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Inverse problems in hydrogeology pose a great challenge for modelers as they are 
ill-posed, resulting in a non-unique solution. High computational resources are 
needed for the calibration process, especially in the case of highly parameterized 
aquifers like karst limestone, characterized by significant heterogeneity. The null-
space Monte Carlo (NSMC) is a parameter-constrained Monte Carlo approach 
that can be used to quantify uncertainty, as it produces a set of solutions that 
calibrate the model. This method is used to assess uncertainty in the calibration 
of a karst aquifer in Qatar, which has high heterogeneity. Pilot points were used 
to reflect the geostatistics of the calibrated field, and the calibration results at 
these points were interpolated over the aquifer area using kriging. The NSMC 
was then used to produce 200 realizations of the null-space parameter field 
using the constrained random variable of hydraulic conductivity. The null-space 
realizations were then incorporated into the parameter space derived from the 
calibrated model. Statistical analysis of the calibrated hydraulic conductivity 
revealed a variation ranging from 0.1 to 350  m/d, indicating a considerable 
variability in the aquifer’s hydraulic parameters. The areas with high hydraulic 
conductivity were concentrated in the central and eastern parts of the aquifer, 
and these same areas exhibited a high standard deviation. Based on the findings 
of this study, while the NSMC method is effective for uncertainty analysis in 
solving inverse problems, it is important to note that a considerable number of 
runs are necessary to reach the threshold of calibration error. This is because of 
the significant non-linearity inherent in the karst aquifer.
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1 Introduction

Karst carbonate aquifers display significant variability owing to the prevalence of 
numerous fractures and conduits within them. On the one hand, conducting an extensive 
series of field pumping tests for comprehensive heterogeneity characterization is not only 
expensive but also impractical. On the other hand, stochastic analysis demands a large number 
of simulations, incurring high computational costs. Calibrating models of groundwater flow 
in fractured porous media is even more challenging as the number of runs to solve the inverse 
problem is very high compared to the forward problems, demanding a computational effort 
that is often impractical. In cases of highly parameterized aquifers such as karst carbonate, 
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conventional uncertainty methods can be challenging (Beven and 
Binley, 1992).

Several stochastic methods, such as Monte Carlo (MC) and its 
variants, have been used to cope with uncertainty in hydrogeology 
(Harvey and Gorelick, 1995; Baalousha, 2009; Hassan et al., 2009; Wu 
and Zeng, 2013; Ren et al., 2016). The problem with the MC approach 
is the high number of realizations required, which results in high 
computational expenses. The Monte Carlo approach has a slow 
convergence rate that is inversely proportional to the number of 
realizations (Owen, 1992; Baalousha, 2009). Latin hypercube sampling 
(LHS) is a modified method of classical Monte Carlo and is used to 
create a nearly random realization of parameters of interest. It was first 
introduced by Mckay et al. (1979) and later modified by Iman et al. 
(1981). In contrast to the Monte Carlo method, LHS partitions the 
sampling space into equal probable sub-spaces, placing one sample 
within each sub-space. This is the reason why it is referred to as 
controlled random sampling. LHS significantly reduces the required 
runs to achieve the same accuracy compared to Monte Carlo, and the 
variance is smaller (Owen, 1992; Hardyanto and Merkel, 2007). This 
method has been widely used in various uncertainty problems in 
hydrogeology and experiment design (Baalousha, 2006; Amini et al., 
2008; Baalousha, 2009).

The population of hydraulic fields in x and y directions, even with 
a low number of LHS spaces, results in a significant increase in the 
required number of runs. Although LHS substantially reduces the 
number of runs needed to achieve results comparable to Monte Carlo, 
the computational cost for solving inverse problems remains 
prohibitively high, rendering its practical application challenging. 
Tonkin and Doherty (2009) presented the null-space Monte Carlo 
(NSMC) method for uncertainty analysis of model calibration. The 
NSMC is a practical approach to quantifying model calibration 
uncertainty, as it is model-independent and requires a small number 
of iterations (Doherty, 2015). As the calibration problem is ill-posed, 
the resulting calibrated field is non-unique (Carrera et  al., 2005). 
NSMC enables the generation of diverse solutions, all of which 
calibrate the model. This capability facilitates the assessment of 
uncertainty associated with the calibrated variable. The NSMC 
approach has been successfully used to assess the uncertainty of 
various problems, such as saltwater intrusion, flow modeling, particle 
tracking, and remediation effectiveness (Sepulveda and Doherty, 2015; 
Formentin et al., 2019; Moeck et al., 2020). The pilot points approach 
is employed in model calibration as it is a middle ground between the 
cellwise representation of parameter variability and the zonation 
approach, which represents the entire domain through a few zones. In 
the case of high parametrization of heterogeneous aquifers, the pilot 
points approach is more suitable than zonation or full parametrization. 
Thus, the pilot points approach provides a smoother representation of 
the calibrated parameter field and reduces computational expenses 
(RamaRao et al., 1995; Doherty et al., 2011; Baalousha et al., 2019; 
Tziatzios et al., 2021).

Using random values within the parameter range, NSMC uses the 
null space to generate sets of parameters that match the field data. This 
randomness contributes to the method’s ability to explore the 
solution space.

The NSMC approach begins with the calibration of the model 
using mathematical regularization (singular value decomposition, 
SVD). Then, the null space of the parameter field is obtained using the 
parameter sensitivities (i.e., the Jacobian matrix), which is the partial 

derivative matrix of independent variables. The null space includes 
groups of parameters that we cannot obtain from observational data. 
Following this, many realizations of parameter fields are created. Each 
stochastic parameter set comprises null and solution space projections. 
The difference between each realization and the calibrated parameter 
(from the calibrated model) is obtained using the covariance of the 
variogram and projected into the null space. The null space comprises 
parameters that exert no influence on the outputs of the model despite 
variability in the dependent variable. Consequently, these parameter 
combinations can be  integrated into any parameter set that 
successfully calibrates the model within the preset threshold error, 
resulting in an alternative set of parameters that also achieve effective 
calibration (Tonkin and Doherty, 2009). All these steps are done using 
the Parameter Estimation and Uncertainty Analysis Software (PEST) 
developed by Doherty (2015). In some cases, the model behavior is 
linear, and as such, the resulting obtained random field calibrates the 
model. However, in many cases, the model is non-linear, and in this 
case, the calibration error is not acceptable, and it requires a few 
iterations to be calibrated (Tonkin and Doherty, 2009). This study 
aimed to explore the effectiveness of employing NSMC to assess 
predictive uncertainty in inverse parameter estimates (the calibration 
process) for a highly parameterized aquifer. The calibration of such 
aquifers is particularly challenging due to their high heterogeneity. An 
aquifer in Qatar was used as a case study, chosen for its characteristics 
as a karstified carbonate aquifer.

2 Study area

Qatar is a member of the Gulf Cooperation Council (GCC) and 
spans in a north–south direction. It constitutes a peninsula 
surrounded by the Arabian Gulf on all sides, with its sole land border 
situated to the south, shared with Saudi Arabia (Figure 1). The primary 
source of natural water in Qatar is the northern aquifer, known for its 
good-quality water. This is attributed to favorable hydrogeological 
conditions, including high recharge rates and geology. The northern 
aquifer constitutes slightly less than half of Qatar’s total land area, 
covering an area of 4,300 km2. The southern aquifer lies to the south 
of Qatar and is characterized by poor groundwater quality. This 
inferior quality is linked to the presence of gypsum in the subsurface, 
which dissolves in water and contributes to its deterioration. In 
contrast, the northern aquifer lacks these gypsum layers in its 
geological setting.

The aquifer receives its essential recharge from rainfall, which 
amounts to an annual average of less than 80 mm (Eccleston et al., 
1981; Baalousha et al., 2021, 2023). Despite this low rainfall, recharge 
takes place as point sources in land depressions, where runoff 
accumulates and eventually replenishes the aquifer (Eccleston et al., 
1981; Schlumberger Water Services, 2009; Baalousha et al., 2022).

The geology of the northern aquifer comprises various layers of 
carbonate deposits (Figure 1). The uppermost layer is the Miocene 
Dam Formation, which covers only smaller parts of Qatar and does 
not constitute an aquifer as it is mostly dry. The second layer is the 
Eocene Dammam Formation, which covers the majority of the land 
surface in Qatar. The third layer is a limestone and dolomite layer 
from the early Eocene Rus Formation. The evaporite layer of gypsum 
occurs within this layer in the southern half of Qatar. This layer 
hosts the evaporite gypsum layer found in the southern aquifer. The 
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fourth and bottom layer is the lower Eocene Umm Al-Radhuma 
Formation, comprising dolomite and limestone (Vecchioli, 1976; 
Eccleston et al., 1981; Kimrey, 1985; Alsharhan et al., 2001). The 
latter formation does not outcrop on the surface. These Dammam, 
Rus, and Um Al-Radhuma collectively form the northern aquifer, 
with a thickness varying between 50 and 300 m (Al-Hajari, 1990; 
Jacob et al., 2021).

The aquifer is karstified, marked by numerous sinkholes, land 
depressions, and conduits, leading to significant variability in 
hydraulic properties (Baalousha, 2016a). The results of 11 aquifer tests 
(Figure 1) indicate that the transmissivity of the northern aquifer 
varies widely, ranging from 2.6 to 1,420 m2/d (Schlumberger Water 
Services, 2009). This extensive variability underscores the high 
heterogeneity of the aquifer.

FIGURE 1

Map of Qatar showing the study area (north-aquifer), geology, and pumping test locations. Coordinate system is Qatar National Grid.
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3 Materials and methods

3.1 Methodology

Figure  2 depicts the stepwise methodology of this study. The 
approach starts with model input data for a forward model (box 1), 

which is run successfully. Next, for the calibration process, observation 
data and pumping test data are used (box 3a and box 3b), and the pilot 
points approach is employed, where a finite number of points are 
assigned values of the parameter to be calibrated (Figure 3). In this 
case, the spatial geostatistics of the hydraulic conductivity random 
field is incorporated. Calibration is achieved by interpolating the 

FIGURE 2

Stepwise methodology of the NSMC.
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calibrated random field at the pilot points using kriging. The model is 
calibrated for the first time using the pilot points approach and SVD 
(box 3). Only the parameter space component is obtained from the 
solution (box 5). The resulting calibrated values at the pilot points are 
spatially interpolated using kriging to cover the entire model domain. 
The variogram properties used for kriging are also used to obtain the 
covariance matrix needed for NSMC. Then, a random field is 
generated using constrained Monte Carlo (box 6), and a projection 
into null space is obtained (box 7). Generating stochastic random 
fields using NSMC depends on ideas from linear algebra, where a 
parameter vector can be projected into a solution space and a null 
space, as shown in Figure  4. In this process, various parameter 
realization fields are generated, and each random field is projected into 
the null space and the parameter space, but only the null space is 
considered. The later null space is added to the parameter space from 
calibration (box 5) to formulate a new parameter field (box 8). Then, 
the new parameter field is checked to see whether it does calibrate the 
model (box 9). If it does calibrate the model, then we proceed to save 
the result (box 11) and create a new calibrated-constrained random 
field (box 6) until we reach the desired number of random fields. 
Recalibration is done using PEST software to optimize the objective 
function by minimizing the error between model results and 
observation data. If the calibration error is large, then we need to 
recalibrate the model (box 10) and proceed as before. This second 
calibration is done in the same way as in box 3, but it is required if the 
error of using the calibrated-constrained random field is high. Each 
resulting new parameter field should calibrate the model without extra 
runs if the model is linear or with a few runs if it is non-linear. It 
should be noted that this second calibration is likely to be required for 
highly non-linear models. The final step is the statistical analysis of the 
results (box 12).

Running NSMC, as described above, was done using PEST code 
coupled with MODFLOW (Doherty, 2015). The calibrated parameter 
field, which is the hydraulic conductivity, is generated at the pilot 
point location, and the model is run. The model results are then 

checked against the field measurements to check the calibration error. 
If the error is accepted, then the values of hydraulic conductivity are 
interpolated over the model domain using kriging; otherwise, a new 
field is generated and the model is run again. It is important to note 
that the calibration results involve solving an inverse problem, which 
is inherently ill-posed. As such, the solution is non-unique, implying 
that there could be various configurations of hydraulic conductivity 
distributions that effectively calibrate the model.

3.2 Model description

The model domain was discretized into a 500 × 500-m finite 
difference grid, covering the north aquifer presented in Figure 1. The 
model domain is bounded by the sea to east, north, and west 
directions, and these are considered constant-head boundaries. No 
flow occurs at the southern boundary of the aquifer as both aquifers 
are hydraulically disconnected (Eccleston et  al., 1981). The USGS 
finite difference-based MODFLOW-2005 model was used to simulate 
steady-state conditions of the groundwater flow (Harbaugh, 2005). 
The hydraulic conductivity field statistics are initially established using 
literature values and aquifer test data (Eccleston et  al., 1981; 
Schlumberger Water Services, 2009; Baalousha, 2016b). Schlumberger 
Water Services (2009) conducted 11 pumping tests in the northern 
aquifer. In addition, Eccleston et al. (1981) have done many other tests 
in the past in the entire country. These results are used in the 
calibration process. The minimum, maximum, and average values of 
transmissivity are 20, 1,320, and 305 m2/d, respectively.

The calibration targets are the groundwater heads at 38 
observation wells (Figure 1). These data refer to the year 1958 when 
the aquifer status was steady and the pumping rate was negligible 
(Eccleston et al., 1981). Rainfall recharge was based on the long-term 
average, representing natural conditions before development 
(Baalousha, 2016a). A total of 38 bores were found in the north 
aquifer, as depicted in Figure 1.

The calibrated parameter is the hydraulic conductivity. The NSMC 
is employed to produce multiple realizations of hydraulic conductivity 
(K) fields while adhering to the constraints of the calibration. 
Consequently, all resulting realizations contribute to a well-calibrated 
model. The variability present in these K-fields reflects the inherent 
uncertainty in our understanding of the system and its representation 
within the model.

4 Results

4.1 Calibrated model results

The initial step in the NSMC involves obtaining calibrated model 
results through the utilization of pilot points and kriging spatial 
interpolation. This is important as the kriging variogram properties 
are employed in the NSMC within the PEST code (Doherty, 2015). 
Figure  5 displays the calibrated model results for the study area, 
depicting variations in the head from near-zero levels along the 
shoreline to 18 m above the mean sea level (m. s. l.) further inland. 
Calibration statistics, presented in Table 1, revealed a mean weighted 
residual for both flow mass balance and head, along with a root mean 
square error of 0.7 for hydraulic conductivity. In addition, the mean 

FIGURE 3

Calibration stepwise methodology used in box 3 of Figure 2.
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residual of the head was −0.03 m, whereas the mean residual of flow 
was 0. These values are reliable indicators of the goodness of the 
calibration process.

The calibrated values of hydraulic conductivity range from 0.01 
to more than 300 m/d, as depicted in Figure  5 (right). This 

considerable variation was indicative of the inherent heterogeneity 
of the karst aquifer. The results further reveal that higher hydraulic 
conductivity values were concentrated near the shoreline in the east-
north region and inland in the central to southern parts of 
the aquifer.

FIGURE 4

Null-Space Monte Carlo.

FIGURE 5

Left: steady-state calibrated head (meters a.m.s.l.), and right: calibrated hydraulic conductivity.
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4.2 Null-space Monte Carlo results

As discussed in the methodology, 200 calibration-constrained 
Monte Carlo realizations were generated, and in each run, the 
hydraulic conductivity field was checked against the calibrated values. 
The results showed that in all 200 runs, there was a need to recalibrate 
the model, owing to its high non-linearity. In some cases, the number 
of runs required to reach an acceptable solution was higher than that 
needed to calibrate the model in the first step. Figure 6 depicts the 
statistics of the NSMC runs. The mean hydraulic head varied between 
0 and 17 m (m. s. l.), with a standard deviation that varied between 0 
and 4 m (m. s. l.). It is noted that the high standard deviations occur 
in the middle of the study area, where the hydraulic head is high. The 
minimum and maximum hydraulic head values vary between 0–12 m 
and 0–21 m (a. m. s. l.), respectively.

Figure 7 shows the statistics of hydraulic conductivity values obtained 
through NSMC, including the mean, standard deviation, minimum, and 
maximum. The mean hydraulic conductivity showed significant 
variability, ranging from 2.5E-4 to 331 m/d, indicating a distinct 
heterogeneity. The distribution of mean hydraulic conductivity, derived 
from 200 runs, closely aligned with that obtained from the calibrated 
model (Figure 7 right). Notably, the highest values were observed in the 
southern part of the aquifer, and a smaller region in the north-east was 
characterized by the outcropping of the Rus Formation and the 
occurrence of many fractures (Figure 1). Pumping test data reported by 
Schlumberger Water Services (2009) and Eccleston et al. (1981) revealed 
high transmissivity in this area, which is confirmed by this study. The 
standard deviation varied from 7.6E-06 to 173 m/d, with the highest 
values corresponding to the areas with elevated mean conductivity.

The minimum values of hydraulic conductivity vary between 
1.1E-3 and 295.3 m/d, while the maximum values span from 8.2E-5 to 
350 m/d. The distribution of maximum values closely resembles that of 
the mean value, whereas the distribution of minimum values shows a 
different pattern. Table 2 presents the descriptive statistics for both 
mean head and mean hydraulic conductivity. While the mean value of 
the head shows a slight deviation from the median, this deviation is 
more pronounced in the case of hydraulic conductivity. The mean 
value of hydraulic conductivity is 16.783 m/d, whereas the median is 
0.859 m/d. On the other hand, the mean value of the mean head is 
5.5 m, and the median is 5.2 m. This slight discrepancy between the 
mean and the median suggests a more or less normal distribution of 

head values. The distribution of hydraulic conductivity exhibits a clear 
rightward skewness, indicating that the majority of the aquifer has 
lower hydraulic conductivity. Statistical analysis reveals that only 10 of 
the aquifer cells have hydraulic conductivity higher than 50 m/d. 
Altogether, the descriptive statistics collectively indicate a high degree 
of heterogeneity.

5 Conclusion

The inverse problem is highly challenging for modelers, given its 
non-unique solution. Addressing this problem usually requires a high 
computational cost due to the high number of iterations required. 
Techniques such as crude Monte Carlo simulations demand a high 
number of iterations to achieve an acceptable level of accuracy, 
primarily due to their slow convergence rate. Utilizing these methods 
for uncertainty analysis increases the computation requirements 
further. Given the non-uniqueness of the inverse problem solution, it 
is important to evaluate the uncertainty associated with the resulting 
calibrated parameter field. The study explores the application of the 
NSMC method for uncertainty analysis in the model calibration of a 
highly parameterized karst carbonate aquifer in Qatar. The NSMC 
method, a constrained Monte Carlo approach, makes use of the null-
space component of a randomly generated vector of calibrated 
parameters. The results have important implications for groundwater 
management in karst carbonate aquifers. The uncertainty of hydraulic 
conductivity is important because it directly affects the reliability of 
groundwater flow models, resource management decisions, and 
environmental protection measures. Uncertainty in hydraulic 
conductivity affects the estimation of groundwater availability and 
sustainability. It can also affect the transport of contaminants, solutes, 
and other substances in groundwater. High uncertainty in hydraulic 
conductivity can lead to unreliable groundwater flow predictions, 
affecting decision-making. By quantifying uncertainty, stakeholders 
can make more informed decisions and effectively manage 
groundwater systems for the benefit of society and the environment.

Uncertainty analysis of the calibrated field of the karst aquifer under 
consideration reveals that high uncertainty aligns with areas of high 
hydraulic conductivity. Although the variation in hydraulic conductivity 
between the minimum and maximum values is not high, the absolute 
measure of variability, as indicated by the standard deviation, is notably 
high, particularly in regions of high hydraulic conductivity uncertainty.

TABLE 1 Statistics of calibration.

Parameter Value

Mean Residual (Head) −0.03

Mean Absolute Residual (Head) 0.5

Root Mean Squared Residual (Head) 0.73

Mean Residual (Water balance) 0.0

Absolute Residual (Water balance) 0.0

Root Mean Squared Residual (Water balance) 0.0

Mean Weighted Residual (Head + Water balance) −0.09

Mean Absolute Weighted Residual (Head + Water balance) 0.9

Root Mean Squared Weighted Residual (Head + Water balance) 1.25

Sum of Squared Weighted Residual (Head + Water balance) 598.43
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To apply NSMC, the model must undergo calibration initially, 
leading to the obtaining of geostatistics for the calibrated parameters. 
The calibrated parameter was then decomposed into a null space and 
a solution space. The latter was combined with a null space resulting 
from a randomly generated vector. The results indicate that while the 
NSMC produces diverse fields of hydraulic conductivity, all of which 
successfully calibrate the model, numerous iterations are required to 
reach a solution within the specified error threshold. This contrasts 
with the suggestions in the literature (Doherty, 2015) and is likely 
attributed to the high heterogeneity of the aquifer modeled in this 

study, introducing a highly non-linear solution. As such, the use of 
NSMC provides little advantage over other uncertainty methods in the 
case of high non-linearity, such as karst aquifers with high variability.

Data availability statement
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the article/supplementary material, further inquiries can be directed 
to the corresponding author.

FIGURE 6

Statistical analysis of head resulting from 200 NSMC runs.
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FIGURE 7

Statistical analysis of hydraulic conductivity (m/d) resulting from 200 NSMC runs.

TABLE 2 Descriptive statistics of mean head and mean hydraulic conductivity.

Statistics Mean Head (m) Mean K (m/d)

Minimum −0.021 0.010

Maximum 22.062 336.262

Mean 5.502 16.783

Median 5.168 0.859

Standard deviation 0.067 43.502
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