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Fuzzy C-Means clustering for
physical model calibration and
7-day, 10-year low flow
estimation in ungaged basins:
comparisons to traditional,
statistical estimates

Andrew DelSanto*, Richard N. Palmer and

Konstantinos Andreadis

Department of Civil and Environmental Engineering, University of Massachusetts, Amherst, MA,

United States

In the northeast U.S., resourcemanagers commonly apply 7-day, 10-year (7Q10)

low flow estimates for protecting aquatic species in streams. In this paper, the

e�cacy of process-based hydrologic models is evaluated for estimating 7Q10s

compared to the United States Geological Survey’s (USGS) widely applied web-

application StreamStats, which uses traditional statistical regression equations

for estimating extreme flows. To generate the process-based estimates, the

USGS’s National Hydrologic Modeling (NHM-PRMS) framework (which relies on

traditional rainfall-runo� modeling) is applied with 36 years of forcings from the

Daymet climate dataset to a representative sample of ninety-four unimpaired

gages in the Northeast and Mid-Atlantic U.S. The rainfall-runo� models are

calibrated to the measured streamflow at each gage using the recommended

NHM-PRMS calibration procedure and evaluated using Kling-Gupta E�ciency

(KGE) for daily streamflow estimation. To evaluate the 7Q10 estimates made

by the rainfall-runo� models compared to StreamStats, a multitude of error

metrics are applied, including median relative bias (cfs/cfs), Root Mean Square

Error (RMSE) (cfs), Relative RMSE (RRMSE) (cfs/cfs), and Unit-Area RMSE (UA-

RMSE) (cfs/mi2). The calibrated rainfall-runo� models display both improved

daily streamflow estimation (median KGE improving from 0.30 to 0.52) and

7Q10 estimation (smaller median relative bias, RMSE, RRMSE, and UA-RMSE,

especially for basins larger than 100 mi2). The success of calibration is extended

to ungaged locations using the machine learning algorithm Fuzzy C-Means

(FCM) clustering, finding that traditional K-Means clustering (FCM clustering with

no fuzzification factor) is the preferred method for model regionalization based

on (1) Silhouette Analysis, (2) daily streamflow KGE, and (3) 7Q10 error metrics.

The optimal rainfall-runo� models created with clustering show improvement

for daily streamflow estimation (a median KGE of 0.48, only slightly below that

of the calibrated models at 0.52); however, these models display similar error

metrics for 7Q10 estimation compared to the uncalibrated models, neither of

which provide improved error compared to the statistical estimates. Results

suggest that the rainfall-runo� models calibrated to measured streamflow data

provide the best 7Q10 estimation in terms of all error metrics except median
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relative bias, but for all models applicable to ungaged locations, the statistical

estimates from StreamStats display the lowest error metrics in every category.

KEYWORDS

hydrology, machine learning, physical modeling, low flow estimation, prediction in

ungaged basins

1 Introduction

Estimating the recurrence of low-flow events on rivers and

streams is necessary for municipal, industrial, and agricultural

planning, as well as for considering water quality, energy

production, and species habitat (Smakhtin, 2001; Blum et al., 2019).

Resource managers in the Northeast United States apply low flow

statistics, such as the 7-day-10-year low flow (7Q10), to establish

environmental flows to protect aquatic species. The 7Q10 is defined

as an estimate of the lowest streamflow for 7 consecutive days

that occurs, on average, once every 10 years (EPA Office of Water,

2018). At gaged locations, 7Q10 is calculated using an extreme

value distribution and estimating the lowest average week that

reoccurs every 10 years on average (EPA Office of Water, 2018).

These calculated 7Q10 values are often extended to other locations

within a basin through flow scaling. Flow scaling is typically only

recommended for watershed areas that are 0.5 to 1.5 times the

original gaged area (Asquith and Thompson, 2008). For locations

more distant from a gage, and all locations on streams without a

stream gage, another method is required for 7Q10 calculation.

The two most common techniques to estimate long-term, low

flows at ungaged locations are statistical regression modeling and

process-based hydrologic modeling. Statistical regression models

use information from other gaged locations that have measured

historical data to apply at an ungaged location of interest (e.g.,

Ries et al., 2008). For example, the 7Q10 is calculated at all gaged

locations in a homogenous area and a regression equation is

applied to the 7Q10s with generally available predictors such as

a watershed’s physical attributes (basin area, elevation, soil type,

and/or other features). The developed regression can then be used

to estimate 7Q10s in other locations in the homogenous area where

data on the predictor variables are available (Worland et al., 2018).

Common applications of this methodology include the USGS’ web-

application StreamStats (Ries et al., 2008) and a module in the

EPA’s desktop program Basins (US EPA, 2019). In contrast, process-

based hydrologic modeling involves the use of complex physical

equations that describe the variability in water storage and fluxes

and essentially solves the water, mass, and energy balance to create

streamflow data (e.g., Berghuijs et al., 2016). One common example

of a process-based hydrologic model is a rainfall-runoff model,

which can be used to simulate daily or sub-daily streamflow data.

The 7Q10 can then be calculated from the simulated streamflow

data rather than measured streamflow data (e.g., Siddique et al.,

2020).

In practice, the statistical regression models described above

are most often used by resource managers to get estimates of

7Q10s in ungaged locations. The associated regression equations

rely on relative “stationarity,” the assumption that the statistical

properties of streams do not change over time. Recent studies

suggest that anthropogenic changes (land cover, water withdrawal,

and climate change) that impact hydrologic processes may not

satisfy that assumption, exposing shortcomings in this assumption

(Milly et al., 2008; Bayazit, 2015; Salas et al., 2018; Blum et al.,

2019; Hesarkazzazi et al., 2021). For instance, Williams et al. (2022)

estimate that the southwestern United States is experiencing its

driest 22-year period since 800A.D., with approximately 20% of

the drought being attributed to recent anthropogenic changes

(Williams et al., 2022). In contrast, recent studies in the Northeast

United States have found that both average baseflows and 7-

day summer baseflows are increasing with statistical significance

(Hodgkins and Dudley, 2011; Ayers et al., 2022). In the Mid-

Atlantic, Blum et al. (2019) found increasing 7Q10s in the northern

part of the Mid-Atlantic (New York, Pennsylvania) and decreasing

7Q10s in lower Mid-Atlantic (Virginia, Maryland). In addition, the

authors found that using the most recent 30 years of the streamflow

record when a trend in the annual low flows is detected reduces

error and bias in 7Q10 estimators compared to using the full record

(Blum et al., 2019). This result is significant as it implies that

anthropogenic impacts may be impacting 7Q10s, and statistical

models that rely on long-term stationarity are failing to account for

these changes.

Because regression models inherently rely on stationarity,

there has been a renewed interest in improving process-based

hydrologic modeling when estimating current and future extreme

low flows. For example, because of recent extremely dry conditions

in the western U.S., the California Department of Water Resources

(DWR) concluded that: “The significant overestimation in DWR’s

spring 2021 forecasts of snowmelt runoff forecasts illustrate the

importance of shifting away from statistical approaches that

rely on a historical record no longer reflective of observed

conditions, including the need to invest in the data to support

better forecasting. DWR is transitioning to physically based

watershed [rainfall-runoff] models that have the capability to

include a changing climate and to use gridded data sets,

including remotely sensed snowpack observations” (California

Department of Water Resources, 2021). The continued interest

in process-based hydrologic modeling has encouraged federal

agencies charged with natural resource management to create and

update national hydrologic databases that can be used to facilitate

the implementation of rainfall-runoff models. The National

Oceanic and Atmospheric Administration (NOAA) continues

to develop and improve the National Water Model (National

Water Model: Improving NOAA’s Water Prediction Services) for

short- and long-range forecasts, vulnerability assessments, and

parameter sensitivity analyses (e.g., El Gharamti et al., 2021). The

United States Geological Survey (USGS) has also developed the
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National Hydrologic Modeling framework using their rainfall-

runoff modeling software, the Precipitation Runoff Modeling

System (National Hydrologic Model Infrastructure: NHM-PRMS).

The base version of PRMS has been used to predict future shifts in

winter streamflow in southern Ontario (Champagne et al., 2020),

analyze how changing river network synchrony affects high flows

(Rupp et al., 2021), and evaluate climate change impacts in an

agricultural valley irrigated with snowmelt runoff in Nevada and

northern California (Kitlasten et al., 2021). The NHM version

of PRMS has been used for simulation of water availability

in the Southeastern United States for historical and potential

future climate and land-cover conditions (LaFontaine et al., 2019),

modeling surface-water depression storage in a Prairie Pothole

region (Hay et al., 2018), and quantifying spatiotemporal variability

of watershed scale surface-depression storage and runoff in the U.S.

(Driscoll et al., 2020).

Although process-based hydrologic models depict the complex

physical processes that affect streamflow, they present their own,

unique challenges. For rainfall-runoff models to inform managers

in the planning process, accurate and long-term historic data must

be available for calibration and validation. Calibration/verification

is an iterative process that includes determining the appropriate

interdependence and correlation between model variables for

estimating the value of the input variables that are hard to

characterize accurately (Boyle et al., 2000; Duan, 2003). In general,

most rainfall-runoff models utilize some input variables that are

hard to characterize accurately (e.g., groundwater depths, soil

porosity, and underground soil types), making calibration an

important step in the rainfall-runoff modeling process (Gupta

and Waymire, 1998). Without measured streamflow data for

comparison, an uncalibrated rainfall-runoff model can generate

results with unknown errors, requiring additional verification that

the model is working as intended. Calibration directly to measured

streamflow can improve model performance, but in the absence of

measured streamflow data, it is difficult to (1) verify that a rainfall-

runoff model is properly simulating every step of the water budget,

and (2) that the streamflow estimates provided by the model are

accurate enough for decision-making.

In watersheds that lack stream gages, hydrologic models

can infer model parameters using data from similar catchments

for which observations are available, known as parameter

regionalization (Hrachowitz et al., 2013). This is achieved by

transferring catchment parameters from locations with measured

data to an ungaged location of interest (Brunner et al.,

2021). Regression is one of the main methods for hydrologic

regionalization (Guo et al., 2021). Many recent studies document

the successful application of regression-based methods for

hydrologic regionalization, including regional prediction of flow-

duration curves using three-dimensional kriging (Castellarin,

2014) and the combination of regression and spatial proximity

for catchment model regionalization (Steinschneider et al., 2014).

Additionally, with continued access to improved data and

computational power, machine learning algorithms have been

increasingly utilized for hydrologic applications (Kratzert et al.,

2019). Machine learning has been extensively tested for hydrologic

regionalization in recent years, including the application of a

genetic algorithm for annual runoff estimation in ungaged basins

(Hong et al., 2017), the regionalization of hydrological model

parameters using gradient boosting machine learning (Song et al.,

2022), and robust regionalization using deep learning for a global

hydrologic model (Li et al., 2022). However, few papers test

regionalization using machine learning for both daily streamflow

and extreme flow estimation. Golian et al. (2021) documents the

use of K-Nearest-Neighbors (KNN) and statistical methods for

predicting low, average, and high flow quantiles, finding that

“Regionalization was least satisfactory for low flows” (Golian et al.,

2021). For resource managers whomay assume that regionalization

using machine learning can be used to calibrate their models,

the distinction between “successful” model calibration using

regionalization and a model’s ability to estimate low flows must be

further studied and documented.

This study’s objective is to test whether a regionally calibrated,

process-based hydrologic model can provide better estimates of

7Q10 flows than common statistical methods. Future updates

to the NWM and NHM will make it possible to quickly create

uncalibrated rainfall-runoff models at virtually any location on a

stream in the U.S., and application of these models may prove

to be attractive to individuals seeking a process-based model

for low flow estimation. Although there is substantial research

on how process-based models will perform for daily streamflow

estimation in ungaged basins, there is a paucity of research on how

they perform for specific use-cases like extreme low-flow and/or

7Q10 estimation, especially against commonly applied statistical

methods. Farmer et al. (2019) tested a procedure that used statistical

at-site streamflow to calibrate the NHM in ungaged basins, finding

that their models performed within 23% of rainfall-runoff models

calibrated to daily streamflows at the same locations. However, the

authors note that their initial results suggest these models may

not reproduce both low and high streamflow magnitudes, and that

further research should be conducted to examine this (Farmer et al.,

2019). As noted in the previous paragraph, the authors of Golian

et al. (2021) tested their hydrologic model for both daily (median)

flows and extreme flows, finding that their machine learning-

based regionalization was least satisfactory for low flows when

compared to both average and high flows. In this paper, the ability

of process-based models to estimate 7Q10s is evaluated against

open-source statistical 7Q10 estimates. Regardless of its success

for average and high flows, if the process-based models provide

lower errors for 7Q10 estimation than statistical estimates at the

same locations, this will support managers in further justifying the

use of process-based models over traditional statistical models for

7Q10 estimation. For this analysis, 94 uncalibrated rainfall-runoff

models from the USGS’ National Hydrologic Modeling network

at unimpaired, gaged locations in the Northeast and Mid-Atlantic

United States are utilized to achieve the process-based estimates.

The uncalibrated rainfall-runoff models generate daily streamflow

data which can be used to calculate 7Q10 values. Eachmodel is then

calibrated to the measured streamflow data at each location using

the USGS’ auto-calibration software LUCA (Hay and Umemoto,

2007), generating new daily streamflow data and new 7Q10s.

To extend calibration to ungaged locations without measured

streamflow data, the adaptive machine learning algorithm Fuzzy

C-Means (FCM) clustering (Dunn, 1973) is used for parameter

regionalization to re-calibrate the models at each location. This
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clustering algorithm was selected because similar studies have

demonstrated success in using it for regionalization of rainfall-

runoff model parameters (e.g., Mosavi et al., 2021). Each process-

based model (uncalibrated, calibrated, FCM) is then evaluated for

its ability to estimate daily streamflow and 7Q10s. This process is

summarized in Figure 1.

The results from this experiment will answer the

following questions:

(1) Do uncalibrated rainfall-runoff models, created using

extractions from the USGS’ National Hydrologic Modeling

framework, perform comparably to regression-based

7Q10 estimation?

(2) Can models calibrated using Fuzzy C-Means clustering

provide improved 7Q10 estimation compared to publicly

available regression models?

2 Data and study area

The following sections describe the study area (Section 2.1) and

data used in this research (Section 2.2).

2.1 Study area

The study area for this analysis is the northeast United States,

including the states of Maine, New Hampshire, Vermont,

Massachusetts, Rhode Island, Connecticut, New York,

Pennsylvania, New Jersey, Delaware, Maryland, Virginia, and

West Virginia. This area is roughly 260,000 square miles and is

not homogenous, as it covers two distinct Hydrologic Unit Code

(HUC) regions of the U.S. (Seaber et al., 1987). Basins selected

for this study have been defined as “unimpaired” in USGS’s

Hydro-Climatic Data Network, HCDN-2009 (Lins, 2012). This set

of stream gages includes 94 watersheds of varying size and physical

attributes. These basins range from 2.1 mi2 to 1,419 mi2 (Figure 2).

2.2 Data

2.2.1 Streamflow and 7Q10 data
Streamflow data from these 94 gages were downloaded

from the USGS’s Current Water Data for the Nation (https://

waterdata.usgs.gov/nwis/rt). For this experiment, the full record

of streamflow was used for calculation of the 7Q10 at each

site. The “fasstr” software package (https://cran.r-project.org/

web/packages/fasstr/index.html) was used to calculate the 7Q10

directly from the daily streamflow data. This package applies

a quantile distribution to daily streamflow data allowing for

the efficient calculation of low flow frequency analysis metrics,

including the 7Q10. These 7Q10 values were identical to the

7Q10 values calculated by the USGS at each site, presented on

the USGS’s StreamStats Data-Collection Station reports (https://

streamstatsags.cr.usgs.gov/).

2.2.2 Process-based hydrologic models
Rainfall-runoff models for each of the 94 gaged locations were

extracted from the USGS’s National Hydrologic Model version

of the Precipitation Runoff Modeling System (NHM-PRMS). The

USGS National Hydrologic Model (NHM) infrastructure was

developed to support the efficient creation of local, regional, and

national-scale hydrologic models for the United States (Regan

et al., 2019). These models incorporate data stored in the

NHM, including the basin and subbasin landcover values and

area-weighted average climate forcings required to run PRMS.

Selecting a location or gage that is a point-of-interest in the

NHM generates a ready-to-run rainfall-runoff model at that

location, with all necessary variables being extracted for the

basin of interest, including land data (area, elevation, landcover)

and the corresponding climate data. Climate forcing dataset

choices include Daymet (1980–2016) (Thornton et al., 2016),

Maurer (1949–2010) (Maurer et al., 2002), and Livneh (1915–

2015) (Livneh and National Center for Atmospheric Research

Staff, 2019) in the form of basin area-weighted precipitation and

temperature timeseries. For this analysis, the Daymet climate

dataset was chosen because it offers the finest resolution of

the three (1 km, as opposed to 6 km for Livneh and ∼12 km

for Maurer) and allows for trend analysis, as there are no

temporal discontinuities.

Additionally, the NHM-PRMS makes several major

assumptions to model hydrologic processes. This includes:

1. Dividing basins into subbasins using pre-determined

Hydrologic Response Units (HRUs) from the USGS’ Geospatial

Fabric (Bock et al., 2020).

2. Using a daily time-step, while some models utilize

finer timesteps.

3. Calculating evapotranspiration using the Jensen-Haise (JH)

formulation (Jensen and Haise, 1963).

The assumptions above are specific to the NHM-PRMS but

should not imply that the results from this study will be specific

to this hydrologic modeling software. The HRUs from the NHM-

PRMS are based on pre-determined areas of homogeneity. Though

some other models utilize gridded landcover data, all of the

gridded values that would fall within an HRU should be similar

to the value used for that HRU from the NHM-PRMS. Using

a daily time-step may provide inaccurate high-flow estimates, as

things like the 100-year-flood are calculated using gage data on

a 15-min scale when it is available (England et al., 2019), but

the 7Q10 is always calculated from daily average streamflows.

Calculating evapotranspiration using the JH formulation may have

an impact on results, but the appropriate steps have been taken

to minimize the impact. JH calculates evapotranspiration based

on temperature for each HRU. In this study, the Daymet climate

dataset is used, which provides the finest resolution of the available

climate datasets with no discontinuities. Additionally, extensive

model calibration is used to minimize the impact of the JH

formulation. JH is calibrated during its own step of the standard

NHM calibration procedure, which will be further described in

Section 3.1.
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FIGURE 1

Summary of this study’s experimental design.

2.2.3 StreamStats 7Q10 estimates
To compare 7Q10 estimates from the process-based hydrologic

models to current statistical estimates, the USGS’s statistical

estimation program StreamStats is used. StreamStats was chosen

for comparison because (1) it is widely utilized by resource

managers in the study area, (2) it provides direct comparisons, and

(3) it utilizes a statistical methodology for estimation, as opposed

to another process-based methodology. Without estimating daily

streamflow, this program uses multiple linear regression equations,

derived in log-space, to directly estimate flow statistics (Ries et al.,

2008). Though the input variables vary by state, the typical process

is as follows:

1. Calculate the historic 7Q10 at various gaged locations in a

homogenous hydrologic area.

2. Collect the physical characteristics (watershed area, elevation,

slope, etc.) for each of the watersheds attributed to the gages

used above.

3. Fit a multiple linear regression, in log-space, to relate the

input variables (watershed area, elevation, slope, etc.) to the

corresponding 7Q10 value.

4. Delineate the watershed that is attributed to the ungaged

location of interest.

5. Calculate the physical characteristics of the

delineated watershed.

6. Apply the physical characteristics from the ungaged, delineated

watershed to the regression equation developed in step 3 to

calculate the 7Q10.

StreamStats uses varying regression equations and explanatory

variables for Massachusetts (Ries, 2000), Rhode Island (Bent et al.,

2014), New Hampshire (Flynn and Tasker, 2002), Maine (Dudley,

2004), Pennsylvania (Stuckey, 2006), Virginia (Austin et al., 2011),

and West Virginia (Wiley, 2008). StreamStats 7Q10 has not been

developed in Connecticut, Delaware, Maryland, New Jersey, New

York, and Vermont, which partially limits later comparisons.
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FIGURE 2

A 94 unimpaired gaged basins in the Northeast United States.
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TABLE 1 Parameters calibrated in the process-based hydrologic model.

Variable Description Units Default value Lower bound Upper bound

dday_intcp Monthly (January to December)

intercept in degree-day equation

dday −40 −70 10

dday_slope Monthly (January to December) slope in

degree-day equation

dday/temp units 0.4 0.2 1.1

tmax_index Monthly (January to December) index

temperature used to determine

precipitation adjustments to solar

radiation

Temperature units 50 50 90

jh_coef Monthly (January to December) air

temperature coefficient used in

Jensen-Haise potential ET computations

Per degree

temperature

0.014 0.005 0.10

emis_noppt Average emissivity of air on days

without precipitation.

Decimal fraction 0.757 0.757 1

fastcoef_lin Linear coefficient in equation to route

preferential-flow storage down slope.

Fraction/day 0.1 0.0001 1

fastcoef_sq Non-linear coefficient in equation to

route preferential-flow storage down

slope.

None 0.8 0.00001 1

freeh2o_cap Free-water holding capacity of

snowpack expressed as a decimal

fraction of the frozen water content of

the snowpack.

Inches 0.08 0.01 0.2

gwflow_coef Linear coefficient in the equation to

compute groundwater discharge for

each GWR.

Fraction/day 0.03 0.0005 0.10

gwstor_init Storage in each GWR at the beginning

of a simulation.

Inches 1 0.01 20.0

potet_sublim Fraction of potential ET that is

sublimated from snow in the canopy

and snowpack.

Decimal fraction 0.5 0.1 0.75

smidx_coef Coefficient in non-linear contributing

area algorithm.

Decimal fraction 0.001 0.0001 1

smidx_exp Exponent in non-linear contributing

area algorithm.

1/inch 1 0.2 1.8

soil_moist_max Maximum available water holding

capacity of capillary reservoir from land

surface to rooting depth of the major

vegetation type.

Inches 5 0 20

soil_rechr_max_frac Maximum storage for soil recharge zone

(upper portion of capillary reservoir

where losses occur as both evaporation

and transpiration).

Decimal fraction 0.5 0 1

soil2gw_max Maximum amount of the capillary

reservoir excess that is routed directly to

the groundwater recharge

Inches 0.1 0 0.5

rain_cbh_adj Monthly (January to December)

adjustment factor to measured

precipitation to account for deficiencies

in gage catch.

Decimal fraction 1 0.01 2

snow_cbh_adj Monthly (January to December)

adjustment factor to measured

precipitation to account for deficiencies

in gage catch.

Decimal fraction 1 0.01 2

adjmix_rain Monthly (January to December) factor

to adjust rain proportion in a mixed

rain/snow event by month.

Decimal fraction 1 0.01 1.4

cecn_coef Monthly (January to December)

convection condensation energy

coefficient.

Calories/deg Celsius 5 0.01 20

(Continued)
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TABLE 1 (Continued)

Variable Description Units Default value Lower bound Upper bound

tmax_allrain_offset Monthly (January to December)

maximum air temperature when

precipitation is assumed to be rain; if

HRU air temperature is greater than or

equal to tmax_allsnow plus this value,

precipitation is rain.

Temperature units 5 0 10

tmax_allsnow Monthly (January to December)

maximum air temperature when

precipitation is assumed to be snow; if

HRU air temperature is less than or

equal to this value, precipitation is snow.

Temperature units 30 20 40

3 Methodology

In the following section, all methods used in this research are

described in detail. This includes calibration of the NHM-PRMS

models (Section 3.1), Fuzzy C-Means clustering for regionalization

(Section 3.2), Silhouette Analysis for evaluating the optimal

number of clusters (Section 3.3), and the evaluation metrics

used for both the daily streamflow models and 7Q10 estimates

(Section 3.4).

3.1 Calibration of the NHM-PRMS models

Models of the 94 basins were calibrated using the procedure

recommended in the PRMS IVManual (Markstrom et al., 2015) by

executing the USGS’s automated calibration software LUCA (Hay

and Umemoto, 2007). This procedure applies a multi-objective,

multi-step process of continuously revising sub-basin parameters.

To achieve calibration, parameters are varied individually for each

of the 94 locations, with the objective of minimizing the difference

between the simulated daily streamflow and the measured daily

streamflow at each gage. The parameters recommended for

calibration in PRMS are summarized in Table 1, along with their

default values and recommended calibration bounds (Markstrom

et al., 2015).

Each parameter that is to be calibrated begins with the default

value and is continually refined during the calibration process.

During calibration, the parameters are constrained to lie within the

process-driven limits given above. In preparation for clustering, the

updated values of the parameters are normalized using standard

min-max normalization:

xnormalized =
x− xmin

xmax − xmin
(1)

Figure 3 displays the range of parameters values after

calibration and normalization. Normalization causes all the

parameters to share the same range of 0 to 1. These values can

easily be returned to their actual values by using the minimum

and maximum values given below each boxplot in Figure 3 and

reversing the equation above to solve for x.

Calibration of the rainfall-runoff models was initially set up

to minimize the error for low-flow estimation rather than for

daily streamflows, deviating from the recommended calibration

procedure in the PRMS IV manual (Markstrom et al., 2015). This

was considered appropriate because the goal of this experiment

is to test hydrologic models for low flow estimation. Specifically,

the LUCA software allows for calibration to the lowest annual

daily streamflows. Initial results suggested that the rainfall-runoff

models calibrated to low flows were able to estimate the magnitude

of 7Q10s well, but a more thorough analysis of the hydrograph

suggested that the models were not properly maintaining the

water budget and corresponding streamflow throughout the rest

of the year. This discrepancy is highlighted in Appendix A, which

highlights gage 01552000 in Pennsylvania on Loyalsock Creek as

an example.

3.2 Fuzzy C-Means clustering

Traditional calibration of a rainfall-runoff model to daily

streamflow is only possible at gaged locations. Furthermore, at

these locations, 7Q10s can be directly calculated from themeasured

streamflow data. However, to extend calibration to ungaged

locations, hydrologic regionalization can be used to transfer model

parameters. Fuzzy C-Means (FCM) clustering is a clustering

algorithm that utilizes soft assignments of data points to clusters

(Dunn, 1973). Unlike traditional clustering algorithms like K-

means clustering (MacQueen, 1967) that create hard assignments

for each data point to a single cluster, FCM assigns membership

values to indicate the degree of “belongingness” of data points to

each cluster. The objective function seeks to find the optimal cluster

centers and membership values that minimize the overall fuzziness

or uncertainty of the clustering result. The FCM algorithm provides

greater flexibility in clustering tasks, as it can handle scenarios

where data points may partially belong to multiple clusters or

where cluster boundaries are ambiguous. This is advantageous

in this application, as this methodology is tested for a large

geographical area that includes two pre-determined HUC regions

of the United States. By assigning membership values, FCM

provides a more nuanced representation of the clustering structure

and allows for capturing overlapping clusters or gradual transitions

between clusters. These membership values were used to create a

weighted average of the parameters to use in the rainfall-runoff

models. This is illustrated in Figure 4.

For implementation, a value “m” is used to set the

“fuzzification” factor, dictating howmuch overlap to allow between

clusters. As m is increased, the allowed overlap between clusters
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FIGURE 3

Parameter ranges after calibration and min-max normalization.

FIGURE 4

Di�erence between hard clustering algorithms (e.g., K-Means) and soft clustering algorithms (e.g., Fuzzy-C Means).

is increased. The FCM algorithm is executed for the total number

of clusters possible with a specified range of m-values. The range

of clusters possible for FCM is integers between [2, N/2] (for this

case between 2 and 262), as there are 525 individual sub-basins

with their own set of parameters. The range of m values possible

is [1.5, ∞]. In this study, m values of [1.5, 5] will be used with

increasing steps of 0.10. This will test 36 different m values for

each cluster, leading to a total number of 9,396 possible cluster and

fuzziness combinations for this experiment. Note that when m= 1,

there is no overlap allowed between clusters and FCM reduces to

K-Means clustering.

Clustering algorithms are typically used descriptively to

highlight patterns in a dataset, but they can be used prescriptively

given a set of predictor variables and response variables. For

this study, the response variables for the FCM clustering are the

calibrated parameters given in Table 1, as that is what must be
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TABLE 2 Predictor variables used in the Fuzzy C-Means analysis from the

94 test basins.

Model parameter Description

Area Area of the basin

Elevation Mean elevation of the basin

Percent impervious Percent of the basin

considered to be impervious

Slope Average slope of the basin

Land type Primary land designation

(land, lake, swale)

Soil type Soil type of the basin

Vegetation type Type of vegetation primarily

covering the area

predicted for calibrating the models at ungaged locations. The

predictor variables, which will be used to predict which set of

calibrated parameters to use, are the publicly available physical

parameters for each sub-basin from the NHM, all designated as

numeric values. These are highlighted in Table 2.

Given the above parameters, the process for creating the new

models using Fuzzy C-Means is summarized below.

1. Calibration creates response variables (Table 1) for

each location.

2. Predictor variables (Table 2) are extracted from each location.

3. All parameters are normalized using min-max normalization

(Equation 1).

4. Clustering is used to create groups of similar basin parameters 1.

5. Fuzzy C-Means clustering is used to evaluate each location’s

membership to each group.

6. New calibrated parameters are created using a weighted average

of each location’s membership to each cluster and the cluster’s

corresponding centroid (Figure 4).

The FCM algorithm is known to suffer from several drawbacks,

including computational time complexity, initial cluster centers,

membership matrix reliance, and noise sensitivity. In this study,

strategic measures were implemented to mitigate these drawbacks

effectively. To address the issue of computational time complexity,

parallel computing techniques were utilized to ensure efficient

execution. To overcome the sensitivity to initial cluster centers, a

robust initialization strategy was employed to integrate multiple

runs with distinct initializations to determine the configuration

that yielded optimal results. Additionally, the membership matrix

was manually evaluated and refined to enhance the stability of

the clustering process and minimize the impact of noise. These

approaches aim to mitigate the various drawbacks of the FCM

method and improve the robustness of the clustering methodology.

3.3 Silhouette analysis

Silhouette analysis (Rousseeuw, 1987) is a common

methodology used for calculating the optimal number of

clusters for a dataset. This methodology evaluates the quality of

clustering by assessing the separation and cohesion of clusters,

as well as the fit of data points within their assigned clusters

(Rousseeuw, 1987). First, a silhouette coefficient is calculated for

each data point that measures how well it fits within its cluster

compared to neighboring clusters. Next, the average silhouette

coefficient is computed across all data points for each value of

the number of clusters. Finally, the optimal number of clusters

is determined by selecting the value that maximizes the average

silhouette coefficient, indicating the presence of well-separated and

compact clusters.

Silhouette analysis was chosen to determine the optimal

number of clusters due to its ability to quantify both cohesion and

separation within clusters. Unlike other techniques for determining

the optimal number of clusters, this method provides a clear and

intuitive measure of the quality of clustering, considering both

the compactness of clusters and their distinctiveness. Its versatility

allows for the evaluation of clustering performance across varying

cluster configurations, making it a well-suited metric for this study

where the identification of an optimal cluster number is crucial

for optimizing the rainfall-runoff models. For this experiment,

models created from the parameter clusters are executed with the

four highest average silhouette coefficients. Because parameters are

regionalized for use in a rainfall-runoff model, there may be some

slight variations between the cluster/m-value combination with the

best average silhouette coefficient and the rainfall-runoff model

with the optimal daily streamflow. By testing four models, the link

between the optimal silhouette coefficients and optimal physical

model performances can be verified, as well as ensuring that the

single model with the best daily streamflow and 7Q10 estimation

is identified. If the silhouette analysis suggests that there are

distinct clusters, which would occur if the highest average silhouette

coefficients occur when m = 1.5 (the smallest fuzzification factor

possible) and decrease as m is incrementally increased, models with

m = 1 should also be tested, which would reduce the FCM to

K-Means clustering.

3.4 Evaluation metrics for daily streamflow
and 7Q10 estimates

In this experiment, the Kling Gupta Efficiency (KGE) (Gupta

et al., 2009) is used to evaluate the daily streamflow models. KGE

is widely used for hydrologic applications (Formetta et al., 2011;

Beck et al., 2016) because it incorporates three components into

its definition: the Pearson’s correlation coefficient (r), the bias

(β), and the error variability (α). KGE is calculated using the

following formula (Equation 2):

KGE = 1−

√

(r − 1)2 + (α − 1)2 + (β − 1)2 (2)

Unlike traditional metrics like R2 (Wright, 1921) and Nash-

Sutcliffe Efficiency (NSE) (Nash and Sutcliffe, 1970), KGE considers

three key components of model performance: correlation, bias, and

variability, which combined offer a holistic assessment of model fit.

This provides a nuanced understanding of the model’s ability to

capture not only the mean and variability of the observed data, but

also the temporal dynamics.

The goal of this experiment is to evaluate the models for 7Q10

estimation, so four error metrics will be used to evaluate the errors
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for 7Q10 estimation. These are Relative Bias (Equations 3–6),

Relative Bias =

∣

∣

∣

∣

ŷi − yi
yi

∣

∣

∣

∣

(3)

Root Mean Square Error (RMSE),

RMSE =

√

√

√

√

1

n
∗

n
∑

1

(

yi − ŷi
)2

(4)

Relative Root Mean Square Error (R-RMSE),

R− RMSE =

√

1
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1

(

yi − ŷi
)2

y
(5)

and Unit-Area RMSE (UA-RMSE),

UA− RMSE =

√

√

√
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1

n
∗
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1

(

yi

DA
−

ŷi

DA

)2

(6)

where yi is the observed 7Q10, ŷ is the model predicted 7Q10, n

is the total number of sites, DA is the drainage area, and y is the

associated mean value. Similar studies have also chosen RMSE over

MAE for its sensitivity to outliers (Mekanik et al., 2016; Ferreira

et al., 2021). These four metrics were chosen to complement each

other and provide a comprehensive analysis of performance. RMSE

provides a standard error estimate, while relative RMSE provides an

error estimate adjusted for the mean of the dataset. Additionally,

relative bias provides a direct bias estimate in relation to the size

of the value itself, and Unit-Area RMSE adjusts RMSE for the size

of the basin being analyzed. These additional metrics attempt to

weight 7Q10 estimation in small basins and large basins similarly,

where a bias estimatemay be heavily skewed by the size of the values

themselves (e.g., a 7Q10 estimate of 1.00cfs when the actual value is

0.00cfs, compared to a 7Q10 estimate of 100.00cfs when the actual

value is 99.00cfs).

4 Results and discussion

The following sections present and discuss the uncalibrated

model vs calibrated model performance for daily streamflow

estimation (Section 4.1) and 7Q10 estimation (Section 4.2), the

results from the silhouette analysis (Section 4.3), applying the

optimal silhouettes with Fuzzy C-Means regionalization for daily

streamflow estimation (Section 4.4), and the results of using the

models calibrated using FCM for 7Q10 estimation (Section 4.5).

4.1 Uncalibrated model performance vs.
calibrated model performance

In Figure 5, the general results for the uncalibrated rainfall-

runoff models directly from the NHM-PRMS, compared to the

calibrated models, are presented.

As expected, calibration improved daily streamflow estimation

for every basin. Before calibration, the median KGE was 0.30

with some locations having negative KGE values. Calibration

improved the median daily streamflow to 0.52, with the lowest

KGE value being 0.25. The results are further analyzed by spatially

FIGURE 5

Results from calibration using KGE to evaluate daily streamflow estimation.
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FIGURE 6

Results from calibration for basins smaller than 100 mi2 (A) and basins larger than 100 mi2 (B) using KGE to evaluate daily streamflow estimation.

TABLE 3 Error metrics for 7Q10 estimation (only StreamStats locations).

7Q10 estimation
technique

Median relative bias
(cfs/cfs)

RMSE (cfs) RRMSE (cfs/cfs) UA-RMSE (cfs/mi2)

Uncalibrated hydrologic

models

0.81 13.99 116.48 0.08

Calibrated hydrologic models 0.61 12.33 102.63 0.07

StreamStats 0.42 13.75 114.5 0.05

TABLE 4 Error metrics for 7Q10 estimation (only StreamStats locations).

7Q10 estimation technique Median relative bias
(cfs/cfs)

RMSE (cfs) RRMSE (cfs/cfs) UA-RMSE
(cfs/mi2)

Basins smaller than 100 mi2-35 locations

Uncalibrated rainfall-runoff models 0.90 7.26 188.82 0.09

Calibrated rainfall-runoff models 0.90 5.47 142.24 0.08

StreamStats 0.42 2.23 58.00 0.04

Basins larger than 100mi2-31 Locations

Uncalibrated rainfall-runoff models 0.65 19.57 92.17 0.07

Calibrated rainfall-runoff models 0.42 16.25 76.53 0.06

StreamStats 0.32 19.92 93.86 0.06

disaggregating the basins into small (<100 mi2) and large basins

(>100 mi2). This threshold is chosen because many regression

equations used for 7Q10 estimation, including some of the

StreamStats’ equations in the study area, are only recommended

for basins up to 100–150 mi2 (e.g., Ries, 2000). Figures 6A, B

display the physical model KGEs, but this time split by small basins

(Figure 6A) and large basins (Figure 6B).

There are minimal differences between the calibrated models

for small and large basins, but the uncalibrated models display

noticeable differences. The uncalibrated models for larger basins

display an inferior median KGE, more KGE values that are

negative, and a much wider interquartile range with a lower

25th percentile that is negative. The uncalibrated models for the

larger basins perform significantly worse than the uncalibrated

models for the smaller basins in terms of KGE. Given that

the calibrated models for the large basins perform similarly to

the calibrated models for the small basins, this suggests that

the default parameter values are not as appropriate for larger

basins, requiring calibration more than that of the models for

small basins.
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FIGURE 7

Silhouette analysis for the Fuzzy C-Means clustering.

TABLE 5 Highest 10 average silhouette coe�cients.

Number of
clusters (c)

M-value (m) Average silhouette
coe�cient

2 1.5 0.344265

2 1.6 0.334988

2 1.7 0.33009

2 1.8 0.32043

2 1.9 0.306479

3 1.5 0.302499

3 1.6 0.301588

3 1.8 0.301469

3 1.7 0.301405

3 1.9 0.300441

3 2 0.29949

4.2 Uncalibrated vs. calibrated models for
gaged 7Q10 estimation

This experiment’s primary goal is to test the hypothesis

that models can be used for 7Q10 estimation in ungaged

locations. Of the 94 basins in the study, an estimate of the

7Q10 is not available through StreamStats for 28 of the basins

(StreamStats 7Q10 estimation has not been developed by the

USGS for certain states, as discussed in Section 2.2.3). These

locations were removed from the analysis for the analyses

presented in Sections 4.2 and 4.4. Table 3 summarizes the

Median Relative Bias, RMSE, RRMSE, and UA-RMSE of the

uncalibrated and calibrated models for 7Q10 estimation compared

to StreamStats.

For the 66 basins where StreamStats 7Q10 estimation is

available, the results suggest that StreamStats provides significantly

lower median relative bias and UA-RMSE to the uncalibrated

models, but similar RMSE and RRMSE. The calibrated models

perform best in terms of RMSE and RRMSE but provide

significantly larger median relative bias and UA-RMSE than

StreamStats. RMSE is heavily influenced by larger values, while

UA-RMSE attempts to weigh smaller and larger values equally by

scaling the larger values down based on their larger watershed

areas. Because the calibrated models perform best for RMSE but

not for UA-RMSE, this suggests that the calibrated models perform

well for larger basins. Table 4 confirms this by displaying the

same metrics characterized by small and large basins, defined

in Section 4.1.

Table 4 suggests that StreamStats outperforms both the

uncalibrated and calibrated physical models for 7Q10 estimation

in small basins. For the small basins, StreamStats’ median relative

bias, RMSE, RRMSE, and UA-RMSE are all half that (or more)

of the calibrated models. For the large basins, StreamStats still

performs best in terms of median relative bias, but the calibrated
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models display the same UA-RMSE and better RMSE and

RRMSE than StreamStats. Given the results presented here, the

calibrated physical models at gaged locations over 100 square

miles can provide similar errors for 7Q10 estimation compared to

StreamStats in terms of the errormetrics presented, but StreamStats

is primarily for ungaged basin estimation, and this calibration

methodology cannot be used for ungaged locations. In the next

section, a methodology is presented for calibrating models in

ungaged locations using Fuzzy C-Means clustering for hydrologic

regionalization.

4.3 Results from silhouette analysis with
Fuzzy C-Means clustering

As summarized in Section 3.3, silhouettes were used to find

the optimal FCM parameters. The full range of clusters possible

are combined with m-values ranging from 1.5 to 5 using steps

of 0.1. Figure 7 displays the average silhouette widths for each

combination of clusters and m-values.

In addition, the top 10 average silhouette coefficients, arranged

from largest to smallest, are presented in Table 5.

Results suggest that the cluster and m-value combination that

optimizes the average silhouette coefficient is the minimum value

for both clusters and m. The best average silhouette coefficient was

found to occur when c = 2 clusters with an m-value of 1.5. The

next 4 best silhouette coefficients remain when c = 2 but decrease

slightly as m is increased by 0.10 each step. The next optimal

number of clusters was found to be c= 3 for the 5th highest average

silhouette coefficient, with the minimumm-value of 1.5 once again

being optimal. When the number of clusters equals 3, the silhouette

coefficients decrease slightly asm is increased by 0.10 each step once

again. The results in Figure 7 and Table 5 suggest that there may

be distinct clusters that need to be considered. Exemplified by the

results in Table 5 but can also be seen in Figure 7, the silhouette

coefficients decrease as the m-value is increased, suggesting less

optimal solutions as the fuzziness between clusters is increased. For

both clusters c = 2 and c = 3, the smallest m-value displayed the

best average silhouette coefficient.

Based on the results from Figure 7 and Table 5 that suggest

possible distinct clusters, rather than test the four parameter

combinations which display the best average silhouette coefficient

(which would be when c = 2 and m = 1.5, 1.6, 1.7, and 1.8), the

following four models will be tested:

1. FCM when c = 2 and m = 1 (reduces to K-Means clustering

where k= 2).

2. FCMwhen c= 2 andm= 1.5 (FCM for c= 2 with theminimum

fuzziness factor m= 1.5).

3. FCM when c = 3 and m = 1 (reduces to K-Means clustering

where k= 3).

4. FCMwhen c= 3 andm= 1.5 (FCM for c= 3 with theminimum

fuzziness factor m= 1.5).

This will allow us to test: (1) the optimal result from the

silhouette analysis (c= 2 and m= 1.5), (2) multiple clusters (c= 2

and c= 3), and (3) whether applying distinct clusters leads to better

calibration, as suggested by the silhouettes.

4.4 Results from clustering for daily
streamflow

New rainfall-runoff models were created using clustering for

the four scenarios discussed in the previous section. Figure 8

summarizes how each model created from clustering performs for

daily streamflow estimation.

Figure 8 shows that some models calibrated using FCM display

improved KGEs compared to the uncalibratedmodels. Bothmodels

with no fuzzification factor (FCM: C = 2 and FCM: C = 3)

display median KGEs slightly below 0.50, while the models with

a fuzzification factor (FCM: C = 2, M = 1.5, and FCM: C =

3, M = 1.5) display median KGEs around 0.30. Even with this

improvement however, there are some locations that have a KGE

close to 0 for all four models calibrated with FCM. All models

calibrated using FCM display minimum KGEs close to 0, but this is

still an improvement compared to the uncalibrated models where

the 25th percentile KGE is just above 0. The models created with

a fuzzification factor of m = 1.5 display much poorer median

KGEs than the models created with distinct clusters. The results

from silhouette analysis suggested that distinct clustersmay provide

more optimal solutions, and the results from Figure 6 support that

using distinct clusters improves KGE significantly more on average

than the models created with fuzzification factors.

In Figures 9A, B, the models are once again separated by area

for further analysis.

The results from Figures 9A, B provide further explanation

for the general results given in Figure 8. Figure 9A shows that

results for the smaller basins are very similar to the overall results

given in Figure 8, that models calibrated with distinct clusters once

again provide only slightly poorer median KGEs than the model

calibrated to daily streamflow at each location. It also supports that

using distinct clusters provides significant improvement compared

to using a fuzzification factor. However, Figure 9B shows that for

the larger basins, all models created using clustering (with or

without a fuzzification factor) display almost the same median

KGE of about 0.30. The models created using a fuzzification

factor even display slightly higher median KGEs, with smaller

interquartile ranges and better minimum KGEs. Overall, results

from Figures 9A, B suggest that distinct clusters should be used

when creating physical models for smaller basins (<100 mi2), but

for larger basins (>100 mi2), adding a fuzzification factor may

provide similar results on average but less variability.

Next, the models are evaluated specifically for their ability to

estimate 7Q10s.

4.5 Procedure for optimal cluster selection
for overall model performance

Similar to Section 4.2, an analysis of all models for 7Q10

estimation is provided in Table 6.

The results from Table 6 suggest that even with the

improvement for daily streamflow estimation shown in Section

4.4, none of the models provide better median relative bias, RMSE,

RRMSE, or UA-RMSE compared to StreamStats. The models

created using distinct clusters provide slightly higher RMSE and
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FIGURE 8

Daily streamflow KGE using FCM for calibration.

FIGURE 9

Results from calibration for basins smaller than 100 mi2 (A) and basins larger than 100 mi2 (B) using KGE to evaluate daily streamflow estimation.

RRMSE than StreamStats but provide substantially higher relative

bias and UA-RMSE. This is further analyzed in Table 7, which

separates small and large basins for analysis.

Table 7 shows that for small basins, StreamStats provides

the best 7Q10 estimation by far for all metrics employed. In

terms of median relative bias, RMSE, RRMSE, and UA-RMSE,
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TABLE 6 Error metrics for 7Q10 estimation (only StreamStats locations).

7Q10 estimation technique Median relative bias
(cfs/cfs)

RMSE (cfs) RRMSE (cfs/cfs) UA-RMSE
(cfs/mi2)

Uncalibrated rainfall-runoff models 0.81 13.99 116.48 0.08

Calibrated rainfall-runoff models 0.61 12.33 102.63 0.07

FCM (C= 2) 0.84 14.31 119.16 0.08

FCM (C= 2, M= 1.5) 0.97 19.34 161.10 0.08

FCM (C= 3) 0.83 14.47 120.48 0.08

FCM (C= 3, M= 1.5) 0.97 19.35 161.08 0.08

StreamStats 0.42 13.75 114.5 0.05

TABLE 7 Error metrics for 7Q10 estimation (only StreamStats locations).

7Q10 estimation technique Median relative bias
(cfs/cfs)

RMSE (cfs) RRMSE (cfs/cfs) UA-RMSE
(cfs/mi2)

Basins smaller than 100mi2-35 Locations

Uncalibrated rainfall-runoff models 0.90 7.26 188.82 0.09

Calibrated rainfall-runoff models 0.90 5.47 142.24 0.08

FCM (C= 2) 0.81 5.63 146.53 0.08

FCM (C= 2, M= 1.5) 0.97 6.06 157.72 0.08

FCM (C= 3) 0.82 5.55 144.47 0.08

FCM (C= 3, M= 1.5) 0.98 6.08 158.08 0.08

StreamStats 0.42 2.23 58.00 0.04

Basins larger than 100 mi2-31 locations

Uncalibrated rainfall-runoff models 0.65 19.57 92.17 0.07

Calibrated rainfall-runoff models 0.42 16.25 76.53 0.06

FCM (C= 2) 0.88 20.00 94.23 0.08

FCM (C= 2, M= 1.5) 0.97 27.48 129.44 0.08

FCM (C= 3) 0.88 20.27 95.49 0.07

FCM (C= 3, M= 1.5) 0.97 27.47 129.45 0.08

StreamStats 0.32 19.92 93.86 0.06

StreamStats’ estimates provide roughly half of the error compared

to all other methods. For larger basins however, results are much

more mixed. StreamStats does provide the best median relative

bias by far, but for all other metrics, the calibrated models and

models created with no fuzzification factor perform comparably

to StreamStats for 7Q10 estimation. The calibrated models provide

better RMSE and RRMSE, as well as an identical UA-RMSE. The

models created using FCM with no fuzzification factor also display

comparable but slightly larger RMSE, RRMSE, and UA-RMSE

than StreamStats.

In Figures 10A–D, a plot of the 7Q10 bias for each model is

provided. Bias is calculated by [estimated–actual], meaning points

above the 0 line suffer from overestimation and points below suffer

from underestimation. The corresponding line through the points

follows a loess smoothing curve (https://www.rdocumentation.org/

packages/stats/versions/3.6.2/topics/loess) with the corresponding

standard error highlighted in gray. This provides those

interested in using these models for 7Q10 estimation with three

valuable insights:

1. For any of the models, the average bias that can be expected with

a basin area of X.

2. The corresponding confidence in that estimate, given by the

highlighted area.

3. If any of the models are consistently overestimating or

underestimating 7Q10s for a range of basin sizes.

For both StreamStats and the calibrated models, the average

bias remains around 0 for all range of basin sizes. There seems

to be some minimal oscillation that suggests slight overestimation

or underestimation depending on the basin size, but 0 remains

in the highlighted confidence interval for the full range of basin

sizes. For the uncalibrated models and models created using FCM

(C = 2), there are clear patterns that demonstrate weaknesses in

these modeling approaches. The uncalibrated models are heavily
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FIGURE 10

(A–D) Bias created from each model used, arranged by drainage area.

underestimating 7Q10s for basin sizes that range from 50–250 mi2,

and the models calibrated with FCM (C = 2) are consistently

underestimating 7Q10s for basins larger than 50 mi2. Given the

results in Table 7 and Figures 10A–D, the only physical models that

provide sufficient

7Q10 estimation are the individually calibrated hydrologic

models, which cannot be used in ungaged basins.

5 Conclusions

Based on the results from this experiment, the results support

that resource managers who require 7Q10 estimates in gaged basins

can use calibrated models in basins larger than 100 mi2 and expect

similar errors to current statistical estimates. For basins smaller

than that, statistical estimates still provide smaller median relative

bias, RMSE, RRMSE, and UA-RMSE for 7Q10 estimation. 7Q10s

in these smaller basins can be extremely small values, however, and

it should be considered how accurate estimates need to be to be

sufficient for their exact design application. For example, the 7Q10

is frequently used in wastewater treatment plant design as a mixing

flow. Though it is difficult to attribute exact costs to value changes,

an estimated mixing flow of 1.00 cfs could cause a significantly

different design than a mixing flow of 0.10 cfs, only having a

difference of 0.90 cfs. However, in the case of a future climate

change study where the accuracy of the value itself is less important

than model-predicted future changes in the value, the process-

based estimates readily allow for the incorporation of altered
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climate and/or landcover projections. Given few alternatives, the

process-basedmodels also provide the ability for resourcemanagers

to estimate 7Q10s in states where StreamStats 7Q10 estimation

is not yet developed. Future work related to this study could

include testing this procedure with other process-based models,

determining other ways to calibrate physical models in ungaged

locations for both daily streamflow and low flow estimation, and

further analyzing the performance of physical models for gaged

and ungaged high flow estimation (e.g., 100-year-flood estimation)

as well.
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