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Water quality issues remain a major cause of global water insecurity, and real-time 
low-cost monitoring solutions are central to the remediation and management of 
water pollution. Optical sensors, based on fluorescence, absorbance, scattering 
and reflectance-based principles, provide effective water quality monitoring 
(WQM) solutions. However, substantial challenges remain to their wider adoption 
across scales and environments amid cost and calibration-related concerns. 
This review discusses the current and future challenges in optical water quality 
monitoring based on multi-peak fluorescence, full-spectrum absorbance, 
light-scattering and remotely sensed surface reflectance. We  highlight that 
fluorescence-based sensors can detect relatively low concentrations of aromatic 
compounds (e.g., proteins and humic acids) and quantify and trace organic 
pollution (e.g., sewage or industrial effluents). Conversely, absorbance-based 
sensors (Ultraviolet-Visible-Infra-red, UV-VIS-IR) are suitable for monitoring a 
wider range of physiochemical variables (e.g., nitrate, dissolved organic carbon 
and turbidity). Despite being accurate under optimal conditions, measuring 
fluorescence and absorbance can be demanding in dynamic environments due 
to ambient temperature and turbidity effects. Scattering-based turbidity sensors 
provide a detailed understanding of sediment transport and, in conjunction, 
improve the accuracy of fluorescence and absorbance measurements. Recent 
advances in micro-sensing components such as mini-spectrometers and light 
emitting diodes (LEDs), and deep computing provide exciting prospects of in-
situ full-spectrum analysis of fluorescence (excitation-emission matrices) and 
absorbance for improved understanding of interferants to reduce the signal-
to-noise ratio, improve detection accuracies of existing pollutants, and enable 
detection of newer contaminants. We examine the applications combining in-
situ spectroscopy and remotely sensed reflectance for scaling Optical WQM in 
large rivers, lakes and marine bodies to scale from point observations to large 
water bodies and monitor algal blooms, sediment load, water temperature 
and oil spills. Lastly, we provide an overview of future applications of optical 
techniques in detecting emerging contaminants in treated and natural waters. 
We advocate for greater synergy between industry, academia and public policy 
for effective pollution control and water management.
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1 Introduction

Water pollution is a major challenge to global water security, with 
>25% of the world’s population unable to access safe drinking water 
in 2022 (WHO and UNICEF, 2023). After accounting for water quality 
issues, the fraction increases to 40%, with key hotspots in India, 
China, the Middle East, the Mediterranean and Mexico (van Vliet 
et al., 2021; Caretta et al., 2022). Real-time and accurate monitoring 
of critical water pollution variables, including heavy metals, 
agricultural nutrients [e.g., nitrate and phosphorus, disease-causing 
bacteria, viruses and emerging contaminants such as microplastics 
and pesticides, remains a global challenge (Hannah et al., 2022)]. The 
lack of infrastructure, financial and technical resources and regulatory 
oversight significantly hamper water quality monitoring (WQM) 
efforts in developing countries. Similarly, despite having financial 
resources, developed countries are constrained by aging infrastructure, 
lack of investment, and low compliance and accountability (Kirschke 
et al., 2020; Hannah et al., 2022). Technological improvements can 
lower some of the financial and infrastructure-related issues and 
facilitate decision-making by enabling in-situ monitoring of key water 
quality variables identified under global conventions such as the 
United Nations’s Sustainable Development Goals (SDGs) 6.3.2, 
European Union (EU) Water Framework Directive (WFD) and World 
Health Organization’s (WHO) water quality guidelines (Warner, 2020; 
European Union, 2021; WHO, 2022). For example, SDG 6.3.2 details 
a list of water quality variables, including oxygen, salinity, 
macronutrients (Nitrogen, Phosphorus) and pH and defines a range 
of target values that reflect human and ecosystem health perspectives 
(Warner, 2020). Similarly, in Europe, the WFD focuses on improving 
the chemical and ecological conditions of both surface and 
groundwater through monitoring and holistic river basin management 
(European Union, 2021). However, this monitoring occurs at coarse 
intervals and often misses critical periods of pollutant transport and 
transformation (e.g., hot moments; McClain et  al., 2003). Recent 
WHO guidelines advocate developing early-warning systems for 
predicting harmful algal blooms using in-situ monitoring approaches 
(WHO, 2022).

The technology for in-situ monitoring of physiochemical 
variables, such as temperature, electrical conductivity, pH, and 
dissolved oxygen (DO), is well-established (Banna et al., 2014; Silva 
et  al., 2022). Recent developments have expanded the potential 
variables that can be monitored in-situ to include total and dissolved 
organic carbon (TOC and DOC, respectively), biological and chemical 
oxygen demand (BOD and COD, respectively), dissolved organic 
matter (DOM), fecal coliforms, agricultural pollutants (e.g., 
ammonium, nitrate, and phosphorus), ions (chloride, fluoride) and 
heavy metals (e.g., iron, arsenic) (Raich, 2013; Banna et al., 2014). 
However, given that human-health-related thresholds are more 
stringent than those for ecosystem that production and environmental 
occurrence of emerging contaminants (ECs) continues to increase, 
there is an urgent requirement for monitoring technology that can 
detect a wide range of variables accurately and across a broad 
spectrum of environmental conditions. Alongside sensor technology 
advances, data transfer (telemetry) and data visualizations support 
quick and effective stakeholder decision-making (Gholizadeh et al., 
2016; Zaidi Farouk et  al., 2023). Technological advances are also 
increasingly informing policy-making and riverine ecosystem 
restoration efforts toward improving the drinking and bathing 

qualities of rivers, lakes and marine waters (Johnson et  al., 2008; 
Mouchel et al., 2021; Tiwari et al., 2021).

Recent advances in optical water quality monitoring (OWQM) 
techniques have improved the understanding of eutrophication and 
organic pollution in aquatic ecosystems (Baker, 2002; Hudson et al., 
2007; Thakur and Devi, 2022). In-situ optical sensors measuring 
fluorescence, absorbance, and scattering have become particularly 
important for aquatic monitoring. Advancements in optical 
components, i.e., light emitting diode (LED) technology, and 
miniaturization of sensing elements such as photodiodes, photo-
multiplier tubes, charge-coupled device (CCD), and complementary 
metal-oxide-semiconductor (CMOS) sensors, etc., have made the 
optical sensors, such as fluorimeter, absorbance and turbidity sensors, 
smaller in form-factor, lowered their power requirements and 
improved their field usability (Mukunda et al., 2022; Zainurin et al., 
2022; Goblirsch et al., 2023). Fluorescence spectroscopy relies on the 
principle of Stokes shift, which is the spectral shift between incident 
(excitation, ex) light and emitted (em) light (detected orthogonally to 
incident light) from shorter to longer wavelengths (Figure 1). Full-
spectrum applications enable measurement of the fluorescence 
signature in a three-dimensional excitation-emission matrix (EEM) 
and use parallel factor analysis (PARAFAC) tools to characterize 
specific fluorescence peaks associated with specific dissolved organic 
compounds (Murphy et al., 2013). The key fluorescence peaks include 
Peak A (ex/em: 260/380–460 nm) and Peak C (ex/em: 350/420–
480 nm), both of which have been associated with humic-like material 
derived from terrestrial environments, Peak B (ex/em: 275/310 nm) 
and Peak T (ex/em: 275/340 nm), associated with Tyrosine and 
Tryptophan-like fluorescence (TLF), respectively, and Peak M (ex/em: 
310/370–420 nm) associated with humic-like material derived from 
marine environment. However, EEM applications are still limited 
primarily to the laboratory, with most in-situ applications focusing on 
single or dual peak fluorescence to detect dissolved organic 
compounds (Peak T and Peak C; Khamis et al., 2017; Li et al., 2020).

Absorbance spectroscopy is based on the absorption of incident 
light at specific wavelengths by the variable of interest, resulting in the 
loss of transmitted light measured at 180° angle. Fluorescence can 
provide high specificity and sensitivity for a set of organic compounds 
but can saturate at high concentrations (i.e., the inner-filtering effect) 
and is prone to interferences due to the sample temperature and 
turbidity (Fellman et al., 2010; Carstea et al., 2020; Kimball et al., 
2020). Conversely, absorbance can detect a larger pool of organic and 
inorganic compounds across a wider range of concentrations, albeit 
with limited specificity (Dai et  al., 2022; Carter et  al., 2023). 
Nephelometric sensors detect undissolved/suspended solid/sediment 
particles in water by measuring scattering at different angles to the 
incident light (0°), including back-scattering (30° ± 15° angle), side-
scattering (90° angle) and forward-scattering (120° ± 15° angle) 
(Kitchener et  al., 2017; Droujko et  al., 2023). These are based on 
inverse attenuation, i.e., a higher concentration of total suspended 
solids (TSS) will cause higher scattering and vary considerably with 
particle size, shape, and wavelength of incident light. The side-
scattering-based sensors measure turbidity as a proxy of TSS with 
good accuracy at low concentrations. In contrast, backward-scattering 
sensors are accurate at high TSS concentrations, and forward-
scattering sensors cover a wider range of concentrations. Together, 
they provide a detailed understanding of sediment transport in water 
bodies and are used to improve the accuracy of fluorescence and 
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absorbance measurements (Khamis et  al., 2015; Lee et  al., 2015). 
However, substantial challenges remain to the large-scale deployment 
of these technologies, given costs, power requirements and calibration-
related concerns. Increasingly, remotely sensed reflectance-based 
platforms are being used to monitor water quality events, such as algal 
blooms, in freshwater lakes and marine habitats, but require validation 
against in-situ ground observations (Shi et al., 2019; Sagan et al., 2020; 
Windle and Silsbe, 2021).

Several review papers have summarized recent advances in water 
quality monitoring (Raich, 2013; Banna et al., 2014; Gholizadeh et al., 
2016; Thakur and Devi, 2022; Zainurin et al., 2022; Zaidi Farouk et al., 
2023), and while some have focused explicitly on in-situ optical 
sensors (Hudson et al., 2007; Carstea et al., 2016, 2020; Gunter et al., 
2023), there is still a need for deeper understanding of this rapidly 
evolving technology and its potential for water quality monitoring at 
different scales. In this review, we provide a concise overview of the 
current and future challenges in in-situ optical monitoring of 

freshwater and marine bodies, focusing on fluorescence, full-spectrum 
absorbance, scattering and reflectance-based techniques. Further, 
we discuss the available market solutions and data sources using field-
deployable optical sensors and their strengths and limitations. Lastly, 
we provide an overview of future applications of optical techniques in 
detecting novel/emerging contaminants in water.

2 Status of fluorescence and 
absorbance spectroscopy for WQM

Early research on the use of fluorescence spectroscopy for 
WQM used fiber optic sensors for a wide range of applications, 
including the detection of organic matter (TOC, DOC), oxygen 
(BOD, DO), biological agents (e.g., bacteria, viruses, algal blooms, 
etc.) and hydrocarbons (Scully, 1998; Ahmad and Reynolds, 1999). 
The commercial applications of these techniques were either 

FIGURE 1

Schematic diagram showing principles of absorbance, fluorescence and scattering-based probes with optical components and sample results. The 
optical components include light sources, such as LEDs and lamps, and detectors, such as photodiodes, photo-multiplier tubes (PMTs), and CCD/
CMOS sensors. Data visualization is shown as representative graphs of full spectrum absorbance spectra (bottom-left) and fluorescence excitation-
emission matrix (EEM, top-right). The sample EEM is adapted from Khamis et al. (2017).
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limited to benchtop instruments (Phillips et al., 1974) or in the 
form of optical fiber-based sensors in the 1980s, which, along with 
electrochemical techniques such as ion selective electrodes (ISEs), 
have been widely used for a range of aquatic and industrial 
monitoring activities for more than half a century (Frant, 1997; 
Scully, 1998; Ahmad and Reynolds, 1999). Similarly, in-situ optical 
turbidity sensors have long been used to measure scattering at 
different angles to understand the composition of suspended solids 
in water bodies (Kitchener et  al., 2017). In comparison, the 
application of fluorescence and absorbance spectroscopy for in-situ 
WQM is a recent trend. The emergence of commercial fluorometers 
and absorbance probes over the last ~20 years is primarily linked 
to the development of UV LEDs (<400 nm) and photodetectors 
(Johnson and Coletti, 2002; Rode et  al., 2016; Mukunda 
et al., 2022).

Currently, optical water quality monitoring represents a multi-
billion US dollar market comprising probes based on various 
measurement principles, e.g., nephelometry (scattering of light), 
absorbance and fluorescence. The availability of cost-effective and 
low-powered LEDs and detectors has driven the expansion of the 
in-situ OWQM market. Mukunda et  al. (2022) provided a 
comprehensive review of conventional light sources (Arc lamps, 
Quartz halogen lamps, mercury lamps, etc.) and highlighted cost, 
bulkiness, short lifespan, drift in output with prolonged flashing and 
UV phototoxicity as major issues. Conversely, LEDs provide high 
power, longer lifespan, high signal-to-noise ratio, stable outputs, 
compact size and low costs, making them ideal for field-deployable 
OWQM sensors (Hart and JiJi, 2002; Mukunda et al., 2022). The early 
applications of Ultraviolet–Visible-Near Infra-Red (UV–VIS–NIR) 
LEDs were for biomedical analytical devices and ecophysiological 
sensing (i.e., plant chlorophyll), which were later adopted for water 
quality sensors (Mukunda et al., 2022). Early sensors used single or 
dual-beam LEDs to focus on fluorescence or absorbance 
measurements for a single variable of interest, e.g., nitrate and TOC, 
with a second beam often used for turbidity correction. The two 
major gaps in the wider adoption of LEDs for OWQM are the low 
efficiency of deep UV (<280 nm) and scattering-induced noise in the 
signal. Multi-chip LEDs, which position multiple LEDs on a single 
chip, along with deep learning techniques, provide a better 
opportunity to understand the sediment composition and develop 
robust correction factors (Hart and JiJi, 2002; Ighalo et al., 2021). 
However, the cost-effectiveness and power requirements of deep UV 
LEDs remain a significant bottleneck in developing low-cost 
OWQM probes.

Similar to LEDs, the use of photodetector technology, such as 
photodiodes, CCDs, PMTs, and, recently, linear CMOS arrays, for 
WQM has also evolved significantly (Spring, 2001; Mukunda et al., 
2022). Photodiodes have a number of desirable properties, namely, 
low-cost, high specificity, narrow or broad range of wavelengths, 
low power requirements, and low data processing time. Thus, 
paired with monochromatic or band-pass filters (which allow 
transmission of specific wavelengths), low-light photodiodes and 
PMTs contribute to the affordability and compactness of OQWM 
probes. Optical detectors can also improve the signal-to-noise ratio 
by optimizing signal gain and modulating the sensor integration 
time. However, PMTs and photodiodes have no spatial 
discrimination, i.e., they convert the intensity of light into an 
electrical signal and cannot differentiate them according to 
wavelengths, which limits their applicability to broad spectrum 

(UV–VIS) sensing (Spring, 2001; Yokota et al., 2021). Miniaturizing 
traditional benchtop spectrometers into mini and micro-
spectrometers provides new opportunities for developing field-
deployable UV–VIS OWQM probes (Bouyé et al., 2016; Shi et al., 
2022; Goblirsch et al., 2023). The mini/micro-spectrometers use a 
linear CCD or CMOS imaging sensor in a Czerny-Turner design 
or micrograting to achieve smaller form factors (Bouyé et al., 2016; 
Chen et al., 2022). However, the significant challenges to adopting 
mini/micro-spectrometers lie in cost-effectiveness, data analytics 
and power management.

3 Current in-situ applications of 
optical WQM

The use of fluorescence and absorbance spectroscopy for in-situ 
WQM, while relatively new in comparison to electrochemical 
techniques (ion-selective electrodes have been used for half a century), 
has become well-established over the past 20 years (Johnson and 
Coletti, 2002; Rode et  al., 2016). Fluorescence for monitoring 
Chlorophyll a and UV absorbance for nitrate measurements are among 
the most widely cited environmental monitoring applications (Arndt 
et al., 2022). In this case, the sensors are used to directly measure the 
variables of interest (Chlorophyll a and nitrate have specific absorbance 
and fluorescence spectra). Concurrently, there has been increasing 
interest in the use of absorbance as a surrogate (or proxy) for other 
difficult-to-measure variables, including the development of 
multivariate regression models to quantify DOC/TOC (Peacock et al., 
2014; Gaviria Salazar et al., 2023), fecal coliforms (Nowicki et al., 2019; 
Sorensen et al., 2020; Dapkus et al., 2023), and phosphorus fractions 
(Vaughan et  al., 2018). These approaches have recently utilized 
emerging data science and machine learning tools to develop more 
robust proxy models (see Carter et al., 2023).

In-situ fluorescence monitoring has been used for both 
quantitative and qualitative WQM. For example, pollution sources are 
tracked using fluorescence peaks associated with proteinaceous 
compounds (e.g., TLF; Baker et al., 2004; Lenaker et al., 2023) and 
optical brightening agents (Finegan and Hasenmueller, 2023) as 
(non-conservative) tracers of wastewater. Fluorescence has also been 
used to quantify DOC and BOD (Khamis et  al., 2017, 2021) by 
measuring dual fluorescence peaks (tryptophan and humic-like 
fluorescence) and turbidity, which is vital for developing reliable proxy 
models. There has also been growing interest in using fluorescence to 
quantify microbial contamination in rivers (Baker et  al., 2015; 
Bridgeman et al., 2015), groundwater (Nowicki et al., 2019; Sorensen 
et al., 2020; Dapkus et al., 2023), and potable water (Sorensen et al., 
2018; Gunter et al., 2023). However, it is important to note that most 
studies to date focus on single or dual fluorescence peaks; hence, the 
associated models tend to be  relatively simple compared to those 
developed for absorbance sensors.

Optical indices (rather than proxy models) have recently emerged 
as a viable approach for monitoring water quality. There are a large 
number of fluorescence indices associated with Excitation Emission 
Matrix spectroscopy (Fellman et al., 2010; Begum et al., 2023), which 
have not yet been implemented for field deployable sensors, although 
the use of the ratio of peak T:peak C fluorescence has been used as an 
indicator of wastewater/anthropogenic DOM in an urban river 
(Croghan et al., 2021). For absorbance, it is possible to calculate a 
broader range of optical indices using full-spectrum measurements 
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in-situ. For example, the spectral slope, linked to the molecular weight 
of DOM, has been used to assess carbon quality dynamics across a 
land cover gradient (Vaughan et al., 2019).

4 Market solutions using fluorescence 
and absorbance spectroscopy for 
WQM

In an exhaustive market survey for current probes based on 
absorbance and fluorescence spectroscopy, we found more than 32 
products catering to various environmental, academic, and industrial 
applications. The survey results are summarized in 
Supplementary Table S1. We relied on the datasheets and specifications 
provided by the retailers to glean the relevant information or lack 
thereof. The product marketing material (e.g., brochures, webpages, 
datasheets and manuals) often lacked technological specifications and 
was thus ignored. However, they provide helpful information on the 
applications, technology-based demands, supply-side constraints, and 
insights into their future directions. The surveyed probes were 
segregated based on the measurement principles: absorbance and 
luminescence including fluorescence; the light source: LEDs and 
lamps; the detector: single or arrayed photodiodes; and variables of 
interest: single or multivariable, design and data post-
processing methods.

4.1 Measurement principles

Absorbance-based sensors dominate the market space (72%, 
N = 31). The single-variable probes (38%) focused on nitrate (NO3-N), 
nitrite (NO2-N), DO and DOM. The multivariable probes use specific 
wavelength LEDs ranging from 200 to 720 nm to observe absorbance, 
which is converted to equivalent COD, BOD, DOC, TOC, and Total 
Suspended Solid (TSS) values using calibration algorithms. The 
absorbance measurements are taken at 180° angle from the incident 
light and are particularly susceptible to changes in turbidity. Thus, 
most surveyed probes had a turbidity compensation component based 
on nephelometry principles and temperature compensation. Most 
probes also offer single or dual-beam (more common) corrections for 
absorbance using reference blanks.

Luminescence probes (28%) form a smaller proportion of the 
market and use fluorescence-based sensing for organic matter 
detection, including TLF, Chromophoric Dissolved Organic Matter 
(CDOM), Chlorophyll a, etc. and derive other variables such as BOD 
and even fecal coliforms through statistical extrapolation. 
Fluorescence measurements are prone to matrix-specific interference, 
such as inner-filtering effects (IFE) and thermal quenching, creating 
a non-linear relationship between intensity response and 
concentrations, especially at high fluorophore concentrations. In 
ex-situ (laboratory-based) experimental studies, absorbance 
measurements are used to correct the inner-filtering effects and 
improve the accuracy of the fluorescence measurements (Kimball 
et  al., 2020). The technique is now widely used in benchtop 
spectrometers with dual-mode features for absorbance and 
fluorescence (e.g., Duetta, Horiba Pvt. Ltd.). However, combining 
absorbance and fluorescence measurements to reduce noise, increase 
the linear range and measurement repeatability and achieve higher 

detection accuracies remains challenging for in-situ water quality 
monitoring probes.

4.2 Light sources and detectors

More than half of the surveyed sensors used LEDs of specific 
wavelengths, while less than a third preferred lamps, and some 
provided no information. The availability of affordable deep-UV LEDs 
(<280 nm, 41%) has led to the development of multiple commercial 
probes for nitrate, DO and DOM detection. UV–VIS LEDs 
(315–550 nm, 16%) are frequently used for absorbance and 
fluorescence measurement of dissolved organic matter (DOM) and 
algal activities in large water bodies, including marine environments. 
VIS (~550 nm) and NIR (~850 nm) LEDs are standard for turbidity 
sensors nowadays. Lamps provide an alternative to multiple LEDs as a 
single broadband (~190 to ~750 nm) light source, including Xenon 
flash lamps, Deuterium and Tungsten. In comparison, mercury lamps 
are used for narrow-band (~254 nm) applications measuring nitrate. 
They benefit from simpler components and designs and allow 
simultaneous measurements of multiple variables. However, the 
tradeoffs with LEDs are in terms of power requirements and 
component costs, both being considerably higher for lamps. 
Furthermore, some sensors (24%) use more than one LED in a single-
variable probe, in which case the second LED is used for turbidity or 
absorbance-based corrections.

Approximately two-thirds of the products do not specify the type 
of detector their probes use. Among the rest, photodiodes are the most 
common detectors in single or arrayed formations. Like LEDs, 
advancements in optical technology have made photodiodes 
affordable and miniaturized them for in-situ deployment. The 
LED-photodiode specificity allows for precise measurements of 
specific variables such as nitrate and reduces the scope of interference 
by other contaminants. However, the specificity limits the potential to 
account for background interferents, which full spectrum light source 
and detector combinations can observe and account for in a single 
measurement (Goblirsch et al., 2023). Current mini-spectrometers in 
the market are the size of a fingertip (C12880MA and C16767MA, 
Hamamatsu Pvt. Ltd.) and offer a broad wavelength UV–VIS–NIR 
range (225–1,000 nm, AFBR-S20M, Broadcom Inc.) in a single body. 
They use highly-sensitive image sensors such as CCD and CMOS and 
direct the incident light through optical slits and gratings. Depending 
on the type of applications, the mini-spectrometers can be tuned to 
maximum sensitivity at desired blaze angles and are likely to replace 
the photodiode arrays in future probes aimed at broad-spectrum 
sensing (Goblirsch et  al., 2023). However, only one commercial 
product (Opus, Trios) is currently mentioned to use a mini-
spectrometer (200–360 nm) as the detector, with most probes relying 
on an array of photodiodes, sensitive to wavelengths of interest as an 
alternative way of broad-spectrum sensing.

4.3 Sensor components, design, and 
interface

The design of the optical window of a probe is largely dependent 
on measurement principles. As explained earlier, the fluorescence and 
nephelometry measurements are taken at right angles (15–90°) to the 
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incident light, and these probes preferred both incident light and 
detection inlet at the bottom of the sensor, albeit at a slight angle to 
each other. The design lends itself to better cleaning and antifouling 
properties. Conversely, the absorbance probes deploy a notched 
design, allowing the incident light to be 180° to the detector. This 
design enables path-lengths to be changed as per the application’s 
requirement and varied between 0.3–50 mm in the surveyed probes. 
Changeable path lengths are a crucial feature of absorbance probes, 
which allows them to target specific concentration ranges and 
resolutions based on the type of applications and environments 
(Jensen and Bak, 2002; Skouteris et al., 2018; Shi et al., 2022). For 
example, probes appealing to drinking water monitoring require 
higher sensitivity to low concentrations of pollutants and thus need 
longer path-lengths (10–50 mm), whereas probes serving effluent 
treatment plants monitor high concentration loads and require shorter 
path-lengths (0.3–5 mm). However, the notched design is relatively 
more susceptible to fouling than downward-facing probes and 
requires active cleaning mechanisms.

Most probes (85%) deployed one or more automatic cleaning 
methods such as integrated wipers (47%), compressed air (37%), 
compressed water (9%) and even the use of ultrasonic waves (NiCaVis, 
Xylem Analytics). Few probes (22%) were solely based on flow-
through designs, although many offered them as accessories for 
drinking water and other process applications. Probes with a flow-
through design tend to rely on chemical cleaning or compressed air 
and have built-in humidity control systems to reduce the noise. 
Another important approach to minimize the impacts of fouling 
involves the use of nano-particle coating for optical windows (6%) 
(Delgado et al., 2021).

The most common method of data interfacing in the probes is 
via a USB/R232/SI-12 cable, although newer probes come with 
Bluetooth and WLAN options. Most probes (63%) provided 
factory calibration of the sensors with optional recommendations 
of field calibration using standard reagents or comparisons with 
laboratory-based results. The data analysis and display were 
primarily server and web-dashboard-based. Despite considerable 
use in research, fewer probes mention post-processing capabilities 
or the use of artificial intelligence and machine learning tools, such 
as Liquid AI (Ighalo et  al., 2021; Mustafa et  al., 2021, 
Supplementary Table S1).

5 Challenges and opportunities for 
WQM using optical spectroscopy

5.1 Scaling from in-situ to large water 
bodies

Ongoing advances in sensor technology and processing 
algorithms have led to multiple applications of reflectance 
spectroscopy for real-time monitoring of water bodies at different 
scales (Huang et  al., 2018). Although cloud obscuration may 
be  problematic for some platforms, the absorption and scattering 
properties of light are now being routinely monitored by various 
satellite platforms (Tyler et  al., 2022), as well as airborne remote 
sensing and Unmanned Aerial Vehicles (UAVs) (Windle and Silsbe, 
2021). In this context, the Inherent Optical Properties (IOPs) and 
color of water reflect the composition of optically active constituents 

in the medium, which include living phytoplankton (i.e., Chlorophyll 
a), dissolved organic matter (DOM) and inorganic matter (i.e., 
dissolved and particulate matter in water), as well as back-scattering 
by suspended particles. However, the challenges of using and applying 
remotely sensed optical data lie in resolving the different components 
of the reflectance signal, i.e., (a) downwelling irradiance, (b) sky 
radiance, and (c) water-leaving radiance (Mobley, 2001). While these 
challenges have somewhat constrained the use of remotely sensed 
optical data for catchment management, the examples summarized 
below illustrate their increasing potential to study a variety of applied 
problems, albeit where the real-time outputs are deemed usable after 
improved quality control and data processing algorithms (e.g., 
Matthews and Odermatt, 2015). For example, with respect to CDOM, 
which is often the main optical component of inland waters, the 
algorithms target the blue wavelengths of light, where absorption 
maxima occur. Still, atmospheric correction algorithms are weakest at 
this part of the spectrum, while studies of algal blooms focus on red 
wavelengths, where there is less interference from detrital pigments 
(Wynne et al., 2008).

The utility of satellite data for WQM can be  significantly 
enhanced by integrating the optical output from remote sensing 
platforms with in-situ hydrological data, yielding increasing 
quantities of continuous data. Most sensor platforms are 
positioned in sun-synchronous, low-Earth orbits (Tyler et  al., 
2016). Inevitably, there is a tradeoff between spatial, spectral and 
temporal resolution. Their spatial resolution ranges from coarse 
(>200 m; AVHRR, MODIS, VIIRS), medium resolution (5–100 m; 
Landsat, SPOT, Sentinel-2) and high resolution (<5 m; IKONOS, 
RapidEye, CubeSat). The temporal resolution varies from half a 
day for some coarse platforms (e.g., MODIS) to between 5 and 
26 days for medium-resolution sensors and to potentially daily 
resolution for platforms such as WorldView and RapidEye 
(Huang et al., 2018). However, there are ongoing challenges with 
respect to untangling the multiple (dynamic) relationships 
between reflectance and absorbance for specific locations and 
conditions (Moshtaghi et al., 2021).

As the spatial and temporal resolution of optical data has 
improved, reflectance-based technology has been successfully applied 
for water quality monitoring in more optically complex environments, 
such as lake-water bodies (Kutser et al., 2005; Andrzej Urbanski et al., 
2016; Botha et al., 2020), rivers (e.g., Sultana and Dewan, 2021), and 
marine pollution (Thorhaug et al., 2007; Lu et al., 2013; Moshtaghi 
et al., 2021). Further work in this area requires paired optical and 
biogeochemical sampling, as demonstrated by Castagna et al. (2022) 
in their dataset from nine coastal and inland water bodies in Belgium, 
which included IOPs (e.g., absorption, scattering, beam attenuation 
and turbidity) and biogeochemical (e.g., suspended sediment, mineral 
fraction, particle size distribution, pigment concentration, etc.) 
properties. Specifically, within boreal lakes, Erlandsson et al. (2012) 
investigated the UV–VIS absorbance spectra in 983 water bodies in 
Sweden to report that alkaline lakes generally had lower absorbance 
and steeper spectral slopes than acidic lakes with a shorter water 
retention time while providing a comparable (and cost-effective) 
measure of the quantity and quality of dissolved organic 
matter (DOM).

Given public health concerns, many studies have investigated the 
efficacy of using optical sensors to monitor cyanobacteria (algal 
blooms) in different water bodies. While cyanotoxins cannot 
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be directly quantified, Chlorophyll a can determine algal concentrations 
(Stumpf et al., 2016), with an absorption peak at 620 nm. Ambrose-
Igho et al. (2021) tested algorithms enabling reflectance data from 
Sentinel-2 for monitoring algal blooms in two reservoirs in Illinois, 
United States. Coffer et al. (2020) investigated the optical properties 
of >2,300 lakes of various sizes in the contiguous USA using data from 
Envisat’s Medium Resolution Imaging Spectrophometer and Sentinel 
3 to examine the seasonal growth and decay of algal blooms and using 
a spectral shape algorithm previously described by Wynne et  al. 
(2008). The latter suggests that cyanobacteria are present if absorbance 
at 681 nm is below a baseline (defined by a line drawn between the 
665 nm and 709 nm absorbance bands).

This selection of studies illustrates the increasing possibilities 
of using and applying optical sensors on various platforms to 
manage water resources at different scales. While problems with 
data accessibility and interoperability remain (e.g., Agnoli et al., 
2023), some studies have successfully combined data from other 
satellite platforms (e.g., Zhao et  al., 2020), as well as UAVs and 
in-situ sensors. Shi et al. (2019) highlight the need for automated 
processing algorithms that can be validated at increasing spatial and 
temporal resolution. However, the utility of these data is likely to 
be enhanced when combined with information from other sources, 
including in-situ monitoring, laboratory analyses and 
numerical modeling.

5.2 Low-cost sensors—testing and field 
validation

The recent emergence of low-cost microcontrollers and other 
electronic components has led to an increase in the development of 
“Do It Yourself (DIY)” environmental monitoring solutions for varied 
applications (Mao et al., 2019). A wide range of sensors and associated 
data loggers have been proposed for monitoring water quantity and 
quality (Chan et al., 2021), from non-contact water level sensors using 
ultrasonic (Pereira et  al., 2022) or Light Detection and Ranging 
(Lidar) technology (Paul et al., 2020) to water quality sondes (Kinar 
and Brinkmann, 2022). However, most developments have been 
linked to physical or electrochemical sensors, with optical sensors for 
monitoring water quality largely neglected, except for turbidity (Kelley 
et al., 2014; Droujko et al., 2023).

While there have been some examples of field deployable 
spectroscopy-based sensors, notably low-cost fluorometers for 
measuring Chlorophyll a (Leeuw et  al., 2013) or organic matter 
(Bridgeman et al., 2015), examples of absorbance (UV–VIS) based 
sensors are limited, but note a recent study by Goblirsch et al. (2023). 
The lack of UV–VIS probes has been primarily due to technological 
limitations, such as the challenges associated with LED costs and 
stability (Kneissl et al., 2019) at the deeper UV wavelengths required 
for nutrient or organic matter detection (Etheridge et  al., 2014). 
Furthermore, a lack of suitable off-the-shelf detector solutions has 
impeded the development of lower-cost full-spectrum absorbance 
sensors (Ruhala and Zarnetske, 2017). Historically, expensive and 
bulky monochromators have been required for precise measurements, 
with the recent emergence of lower-cost solutions often lacking the 
needed range, resolution or measurement repeatability (e.g., AS7262 
Visible Spectral Sensor). The few low-cost spectrophotometers/
fluorometers reported in the literature leave many critical unanswered 

questions. Most studies report on short-term field deployments 
(Leeuw et al., 2013) or laboratory testing (Power et al., 2023). Hence, 
understanding measurement stability (electronic drift) or fouling 
rates (devices lack an automated cleaning system) remains limited 
(Delgado et  al., 2021). Further, there has been a lack of multiple 
devices fabricated to enable cross-comparisons between sensors to 
quantify inter-sensor measurement uncertainty (Deutsch et al., 2018; 
Fettweis et al., 2019). Also, challenges associated with the calibration 
of multi-node sensor networks (lower-cost sensors will potentially 
facilitate more extensive networks of optical sensors) and best 
practices for using calibration reference standards, mainly when 
sensors are deployed in remote locations, are poorly defined (Earp 
et al., 2011).

5.3 Detecting emerging contaminants 
using spectroscopy

Globally, 27% of the population drinks water contaminated from 
fecal sources (bio-pollution), of which the majority are in Southeast 
Asia (34%) and rural areas (41%) (Bain et  al., 2014). Changing 
agricultural practices and urbanization have added or enhanced 
several emerging contaminants (ECs), such as pesticides, 
microplastics, pharmaceuticals, etc., creating a cocktail of water 
pollutants (Rochman, 2018; Sharma et  al., 2019). Besides their 
potentially carcinogenic effects, ECs, like microplastics, are also seen 
as vectors and substratum for pathogenic bacteria, particularly in 
low-concentration groundwater environments (Rochman, 2018; Ma 
et al., 2020). Thus, detecting ECs in effluents and natural waters is a 
high priority, although limited to traditional “gold standard” 
laboratory-based methods using benchtop instruments and 
techniques (Manivannan et al., 2022). Sgroi et al. (2017) analyzed the 
EEMs of samples from two river systems in Italy to report significant 
correlations between known fluorescence indexes and EC groups, 
e.g., humic-like peaks correlating with sucralose, sulfamethoxazole 
and carbamazepine, and ibuprofen and caffeine correlating with 
tyrosine-like (Peak B) fluorescent peaks. Similarly, Wasswa et  al. 
(2019) used the PARAFAC method to analyse fluorescent signals 
from treated wastewater and natural waters in the USA using 
benchtop and portable fluorometers and reported significant 
associations between TLF and ibuprofen (a pharmaceutical drug), 
diesel and gasoline, and tyrosine-peaks with diesel, gasoline, caffeine, 
isoxathion (a pesticide) and lopinavir (a pharmaceutical drug). They 
also recommended using portable fluorometers for in-situ tracking 
of ECs by proxy associations, especially in waters with high 
background CDOM and TLF concentrations, such as tertiary 
wastewater, and during events of high EC contamination, such as 
spills and leakages. Paradina-Fernández et al. (2023) demonstrated 
the very-low detection limits achieved by a benchtop fluorometer and 
PARAFAC modeling while quantifying organic micropollutants (e.g., 
pharmaceuticals) in surface and wastewater in Sweden. Moshtaghi 
et al. (2021) used experimental VIS-IR reflectance data to validate the 
algorithms used to remotely detect marine microplastics. The 
significant challenges to using fluorescence spectroscopy lie in 
moderating the fluorescent quenching and reducing inner-filtering 
effects. Similarly, UV–VIS absorbance measurements could provide 
additional information for screening ECs in natural waters (Romão 
et al., 2017).
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6 Future of optical WQM sensors

Table  1 summarizes the strengths and challenges of using 
optical sensors for in-situ water quality monitoring and the 
potential way forward. Currently, there is a wide range of 
commercially available sensors for in-situ monitoring of 
fluorescence and absorbance at high frequency (seconds to minutes 
resolution) (Banna et al., 2014; Bouyé et al., 2016; Mukunda et al., 
2022). However, these remain expensive and inhibit widespread 

statutory or regulatory use (Hannah et al., 2022; Mukunda et al., 
2022). Furthermore, high costs have constrained the development 
of distributed sensor networks in large river catchments, which 
could have helped identify sources of pollution, assess propagation 
and persistence and validate scaling up solutions using remotely 
sensed datasets. We suggest that recent reductions in component 
costs, both in terms of light sources (e.g., UV LEDs) and detectors 
(e.g., mini-spectrometers), previously barriers to the development 
of lower cost and power sensors, are likely to herald a new wave of 

TABLE 1 A summary table of the strengths, challenges, and opportunities in OWQM.

Aspects Strengths Challenges Opportunities Key references

Technology Rapid, non-invasive, real-time and 

in-situ measurements

Relatively higher power requirements 

and costs compared to established 

technologies

Technological advances will lower the costs 

and power requirements of LEDs and 

detectors

Mukunda et al. (2022), 

Bouyé et al. (2016)

Lower maintenance costs than 

other sensor technology (e.g., 

membrane-based ISEs)

Prone to biofouling and require 

automated cleaning systems (e.g., wipers, 

pressurized air or water)

Combining automated cleaning systems with 

nano-coated optical windows

Delgado et al. (2021)

Less prone to sensor drift-related 

errors

Can require application or site-specific 

calibrations using laboratory-analyzed 

samples before/during installation

Open data policy on sensor calibrations and 

use of AI-ML techniques to develop universal 

calibration algorithms

Carter et al. (2023), 

Ighalo et al. (2021)

High specificity for single variables 

(nitrate, DOC) while 

simultaneously scalable to multiple 

variables (full spectrum 

absorbance, multi-peak 

fluorescence and scattering)

Full-spectrum fluorescence (EEMs) 

measurements are still limited to 

benchtop instruments

Combining multiple LEDs of overlapping 

wavelengths with broad-spectrum detectors to 

measure the full spectrum EEMs in-situ

Goblirsch et al. (2023)

Pollutants High specificity for organic and 

inorganic variables

CDOM, TLF and Turbidity are proxies 

for main variables of interest, i.e., TOC/

DOC, BOD/Bacteria and TSS, 

respectively, and proxy modeling is 

constrained by the unavailability of large 

datasets

Multi-wavelength approach combining 

absorbance, fluorescence, and turbidity with 

AI-ML tools can distinguish interferents and 

improve the accuracy of proxy models

Carter et al. (2023), 

Ighalo et al. (2021)

Overlapping signals from other 

interferents (e.g., hydrocarbons) with 

TLF/CDOM can lead to false positives

Gunter et al. (2023)

Applications Can be customized to a specific 

variable range based on 

applications by changing optical 

path-lengths and integration time

Measurement accuracy and minimum 

detection are significantly affected at 

high pollutant and TSS concentrations

Multivariable probes combining absorbance, 

fluorescence and scattering data will 

significantly improve accuracy for high 

concentrations and extreme environmental 

conditions

Shi et al. (2022)

Multi-angle turbidity measurements for 

improved sediment characterization

Kitchener et al. (2017)

Coupling with smart samplers can enable 

flood event monitoring for improved 

calibrations in aquatic bodies

Khamis et al. (2023)

Potential to track emerging contaminants Wasswa et al. (2019)

Scaling Point-to-regional scaling is 

possible by combining in-situ 

sensor data with aerial and 

remotely sensed reflectance

Data accessibility and validation 

challenges hamper interpolation across 

landscapes and in complex environments

Improved sensor infrastructure, access to 

remotely sensed data, and use of AI-ML tools 

for validation and interpolation

Shi et al. (2019)

Regulations Optical sensors are being 

incorporated into national and 

international regulatory 

frameworks and guidelines

Significant time lag between technology 

improvements and updating regulatory 

requirements

Improving the synergy between academia-

industry and regulatory bodies through open 

dialog and combined-action projects

WHO (2022), Hannah 

et al. (2022)
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affordable optical water quality sensors over the next 5 years 
(Goblirsch et al., 2023).

Some promising areas for future research involve integrating 
fluorescence, absorbance, and remote sensing (e.g., reflectance) to 
increase spatial coverage, particularly in large river networks (Cao 
et al., 2022; Castagna et al., 2022; Fang et al., 2022). Future sensor 
networks (i.e., node locations) should, whenever possible, align with 
statutory monitoring locations where manual sampling occurs 
routinely (Kinar and Brinkmann, 2022; Gaviria Salazar et al., 2023). 
This will ensure coupled datasets of laboratory and in-situ 
measurements, which are of comparable quality and can lead to the 
development of more rigorous calibration algorithms and proxy 
models (Ighalo et al., 2021; Paradina-Fernández et al., 2023). With the 
potential for more measurement data from more locations, there is a 
clear need for the community to embrace emerging artificial 
intelligence and machine learning (AI-ML) approaches to aid 
calibration, reduce the signal-to-noise ratio, and capture and correct 
drift and outliers. It will also facilitate the development of more robust 
proxy models for hard-to-measure variables such as phosphorus and 
critical classes of emerging contaminants such as pharmaceuticals and 
pesticides (Ighalo et al., 2021; Mustafa et al., 2021; Carter et al., 2023) 
and microplastics (Moshtaghi et al., 2021). Further, despite remaining 
unexplored, merging multiple data streams from in-situ WQM, i.e., 
absorbance, fluorescence, scattering and reflectance, with remotely 
sensed surface reflectance data can facilitate the development of 
predictive water quality models and early warning systems for aiding 
tracking and managing large-scale events, such as, e.g., nutrient 
enrichment and harmful algal blooms (Briciu-Burghin et al., 2023).

7 Conclusion

In this review, we have highlighted the current state of optical 
water quality monitoring and identified several challenges and future 
opportunities. The key concerns are high costs and power requirements, 
biofouling-induced sensor drift (particularly in dynamic environments 
with variable turbidity), the need for site-specific calibrations, and the 
limitation of current commercial WQM probes in performing full-
spectrum EEMs in-situ. The rapid growth in UV-LED and full-
spectrum detector technologies will likely address these issues. At the 
same time, the emergence of AI-ML-based data analytics holds the 
potential to develop universal sensor correction algorithms and proxy 
models for key variables of interest. Fluorescence spectroscopy may 
be useful in certain scenarios to detect novel/emerging contaminants 
in treated and natural waters. We suggest that attention should shift 
toward multivariable and multi-method (fluorescence, absorbance, 
scattering and reflectance) optical water quality monitoring, which can 
enhance existing water management and lead to the development of 
new applications. Augmenting remotely sensed surface-reflectance 
datasets with improved on-ground WQM infrastructure would 
be  critical for remote monitoring of large water bodies, including 
marine and coastal pollution. An emerging application for multi-
method monitoring and data fusion is linked to the control and 
monitoring of stormwater systems and combined sewer overflows. 
With increasing public awareness and newer environmental laws 
pushing for stricter monitoring of our water resources, the commercial 
scope of optical WQM sensors is bound to increase significantly. Thus, 
we advocate for greater synergy between industry, academia and public 

policy to ensure technological development supports effective pollution 
control and water management.
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Glossary

AVHRR Advanced very high resolution radiometer

AI-ML Artificial intelligence and machine learning

BOD Biological oxygen demand

CCD Charge-coupled device

COD Chemical oxygen demand

CDOM Chromophoric dissolved organic matter

CMOS Complementary metal-oxide-semiconductor

DOM Dissolved organic matter

DOC Dissolved organic carbon

DO Dissolved oxygen

EC Emerging contaminants

IOPs Inherent optical properties

IFE Inner-filtering effect

em Emission

EU European Union

ex Excitation

EEM Excitation emission matrix

LEDs Light emitting diodes

MODIS Moderate resolution imaging spectroradiometer

OWQM Optical water quality monitoring

PARAFAC Parallel factor analysis

PMTs Photo-multiplier tubes

SDG Sustainable development goal

TSS Total suspended solids

TOC Total organic carbon

TLF Tryptophan-like fluorescence

UV-VIS-NIR-IR Ultraviolet-visible-near-infrared-infrared

UAVs Unmanned aerial vehicles

VIIRS Visible infrared imaging radiometer suite

WFD Water framework directive

WQM Water quality monitoring

WHO World Health Organization
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