAND

method for coastal environments. HAND at the coast is very

similar to a fluvial inundation scenario. The ocean and the coast

are analogous to a large river channel and a bank along that

channel, respectively. We neglect the other bank across from the

coast, which is analogous to another continent or island. The

ocean water surface elevation is extended horizontally from the

ocean surface to the landscape topography, taking an approximate

but computationally efficient approach that can be referred to as

“bathtub,” “equilibrium,” or “static” (Gallien et al., 2011; Rucker

et al., 2021). We apply a static equilibrium assumption to the water

surface, assuming that the water surface is absolutely motionless

and horizontal, similar to the water surface of a still bathtub

(Figure 8).

We refer to ocean connectivity as the condition of a grid cell

(pixel) having surface water that is hydrologically connected to

the ocean. That is, a parcel of water at any location satisfying

this condition can flow directly to the ocean without any physical

obstructions. For example, Galveston Bay always satisfies the ocean

connectivity requirement because water in Galveston Bay is directly

connected to the ocean. Similarly, rivers that feed into the ocean or

bays connected to the ocean have ocean connectivity. Dry land and

inland lakes that do not drain to the ocean do not satisfy the ocean

connectivity condition.

First, we manually choose a grid cell located in the ocean.

Then, we use that cell to determine ocean connectivity, while

several disconnected regions of inundation satisfy the elevation

requirement of coastal flooding, only one of those regions is

physically connected to the ocean. That region contains the

manually chosen ocean pixel. We discard all regions at lower

elevation except the one containing the ocean pixel.

Based on this approach, we consider grid cells to be

inundated when their DEM surface elevation is lower than the

gage elevation and they are connected to the ocean. For the

remainder of this study, we dub this combination of satisfying both

elevation and ocean connectivity constraints the c-HANDmethod.
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FIGURE 7

Overview of c-HAND’s workflow.

FIGURE 8

Modification of Figure 1 to illustrate c-HAND. Flooding is due to

coastal inundation in this figure.

c-HAND is illustrated as a simple algorithm in pseudocode below

(Algorithm 1).

1: for every DEM cell do

2: if (cell elevation < gage elevation) and (ocean

connectivity = True) then

3: cell inundation = gage elevation − cell

elevation

4: else

5: cell inundation = 0

6: end if

7: end for

Algorithm 1. c-HAND method.

Topography-based coastal inundation mapping methods have

been applied to inform land-usemanagement policy (Brown, 2006),

assess damages due to climate change (Lichter and Felsenstein,

2012), and downscale coarse hydrodynamic outputs (Rucker et al.,

2021), but to the authors’ knowledge, this is the first time a

topography-based approach has been applied to high-fidelity near

real-time coastal flood inundation mapping.

We apply c-HAND (Section 2.2.3) to a demonstration DEM

(Figure 9). The bottom elevations of the channel, estuary, and

isolated depression are all below 0 m. When the ocean surface

elevation is exactly 0 m, it extends to the edge of the coastline,

through the channel, and into the estuary but not to the

isolated depression. An ocean surface elevation of 5 m leads to

inundation farther up the coast, but the isolated depression is

not inundated, despite its bottom elevation being lower than the

ocean, because that depression is not connected to the ocean

when 5 m of coastal inundation is applied. After we apply 6

m of coastal inundation, the ocean connectivity requirement

is satisfied for the depression. Due to the static equilibrium

assumption made by the model, the depression immediately has

a water surface elevation corresponding to the ocean surface

elevation (Figure 10).

2.2.4 Compound fluvial-coastal flooding
We develop a simplified model of compound fluvial-coastal

flooding by combining fluvial and coastal inundation via a

maximum operation. We compute coastal and fluvial inundation

separately on the same DEM, then superimpose the coastal

inundation raster on the fluvial inundation raster. If fluvial (hFluvial)

and coastal (hCoastal) flooding both occur at the same grid cell,

we compute the depth of compound flooding (hCompound) as the

maximum value (Equation 1), resulting in a compound fluvial-

coastal flood inundation map:

hCompound = max(hCoastal, hFluvial) (1)

2.2.5 Validation metrics
To assess the performance of c-HAND relative to ADCIRC, we

measure the model’s ability to classify the presence or absence of

flood inundation. We use a confusion matrix (Figure 11), which

is commonly used in the field of machine learning to characterize

a model’s classification performance (Provost, 1998). With this

approach, we frame flood inundation as a binary variable in an

image classification problem. We consider ADCIRC model results

to be true (actual) and c-HAND results to be predicted.
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FIGURE 9

2D (A) and 3D (B) views of the demonstration DEM. The 0-meter contour line is shown in black.

Several metrics are available for assessing a model’s ability

to classify a binary variable (Landis and Koch, 1977; Levine,

2000). These standard metrics have been applied to assess flood

models’ skill, according to Li et al. (2022). We include four such

metrics: the Critical Success Index measures a model’s ability

to correctly inundate cells while considering predictive errors

(Equation 2), the Proportion Correct is the proportion of all

DEM cells that are correctly classified (Equation 3), the Bias

Ratio is the proportion of c-HAND inundated pixels to ADCIRC

inundated pixels (Equation 4), and the Hit Rate measures c-

HAND’s ability to predict inundation when ADCIRC predicts

inundation (Equation 5).

Critical Success Index =
TP

TP + FP + FN
(2)

Proportion Correct =
TP + TN

TP + FN + FP + TN
(3)

Bias Ratio =
TP + FP

TP + FN
(4)

Hit Rate =
TP

TP + FN
(5)

where TP is true positive, TN is true negative, FP is false positive,

and FN is false negative. We do not further test GeoFlood since it

has been done in previous publications (Zheng et al., 2018a, 2022).

3 Results

3.1 Coastal and compound fluvial-coastal
maps

We use ADCIRC and c-HAND to compute Hurricane Ike’s

maximum coastal inundation extent in Houston (Figure 12) and

maximum inundation depth distribution (Figure 13). c-HAND

has a mean inundation elevation of 2.39 m while ADCIRC has

a mean inundation elevation of 2.52 m. ADCIRC generates a

broader distribution of maximum depth values than c-HAND.

We then use c-HAND and GeoFlood to compute Hurricane Ike’s

maximum compound fluvial-coastal inundation in Southeast Texas

(Figure 14).

3.2 Validation

We classify the inundation condition of grid cells (Figure 12),

according to a confusion matrix (Figure 11). The Critical

Success Index is approximately 77%, the Proportion Correct

is approximately 92%, the Bias Ratio is approximately

1.27, and the Hit Rate is approximately 99% (Table 2).

We also report the total pixel counts underlying these

calculations (Table 3).

4 Discussion

The research questions stated in the introduction are

addressed below.

4.1 Can a simplified conceptual model
map coastal inundation e�ciently and
accurately?

In Section 2.2.3, we develop an algorithm for approximating

coastal inundation with a single gage elevation (we provide

the code repository in the data availability section). This

calculation takes us under 20 s to complete on a 600 million

cell (2.2 GB uncompressed) DEM with an office workstation

(RAM: 64 GB, CPU: i7 10700). c-HAND computes inundation
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FIGURE 10

Coastal inundation on the demonstration DEM. Left subplots (A–C) depict inundation depth given a forcing. Right subplots (D–F) are binary masks

showing all DEM locations satisfying the elevation condition without checking connectivity.

approximately 60 times faster than an ADCIRC simulation

running on a state-of-the-art supercomputer (Dubrow,

2020).

c-HAND relies on terrain analysis operations to map flood

inundation, making it dependent on the quality of input

topography data. Urban features and drainage infrastructure are
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only considered in c-HAND’s output inundation map if the input

DEM’s resolution is fine enough to resolve those features, or if they

are manually burned into the DEM. The DEM we use in this study

is bare-earth, so it does not include structures. c-HAND’s accuracy

is also dependent on the vertical accuracy of the input DEM.

4.2 Do these model results agree with an
ADCIRC simulation’s results?

The twomodels have a reasonable visual agreement (Figure 12).

The Critical Success Index is 0.7668, meaning that when neglecting

True Negative cells, c-HAND correctly inundates 77% of the

domain’s remaining cells. The Proportion Correct score is 0.9193,

indicating that c-HAND correctly identifies the presence or absence

FIGURE 11

Confusion matrix key for Figure 12. ADCIRC inundation is “actual”

and c-HAND inundation is “predicted”.

of coastal inundation 92% of the time. Furthermore, the Hit Rate of

0.9857 shows that c-HAND correctly identifies nearly 99% of the

DEM cells inundated by the ADCIRC model. However, c-HAND

also overpredicts inundation by approximately 27%, as reflected

in the Bias Ratio. This result is visually confirmed by observing

that the green FP area is larger than the red FN area, as shown

in Figure 12. Previous studies have also shown that static methods

tend to overpredict flood inundation (Ramirez et al., 2016; Didier

et al., 2019; Rucker et al., 2021; Li et al., 2022).

To eliminate bias that might favor c-HAND, we mask out

inundation beyond the coast and some inland estuarine features

before calculating performance metrics on flood inundation extent.

We do this because both c-HAND and ADCIRC are guaranteed

to inundate water-covered bays in a coastal flooding scenario.

The distributions of maximum inundation depths predicted by

both models show that c-HAND calculates a mean maximum

inundation elevation of 2.39 m while ADCIRC calculates a mean

maximum inundation elevation of 2.52 m (Figure 13). Although

these mean maximum inundation values are close, ADCIRC has

a wider distribution. This difference may be due to the fact that

c-HAND makes an approximate static equilibrium assumption,

while ADCIRC captures the spatial dynamics of coastal inundation

including waves and other disturbances.

4.3 Can coastal inundation calculated by
c-HAND be combined with GeoFlood to
obtain inundation from a compound
flooding event?

We developed a compound maximum fluvial-coastal

inundation map for Hurricane Ike. Ike was the second most

FIGURE 12

Coastal inundation caused by Hurricane Ike on the DEM. See Figure 11 for the confusion matrix that describes these results.
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FIGURE 13

Maximum inundation depth distributions of both models. The triangle denotes the mean value.

expensive hurricane in the United States when it occurred (Blake

et al., 2010). We chose Ike to demonstrate c-HAND because it was

a recent major coastal flooding event in our study area (Hope et al.,

2013). We calculated Hurricane Ike’s maximum coastal inundation

with c-HAND and maximum fluvial inundation with GeoFlood

(Figure 14). We combined coastal and fluvial flooding with the

maximum depth of inundation approach described in Section

2.2.3. c-HAND’s coastal inundation calculation and combination

with fluvial inundation costs less than a minute in total to compute.

c-HAND and GeoFlood can be combined to generate coastal

compound flood maps which can be updated when new data are

released (the selected tide gage updates every 6 min and the NWM

releases streamflow forecasts every hour).

4.4 Conclusion

We proposed a new method and workflow for rapid mapping

of compound fluvial-coastal flood inundation that can be run in

near real-time. By leveraging publicly available real-time sensor

data, high-resolution DEMs, and topographic methods such as c-

HAND and GeoFlood, we can rapidly predict coastal compound

flooding. Because c-HAND can map flooding on high-resolution

DEMs on the order of minutes, it is appropriate for near real-

time coastal flood mapping. We are able to map coastal inundation

approximately 60 times faster than an ADCIRC simulation running

on a state-of-the-art supercomputer (Dubrow, 2020) by using a

simplified conceptual method with terrain analysis operations on

high-resolution terrain.

Although c-HAND cannot capture the dynamics of a coastal

flooding event in the way a hydrodynamic model like ADCIRC

can, it can provide first responders with crucial and timely coastal

compound flooding information. Emergency responders can use

near real-time flood extent and depth information to inform

decisions while responding to coastal flooding events. For the

purpose of emergency response, a model capable of providing quick

and approximate results is preferable to a slow and more accurate

model.

By assuming that the larger magnitude flood driver dominates

at any given location on our model domain, we efficiently combine

TABLE 2 Pixel counts for each performance classification.

Classification Pixel count

True negative (TN) 154,873,915

False negative (FN) 913,527

False positive (FP) 18,211,258

True positive (TP) 62,888,288

TABLE 3 Model assessment metric results.

Metric Score Equation

Critical Success Index 0.7668 2

Proportion correct 0.9193 3

Bias ratio 1.2711 4

Hit rate 0.9857 5

fluvial and coastal flood inundation to create a compound flooding

map. This superposition method can be extended to create a

compound hazard map for any combination of flood drivers, for

example, fluvial-coastal-pluvial flooding. Pluvial flooding is a major

driver of catastrophic compound flood events; Hurricane Harvey

is a recent example (Sebastian et al., 2021). Preisser et al. (2022)

computed fluvial-pluvial inundation by combining GeoFlood and

Fill-Spill-Merge, an algorithm for routing flows through terrain

depressions (Barnes et al., 2021). Using a method similar to the

combination carried out in Equation 1, a fluvial-coastal inundation

map could quickly be combined with a pluvial inundation map.

To control the overprediction of inundation extent that is

inherent to static methods, more simplified conceptual physics

could be added to c-HAND. For example, as an approximation

of hydraulic energy losses, a rate of water surface elevation

reduction that is proportional to distance from the coast could

be incorporated. This type of approximation has been successfully

applied in other simplified conceptual models (Enriquez et al.,

2023).

c-HAND maps compound flooding almost instantaneously via

simple topographic operations. Compound flooding information
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FIGURE 14

Compound fluvial-coastal inundation due to Hurricane Ike.

is invaluable when determining evacuation corridors and

infrastructure impacts. c-HAND can support first responders

making decisions during critical and time-constrained periods,

and is also suitable for use in data-scarce regions where only

surface elevation models and coastal water surface elevation gage

measurements are available.
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