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The Kingdom of Saudi Arabia is undergoing massive and rapid urbanization as 
part of Vision 2030. This includes development projects along Saudi  Arabia’s 
coastline across the Red Sea. Coastal areas, especially the ones along Saudi’s 
western regions are susceptible to natural disasters such as flooding. NEOM, 
a futuristic city currently being developed in the northwest of Saudi  Arabia, 
exemplifies a potential flooding hazard due to its geographic location and 
proposed urbanization plans. This research aims to enhance flood hazard 
assessment in NEOM by applying the Fuzzy Analytical Hierarchy Process (FAHP) 
in combination with Geographic Information System (GIS). Acknowledging 
traditional limitations related to data availability and parameter selection 
consensus, the study carefully selects parameters such as drainage density, 
elevation, slope, rainfall, land use/land cover (LULC), soil type, normalized 
difference vegetation index (NDVI), and topographic wetness index (TWI). The 
30  m DEM was used to derive Drainage Density, Slope, and TWI while LULC data 
helped assess land cover changes. Rainfall data and soil type information are 
integrated to evaluate their impact on flood susceptibility. NDVI is employed 
to analyze vegetation cover. Utilizing ArcGIS Pro’s weighted overlay model, 
the criteria were combined to generate the final flood susceptibility map. 
The research outcomes manifest in a flood susceptibility map categorizing 
areas into seven distinct susceptibility classes, ranging from ‘very low’ to ‘very 
high.’ A quantitative breakdown in a summary table provides insights into the 
proportional distribution of flood risk. Results indicate a significant portion 
of NEOM falls within varying degrees of moderate susceptibility range with 
relatively limited distribution of flood susceptibility on the extremes, equating to 
areas with ‘low to moderate’ susceptibility is 4,322.8  km2, areas with ‘moderate’ 
susceptibility is 5,109.69  km2, areas with ‘moderate to high’ is 4,081.39  km2. The 
flood susceptibility map developed in this study can shed insights on potential 
optimum areas for flood mitigation measures (i.e., optimum locations for 
establishing stormwater collection points).
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1 Introduction

The rapid urbanization under the Kingdom’s Vision 2023 will see 
many developments along Saudi Arabia’s coastal areas. These areas, 
along the western coast of Saudi  Arabia, are highly vulnerable to 
natural disasters such as flooding (Youssef et al., 2016). Therefore, an 
accurate flood hazard assessment is paramount for ensuring the safety 
of the proposed developments. NEOM, a futuristic city intended to 
drive the future of urban planning poses a prime example of a city 
prone to potential flooding as a consequence of its geographical 
location and ambitious development plans. This research paper aims 
to provide an enhanced flood susceptibility assessment by utilizing 
advanced geospatial techniques. Moreover, this study endeavors to 
provide a better understanding of flood susceptibility and potential 
impacts in the hopes of supporting urban planning of NEOM that is 
disaster-prepared.

The significance of flood hazard assessments cannot be overstated. 
With NEOM being strategically placed and its expectation to 
accommodate a high population, it is expected to become a global 
tourism and economic hub that will support the kingdom’s efforts in 
diversifying the economy. This entails a massive urbanization 
undertaking. Urbanization, which will trigger changes in Landuse and 
Landcover (LULC), is a prime culprit in changing the hydrologic 
processes as it increases runoff as well as peak water discharge (Sanyal 
et al., 2014; Apollonio et al., 2016; Khosravi et al., 2016; Zope et al., 
2016; Yousuf Gazi et al., 2019; Tellman et al., 2021; Hagos et al., 2022). 
Coupled with climate change, which is leading to variable changes in 
weather/climate trends as floods are expected to vary in terms of 
magnitude and frequency (Cheng et al., 2007; Parry, 2007; Arnell and 
Gosling, 2016; Abdulalim and El Damaty, 2022), necessitates the 
development of accurate flood susceptibility maps.

The development of accurate and up-to-date flood maps is not an 
easy endeavor (Lin and Billa, 2021). This is generally attributed to 
three main factors. First, the varying nature of flood hazards is a 
consequence of climate, land use, and developing flood-control 
projects (Parvaiz et al., 2011; Kusler, 2016). Second, the availability 
of data and their accurate reflection of up-to-date disaster 
management practices (Tomaszewski et al., 2015). Finally, a lack of 
consensus on the selection of parameters for flood susceptibility 
studies (Alam et al., 2021). There are currently four existing methods 
to research flood susceptibility which are: (a) hydrological modeling, 
(b) machine learning models, (c) qualitative models, and (d) 
quantitative models. Hydrological models, such as SWAT (Soil and 
Water Assessment Tool) or HEC-RAS (Hydrological Engineering 
Centre – River Analysis System), are simple nonlinear models that 
are generally less effective when attempting to integrate complex 
features (Shafapour Tehrany et  al., 2019). Elsebaie et  al. (2023) 
developed both an AHP-GIS model as well as a 100-year return 
period scenario model using HEC-RAS for Wadi Al-Lith basin in 
Saudi Arabia and showed that both models produced comparable 
results. Machine learning integrates artificial intelligence but is 
generally very complex, requires high computational performance, 
and involves a relatively extended processing time making it less 
practical (Maier and Dandy, 2000; Ghalkhani et al., 2013). Al-Areeq 
et  al. (2024) examined various Deep Neural Networks (DNN) 
algorithms for flash-flood prediction in Jeddah, Saudi Arabia, and 
have listed, in order, the various models that showed the highest 
accuracy. Qualitative strategies are able to solve complex 

decision-making problems, but they generally rely on expert 
knowledge in the required field exposing them to potential biases 
(Shafapour Tehrany et al., 2019). The incorporation of AHP, a tool 
widely utilized for flood susceptibility mapping, is heavily reliant on 
expert judgment for prioritizing criteria associated with flooding. For 
example, Dano (2022) used AHP to develop a flood susceptibility 
map for Dammam, Saudi Arabia, and pointed out that the qualitative 
nature of AHP can tend to lead to biases. Finally, Quantitative 
approaches encompass numerical representations of the connections 
between influencing factors and the incidence of disasters (Ayalew 
and Yamagishi, 2005). For example, Theilen-Willige and Wenzel 
(2019) utilized a technique that combines GIS and frequency ratio 
method to assess the natural hazards assessment along western 
Saudi Arabia and determined that it is most susceptible to floods.

Traditional flood susceptibility mapping methods have been 
limited by the availability of data (Alharbi, 2023). DEM and LULC, for 
example, are important for generating accurate flood susceptibility 
maps. DEMs provide information on the study area’s topography. 
Topography, namely slope, is a major factor in floods as areas with 
steeper slopes tend to be at higher risk of flooding than those with 
gentle ones. Therefore, a high-resolution DEM is ideal. It should 
be noted that higher resolution does not necessarily guarantee higher 
accuracy, particularly in areas with dense vegetation (Xafoulis et al., 
2023). The study by Xafoulis et al. (2023) compared several DEM 
resolutions, namely 5 m, 2 m, and 0.5 m DEM, and noticed that despite 
various over-and-underestimations, the DEM resolution of 5 m 
managed to capture the true geometry of the site’s cross-section while 
supposedly being at a lower resolution than a DEM of 2 m. On the 
other hand, LULC provides information on the type of land cover of 
the study area. Most land use activities involve the conversion of the 
natural landscape, whether it be deforestation or simply converting 
large, vegetated expanses to areas suitable for human use. Impermeable 
surfaces such as roads, make a higher contribution to floods than areas 
overlain with vegetation. Land use changes have been deemed a prime 
cause of severe flood events (Owrangi et al., 2014) and deemed by 
some as potentially having irreversible effects (DeFries et al., 2004).

Pallard et al. (2009) investigated the link between drainage density 
and floods. The authors highlighted that drainage density controls 
flood peaks directly and indirectly. Control over stream network 
length and hillslope routes is a major direct effect. Drainage density 
impacts concentration time and peak flow magnitude in river 
networks due to higher flow velocity. Increasing drainage density 
increases flood peaks. Longer concentration times allow more water 
infiltration. Thus, decreasing drainage density reduces flood volumes. 
Drainage density as a geological measure has indirect impacts. 
Impervious rocky hillslopes limit drainage density, storage volumes, 
and flood peaks. Karstic regions, highly worn bedrock, and/or highly 
permeable fluvial deposits in valley floors may also cause low drainage 
density due to huge storage volumes and reaction times and modest 
flood peaks and volumes. Landform evolution, soil formation, erosion, 
and floods (driven by climate and regulated by geology) may also 
indirectly control. Large floods may modify catchments over 
generations by increasing topographic gradients, drainage density, and 
storage volumes, which may raise flood peaks and volumes. Finally, 
drainage density’s relationship with vegetation cover can provide 
indirect management in semiarid environments. Due to soil erosion, 
bare soils have high drainage density and runoff output, resulting in 
huge flood peaks and volumes.
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Another key parameter affecting floods is precipitation. Ghoneim 
and Foody (2013) investigated flash floods in arid mountainous 
regions. The aim of the research was to determine the impact of 
rainfall depth, areal coverage and the locations of flash floods. They 
found that the study basin’s hydrological response to rainfall is 
determined by its inherent geomorphometry and land cover types. 
Furthermore, the basin’s response exhibits a high degree of sensitivity 
to the depth, size, and spatial distribution of the downpour. It should 
also be noted that surface run-off over extended periods of times (i.e., 
centuries) changes the morphology of basins and ultimately affects the 
drainage density which, in turns has an effect on the sites vulnerability 
to flooding (Pallard et al., 2009).

In this context, the Analytical Hierarchy Process (AHP), can be a 
very useful tool. First proposed by Saaty (1988), AHP has been widely 
utilized in the field of flood hazard mapping and risk assessment due 
to its ability to handle complex multi-criteria decision-making. 
Researchers have applied AHP to systematically evaluate and prioritize 
various factors that contribute to flood hazards, such as terrain 
characteristics, land use, climate data, and more. One of its most 
notable strengths is that it can be used to handle poor-quality data 
(Chen et al., 2014). AHP achieves this by assigning relative weights to 
these factors, enabling a comprehensive assessment of flood 
susceptibility, and providing valuable insights for flood management 
and mitigation strategies (Dodgson et al., 2009). This allows for AHP 
to be effective in handling both qualitative and quantitative datasets 
(Vinod Kumar and Ganesh, 1996). While AHP has been praised for 
this ability, it is often criticized for not being able to handle 
uncertainties (Büyüközkan et  al., 2011). As a result, research has 
evolved to incorporate the Fuzzy Analytical Hierarchy Process 
(FAHP) to better enhance the generated weights from AHP with the 
aim of expanding the use, so it is not only limited to crisp values but 
also accounts for vague ones (Kerkez et al., 2017; Baalousha et al., 
2023). Through fuzzification, this modified approach can convert 
crisp values into vague ones by employing a fuzzy judgment matrix, 
incorporating fuzzy numbers, to generate definitive weights through 
both consistent and inconsistent fuzzy comparison matrices 
(Baalousha et al., 2023). Another utilization of Fuzzy theory is to 
employ fuzzy logic. Fuzzy logic was first proposed Zadeh (1965) and 
involves the usage of partial truths instead of definitive values. This 
method allows for converting a definitive value ranging from 0 to 1, 
to a variant in-between them to represent the partial truths. A 
previous study by Baalousha et al. (2023) compared Fuzzy logic and 
FAHP, for flood exposure in arid regions, and found that Fuzzy logic 
is generally more conservative, especially in the high-risk zones, and 
that ultimately FAHP was likely more accurate.

The study area was investigated in three previous studies. The 
first by Abdulalim and El Damaty (2022) divided NEOM into eight 
(8) basins and utilized AHP to generate a flood risk map per stream 
for each basin through a morphometric analysis. For the 
assessment, the authors used the topographic wetness index, 
elevation, slope, stream power index, topographic roughness index, 
normalized difference vegetation index, sediment transport index, 
stream order, flow accumulation, and geological formation as the 
assessment criteria and have ultimately generated only flood-
hazard maps for streams within Wadi Surr and Wadi Zhawi. The 
second study was done by Alharbi (2023) and utilized a weighted 
overall function in GIS software to map groundwater, flood, and 
drought zones. For this study, the author used drainage density, 

precipitation, elevation, slope, and soil type as the assessment 
criteria and divided NEOM into only four hazard classes ranging 
from Very Low to High with the majority of the study area falling 
under moderate risk. The third and latest study was undertaken by 
Bashir and Alsalman (2023) where they employed a morphometric 
analysis and followed the Approach set out by El-Shamy in order 
to determine Flash-flood vulnerability in NEOM and concluded 
that severe flash-flooding events in NEOM are highly improbable. 
It can be noted that two of the aforementioned studies relied largely 
on morphometric analysis, with only one incorporating 
environmental factors, namely precipitation and Soil Type. Our aim 
is to optimize and distill the relevant criteria in order to include 
relevant morphometric and environmental parameters for 
our assessment.

With the scarcity of data, namely in-situ data, the present 
investigation seeks to enhance the precision of the flood susceptibility 
map for NEOM. This is achieved by employing remote sensing 
techniques and integrating the Fuzzy Analytic Hierarchy Process 
(FAHP) with spatial modeling in ArcGIS Pro using open-sourced data 
to refine the analysis by allowing the assessment to account for 
uncertain or vague values within the data. The main starting point will 
be the development of adjusted assessment criteria based on the three 
prior studies to include eight criteria that combine morphometric and 
environmental factors affecting flooding. The ultimate goal is to 
deliver a more nuanced flood susceptibility map by utilizing and 
dividing the study area into seven categories of susceptibility, as 
opposed to the conventional four or five, which would maximize the 
potential of the final map to capture the wide diversity of the 
topographic and geomorphological features of the study area in an 
effort to avoid potential over or under-estimations. This refined map 
is intended to serve as a valuable tool for guiding master planning and 
facilitating decision-making for both present and future developments 
in NEOM.

2 Materials and methods

2.1 Study area

The study area for this research encompasses the entire NEOM 
region (Figure 1), a futuristic city currently being developed along the 
western coast of Saudi Arabia. NEOM spans from Tabuk, toward the 
east, to the Red Sea, west, and runs along the Red Sea coastline from 
Duba to Haql, Saudi Arabia. It includes a diverse range of geological 
units, from sand dunes to mountains thus making it susceptible to 
flood hazards since mountain basins generally respond rapidly to 
intense rainfall as a result of large slopes (Xafoulis et al., 2023) whereas 
precipitation is variable both spatially and temporally (Rotunno and 
Houze, 2007). It is worth noting that although Saudi Arabia’s annual 
precipitation generally occurs in Winter and Spring, the annual 
precipitation in NEOM ranges from 51 mm to 150 mm per annum 
(Alharbi, 2023). Running along the coastline also exposes NEOM to 
sea-level rise which is generally attributed to climate change (Arkema 
et al., 2013). NEOM varies in elevation from around 5 m above mean 
sea level (asl) along the coastline to around 2,518 m along the 
mountains and covers a total area of 26,500 km2 (Alharbi, 2023). It is 
strategically situated near Egypt and Jordan meaning that most people 
around the world will be able to reach NEOM on an average 8-h flight.
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2.2 Input data

Employing remote sensing methods for generating flood hazard 
maps is generally considered an effective tool for generating flood 
hazard maps, especially in remote areas (Althuwaynee et al., 2014). As 
highlighted earlier, the assessment criteria were selected by optimizing 
the criteria set out in the previous three studies developed for NEOM, 
namely the studies by Abdulalim and El Damaty (2022), Alharbi 
(2023), and Bashir and Alsalman (2023). The final assessment criteria 
selected were Drainage Density, Elevation, Slope, TWI, LULC, 
Rainfall, Soil type and NDVI.

DEM of 30 m resolution, obtained from Shuttle Radar Topography 
Mission (SRTM), was first used to create Slope, Drainage Density, and 
TWI. LULC map, obtained from ESRI’s Sentinel 2 Global Landcover 
maps, was used in this study. A soil map was generated from the Food and 
Agriculture Organization (FAO). Rainfall data was obtained from the 
Climate Hazards Group Infrared Precipitation with Stations (CHIRPS). 
Finally, NDVI was derived from Landsat Satellite to assess vegetation cover.

2.2.1 Drainage density
Drainage density is a term used to describe the drainage lengths to 

the area of a Basin and is influenced by permeability, erosion capacity, 
vegetation, slope, and time (Subraelu et  al., 2023). The density of 
drainage systems directly impacts flooding, as an increase in drainage 
density corresponds to a rise in peak discharge (Yang et al., 2022). In 

arid regions, higher drainage density values exhibit a significant 
negative correlation with the likelihood of floods in the region. This is 
attributed to the increased capacity for surface runoff associated with 
a denser stream network. Conversely, lower drainage density values are 
indicative of increased vulnerability to flash floods (Subraelu et al., 
2023). Drainage density is calculated using (Equation 1).

 D L A= /  (1)

Where ‘D’ is the drainage density, ‘L’ is the channel’s length and ‘A’ 
is the water area.

2.2.2 Slope
The quantity of water infiltrated into the soil is directly affected 

by the slope of the study area (Ouma and Tateishi, 2014). The lower 
the infiltration, the higher the surface flow and ultimately the size of 
the flood since slope describes the steepness of the study area, it is 
therefore deemed an important parameter to consider when 
developing a flood assessment (Khosravi et al., 2016; Wondium, 2016; 
Das, 2019; Hagos et al., 2022). The slope map was created using the 
spatial analysis tool in ArcGIS 10.8.2 and a DEM resolution of 5 m.

2.2.3 Elevation
DEM is a numerical depiction of the height or elevation of a terrain 

from a reference datum devoid of any vegetation or manmade features 

FIGURE 1

Study area.
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and is widely used for urban planning as it provides a digital 
representation of elevation, where each pixel provides a distinct 
elevation value (Croneborg et al., 2020). Water hydrology is dependent 
on the flow direction which is created from digital elevation models 
(Tarboton, 1997; Yousuf Gazi et al., 2019). For this study, a DEM of 30 m 
resolution, obtained from SRTM was used. The DEM was subsequently 
used to develop the TWI, Slope, and Drainage Density maps using 
ArcGIS Pro. Elevation is a prime factor when investigating floods since 
areas with higher elevations are generally at lower risk of flooding than 
those with lowered ones (Das, 2018, 2019; Shen et al., 2021).

2.2.4 Rainfall
Rainfall is considered a major contributor to floods (Paul et al., 

2019; Yousuf Gazi et al., 2019; Hagos et al., 2022), especially in arid 
regions where the majority of floods are flash floods. In this study, 
CHIRPS precipitation data was used to generate rainfall maps.

2.2.5 Topographic wetness index
TWI’s contribution to flood hazard mapping is given by its ability 

to describe the accumulation trends (Pourali et al., 2016). It is directly 
related to flood vulnerability (Chapi et al., 2017). TWI provides an 
indication of flood vulnerability as the areas with a high TWI are more 
vulnerable to flooding as opposed to those with lower ones (Paul et al., 
2019). In this study, TWI was calculated using DEM in ArcGIS’s 
Raster calculator tool via the following formula (Equation 2):

 
TWI AS

=
( )









ln

tan β  
(2)

Where ‘AS’ is the upstream contributing area, and the slope 
gradient is denoted by ‘β’.

2.2.6 Land use/land cover
Urbanization leads to massive changes in LULC. These changes 

have a significant effect on basin drainage (Zope et al., 2016; Hagos 
et al., 2022; Ziwei et al., 2023). They also contribute to wider system 
changes such as surface flow and infiltration rates, since replacing 
soil, for concrete or asphalt for example, reduces the overall land 
infiltration (De Roo et al., 2003; Kazakis et al., 2015; Khosravi et al., 
2016; Yousuf Gazi et al., 2019; Hagos et al., 2022; Riazi et al., 2023) 
hence it is an essential factor to consider for flood hazard assessments 
(Khosravi et al., 2016; Das, 2019). The LULC map was generated 
using ESRI’s Sentinel 2 Global Landcover maps.

2.2.7 Soil type
In addition to TWI and LULC, soil types also shed light on soil 

infiltration. Different soil types have different textures and hence 
different infiltration capacities (Hartemink and Bockheim, 2013; 
Kazakis et al., 2015). For example, clay has a much lower infiltration 
rate than sandy soils, hence, it also tends to support investigating 
hydraulic conductivities since soil pores are directly correlated to 
texture (Ward and Robinson, 1990). The soil type map was generated 
using information obtained from the FAO.

2.2.8 Normalized difference vegetation index
The presence of vegetation, or lack thereof, greatly impacts floods. 

Vegetation tends to reduce water flow rate as well as increase infiltration 
(Wondium, 2016; Zhao et al., 2019). As such, converting vegetation 

cover into barren areas, with much lower infiltration rates, can have a 
negative impact in terms of flood risk (Vaghefi et al., 2019; Yousuf Gazi 
et al., 2019). Where NDVI comes in is that it provides both the presence 
of vegetation cover along with its vigor (Parsian et al., 2021). NDVI 
values range from −1 to +1 (Khosravi et al., 2016; Riazi et al., 2023) 
where the positive NDVI values represent active vegetation covers 
while negative values refer to water bodies (Wang et al., 2020; Ziwei 
et al., 2023). NDVI was generated from Landsat 8 satellite imagery and 
calculated using the following formula (Equation 3):

 
NDVI NIR Red

NIR Red
=

−
+  

(3)

Where ‘NIR’ denotes near-infrared light while ‘Red’ is the near-
visible light.

2.3 Methodology

2.3.1 Analytical hierarchy process
AHP is a multi-criteria decision-making tool, first proposed by 

Saaty (1988). This tool allows for the organization of multiple criteria 
into hierarchal form and ultimately deciding on the relative 
importance of each criterion (Saaty, 1977, 1988). This method has 
been extensively used to solve complex problems by assigning weights 
to each criterion to allow for suitable decision-making (Dodgson 
et al., 2009) which makes it especially useful in Flood hazard mapping 
(Darwish, 2023). In this study AHP played a pivotal role in computing 
the weightings of all the input parameters essential for flood 
susceptibility mapping. The tool developed by Goepel (2013) was 
utilized for creating a pairwise comparison matrix. To normalize the 
pairwise comparison matrix, each element was divided by the sum of 
its column. Following that, the value of each row was average and 
calculated as the final value of the corresponding parameter using the 
tool developed.

The Consistency Ratio (CR) was computed using (Equation 4) to 
ensure that the degree of consistency is acceptable. CR values greater 
than 10% should be reconsidered whereas the ones below 10% are 
generally considered acceptable (Parsian et al., 2021). This approach 
allowed for a comprehensive assessment of the input parameters’ 
relative importance, contributing to the accuracy and reliability of the 
flood hazard mapping process.

 
CR CI

RI
=

 
(4)

Where ‘CI’ is the Inconsistency Index and ‘RI’ is the 
Random Inconsistency.

2.3.2 Fuzzy analytic hierarchy process
The Analytical Hierarchy Process (AHP), on its own, only tends 

to account for crisp values which is ultimately a function of preference 
and human judgment (Cikmaz et al., 2023). Therefore, Fuzzification 
is introduced to bridge that gap and allows for the consideration of 
vague ones. This is achieved by combining fuzzy logic and AHP. In 
fuzzy logic, linguistic variables and represented by triangular numbers 
(Kilincci and Onal, 2011). Table 1 presents the Saaty scale and its 
corresponding Fuzzy Triangular scale. The process for FAHP was 
adopted from the procedure lain-out by (Jovčić et al., 2019).
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Following the conversion of the standard AHP matrix, the 
geometric mean of the fuzzy values is calculated using (Equation 5).

 

ti Z i n
j

n
ij

n

=












= …
=
∏
1

1

1 2

/

; , , .

 
(5)

Where ti represents the geometric mean of fuzzy values, ij 
represents the preference of the i-th criterion over the j-th criterion 
and Z represents the specific decision maker (the authors in 
this instant).

After that, the Fuzzy weight of each criterion is calculated using 
(Equation 6).

 
ti ti t t t tn= + + …( )−1 2 3

1

 (6)

Where i represent criterion i. This is applied for criteria i,j,….n.
Defuzzification is then undertaken to convert Wi to 

non-fuzzy weights.

 
Mi Wia Wib Wic

=
+ +

3  
(7)

Where Mi is the non-fuzzy number and Wia, Wib and Wic 
represent the obtained fuzzy weights for criterion i.

The final step is normalizing the non-fuzzy numbers for each 
criterion. This is achieved using (Equation 8)

 

Ni Mi

Mii
n=

=∑ 1  

(8)

Where Ni represents the final normalized weight of each criterion.

2.3.3 Flood susceptibility mapping
The spatial criteria were classified in ArcGIS based on their 

relative contribution to flooding. The results from the FAHP were then 
integrated into a weighted overlay model in ArcGIS Pro where they 
were scaled from 1 to 100. The produced map was then classified into 
seven categories, using the natural breaks method, demonstrating 

varying degrees of flood susceptibility. Table 2 provides a summary of 
the data sources used while Figure 2 provides a simplified diagram 
summarizing the methodology employed in the study.

3 Results and discussion

3.1 Spatial criteria

Eight spatial criteria have been applied in this study in order to 
map flood susceptibility in NEOM. Drainage Density ranged from 
0.001 to 196.827 m/km2. The elevation ranged from 0 to 2,496 m asl 
with a corresponding slope that ranges from 0 to 74 degrees. Annual 
Accumulated rainfall ranged from 4 to 113 mm. Nine Landcover 
classifications are present in the study area in addition to three soil 
types. Finally, NDVI ranged from −0.4 to 0.86 while TWI ranged 
from −9.3 to 38.5. The results of the spatial analysis are summarized 
in Table 3 while the thematic layers are presented in Figure 3.

3.2 Fuzzy analytical hierarchy process 
analysis

As highlighted in Section 2.3.1., the tool developed by (Goepel, 
2013) was utilized for creating a pairwise comparison matrix 
(Table  4) modified after the criteria used by Abdulalim and El 
Damaty (2022), Alharbi (2023), and Bashir and Alsalman (2023). In 
general, they have generally deemed that Drainage density, elevation, 
slope, and rainfall were the most important factors contributing to 
flood hazard. LULC, TWI, NDVI, and soil type were also found to 
be important factors, but to a lesser extent. Each element was then 
divided by the sum of its column in order to normalize the pairwise 
comparison matrix followed by averaging the value of each row to 
calculate the final weight value of the corresponding parameter using 
the tool developed by Goepel (2013) (Table 5). Finally, the consistency 
ratio (CR) was calculated using the same tool and resulted in a CR of 
7.7% which is considered acceptable.

Following the methodology detailed in Section 2.3.2, The pairwise 
matrix values were converted to triangular fuzzy numbers (Table 6). 
Then the geometric mean was calculated for each criterion and the 

TABLE 1 Triangular fuzzy-AHP scale from Jovčić et al. (2019).

AHP 
(Saaty’s 
scale)

Linguistic terms Fuzzy 
triangular 

scale

1 Equally important (1,1,1)

3 Weakly important (2,3,4)

5 Fairly important (4,5,6)

7 Strongly important (6,7,8)

9 Absolutely important (9,9,9)

2 Intermediate value for interphase evaluation (1,2,3)

4 Intermediate value for interphase evaluation (3,4,5)

6 Intermediate value for interphase evaluation (5,6,7)

8 Intermediate value for interphase evaluation (7,8,9)

TABLE 2 Summary of input data and their sources.

Parameter Source

Elevation
USGS Shuttle Radar Topography Mission 

(SRTM) Digital Elevation Model (DEM)

Drainage Density Derived from DEM

Slope Derived from DEM

Topographic Wetness Index 

(TWI)
Derived from DEM

Rainfall Climate Hazards Group Infrared Precipitation 

with Stations (CHIRPS)

Land Use/Land Cover (LULC) ESRI’s Sentinel-2 Landcover Explorer

Normalized Difference 

Vegetation Index (NDVI)
Landsat 8

Soil Type Food and Agriculture Organization (FAO)
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FIGURE 2

Stepwise methodology for FAHP.

TABLE 3 Summarized results of spatial analysis.

Parameter Unit Range

Drainage density m/km2 0.001 to 196.827

Elevation m 0 to 2,496

Slope Degrees 0 to 74

Rainfall mm 4 to 113

Land Use/Land Cover (LULC) Classification Water, Trees, Flooded Vegetation, Crops, Built Areas, Bare Ground, Snow/Ice, Rangeland

Normalized Difference Vegetation Index (NDVI) Dimensionless −0.4 to 0.86

Soil Type Soil Texture Loam, Sandy Loam, and Loamy Sand

Topographic Wetness Index (TWI) Dimensionless −9.3 to 38.5
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FIGURE 3

(A) Drainage Density, (B) Elevation, (C) Slope, (D) Precipitation, (E) Landcover, (F) Topographic Wetness Index. (G) Soil Type, (H) Normalized Difference 
Vegetation Index.
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fuzzy weights were computed. Finally, those Fuzzy weights were 
converted to non-fuzzy weights and normalized (Table 7).

3.3 Flood susceptibility

The flood susceptibility map was created by combining the results 
of the spatial analysis and the normalized values of each parameter 
from the FAHP process. Similar to the study by (Franci et al., 2016), 
the map was divided into seven categories to provide a more readable 
map. These categories were ‘very low’, ‘low’, ‘low to moderate’, 
‘moderate’, ‘moderate to high’, ‘high’, and ‘very high’. The resulting map 
visually represents the varying degrees of flood susceptibility across 
the study area and is presented in Figure 4. This visual representation 

TABLE 4 AHP pairwise matrix for flood contributing factors.

Drainage Slope Elevation Rainfall TWI Landcover Soil 
type

NDVI

Drainage 1 2 2 3 4 4 4 5

Slope 1/2 1 2 3 4 4 5 5

Elevation 1/2 1/2 1 4 4 4 5 5

Rainfall 1/3 1/3 1/4 1 4 3 3 3

TWI 1/4 1/4 1/4 1/4 1 4 2 2

Landcover 1/4 1/4 1/4 1/3 1/4 1 3 2

Soil Type 1/4 1/5 1/5 1/3 1/2 1/3 1 2

NDVI 1/5 1/5 1/5 1/3 1/2 1/2 1/2 1

TABLE 5 AHP weighted values.

Parameter Weighted values

Drainage 0.2609

Slope 0.2248

Elevation 0.2019

Rainfall 0.1136

TWI 0.0722

Landcover 0.0534

Soil type 0.0398

NDVI 0.0333

TABLE 6 Triangular fuzzy numbers.

Drainage Slope Elevation Rainfall TWI Landcover Soil Type NDVI

Drainage (1,1,1) (1,2,3) (1,2,3) (2,3,4) (3,4,5) (3,4,5) (3,4,4) (4,5,6)

Slope (1/3,1/2,1) (1,1,1) (1,2,3) (2,3,4) (3,4,5) (3,4,5) (4,5,6) (4,5,6)

Elevation (1/3,1/2,1) (1/3,1/2,1) (1,1,1) (3,4,5) (3,4,5) (3,4,5) (4,5,6) (4,5,6)

Rainfall (1/4,1/3,1/2) (1/4,1/3,1/2) (1/5,1/4,1/3) (1,1,1) (3,4,5) (2,3,4) (2,3,4) (2,3,4)

TWI (1/5,1/4,1/3) (1/5,1/4,1/3) (1/5,1/4,1/3) (1/5,1/4,1/3) (1,1,1) (3,4,5) (1,2,3) (1,2,3)

LULC (1/5,1/4,1/3) (1/5,1/4,1/3) (1/5,1/4,1/3) (1/4,1/3,1/2) (1/5,1/4,1/3) (1,1,1) (2,3,4) (1,2,3)

Soil Type (1/5,1/4,1/3) (1/6,1/5,1/4) (1/6,1/5,1/4) (1/4,1/3,1/2) (1/3,1/2,1) (1/4,1/3,1/2) (1,1,1) (1,2,3)

NDVI (1/6,1/5,1/4) (1/6,1/5,1/4) (1/6,1/5,1/4) (1/4,1/3,1/2) (1/3,1/2,1) (1/3,1/2,1/1) (1/3,1/2,1) (1,1,1)

TABLE 7 FAHP normalized weights.

Parameter Normalized weighted 
values

Drainage 0.2389

Slope 0.2260

Elevation 0.2018

Rainfall 0.1147

TWI 0.0733

Landcover 0.0571

Soil type 0.0459

NDVI 0.0424
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serves as a powerful tool for decision-makers, emergency responders, 
and urban planners in strategizing effective flood risk mitigation and 
adaptation measures.

The flood susceptibility map was further quantified and 
summarized through an analysis of the spatial distribution of different 
susceptibility classes. The total area that is prone to ‘very low’ flooding 
is around 1,618.25 km2, areas with ‘low’ susceptibility is 3,591.13 km2, 
areas with ‘low to moderate’ susceptibility is 4,322.8 km2, areas with 
‘moderate’ susceptibility is 5,109.69 km2, areas with ‘moderate to high’ 

is 4.081.39 km2, areas with ‘high’ susceptibility is 2,581.97 km2 and 
areas with ‘very high’ susceptibility is 1,121.96 km2.

Table 8 provides a summary, breaking down the study area into 
distinct classes and the associated area per class.

The table highlights the proportional distribution of areas within 
each susceptibility class, offering a quantitative understanding of the 
extent of flood susceptibility within the NEOM region. It also shows 
that NEOM largely falls under areas with various levels of moderate 
susceptibility while extremes, mainly “very low” and “very high” are 
not very prevalent. Moreover, comparing the findings of this study 
with a recent one by Alharbi (2023), it is evident that there is a general 
alignment that NEOM falls largely within the moderate flood 
susceptibility zone albeit in our study there are varying degrees of 
moderate susceptibility.

Observing Figure 3 along with the watershed delineation map 
developed by Abdulalim and El Damaty (2022) (Figure 5), it is evident 
that Wadi Efal, Wadi Ghurr and Wadi Sadar present the highest levels 
of potential flooding and hence urban planners need to take into 
consideration flood-management practices and when designing urban 
layouts in said areas.

With this visual representation into consideration for master 
planning (Figures  3, 4), it is essential to also take note of the 
potential impact that planned urbanization as well as climate 

FIGURE 4

Flood susceptibility map of NEOM.

TABLE 8 Summary of area per category.

Category Area (Km2) Percent coverage

Very low 1,618.25 7.22%

Low 3,591.13 16.01%

Low to moderate 4,322.80 19.27%

Moderate 5,109.69 22.78%

Moderate to high 4,081.39 18.20%

High 2,581.97 11.51%

Very high 1,121.96 5.00%

Total 22,427.18 100%
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FIGURE 5

Neom Watersheds. Source: (Abdulalim and El Damaty, 2022), CC BY 4.0.
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change might have. There is a general consensus that climate 
change is leading to increased weather events both in terms of 
frequency and magnitude (Wang et al., 2023). In addition, rapid 
urbanization, which affects surface characteristics of the landscape, 
thereby leading to changes in LULC, necessitates that these aspects 
be  considered together. Thus, future urban modification plans 
become a necessary prerequisite for assessing future flooding 
(Wang et al., 2023). If action is not taken, urban flooding has the 
potential to cause 20 times the damage by the end of the 21st 
century as a result of climate change (Winsemius et al., 2016).

The potential impact global warming might have on precipitation 
levels in various regions of Saudi Arabia was investigated by Tarawneh 
and Chowdhury (2018) with Tabuk region being among them. In 
their study, the authors developed three scenarios and used a linear 
and Mann–Kendall analysis to determine trends and provide 
potential projections for both temperature and precipitation increase 
in the future. In two of the three scenarios developed, the projections 
showed an increase in precipitation between the years 2025–2044, 
2045–2064, and 2065–2084. Additionally, Wang et  al. (2023) 
developed a model to investigate the potential socio-economic 
impact of urban flooding under climate change scenarios. In their 
study, the authors used information sourced from climate change 
models, urbanization models, historical socioeconomic records, 
climatic data, land utilization patterns, and factors associated 
with flooding.

Despite one scenario from the study by Tarawneh and Chowdhury 
(2018) showing a decrease in precipitation, research in the future 
could be expanded to try and map the potential flood susceptibility 
under various scenarios as a consequence of climate change while 
incorporating potential socio-economic impacts. With current plans 
to develop NEOM into an economic and Tourism hub, it is imperative 
that socio-economic aspects that are tied in with flood vulnerability 
be assessed. Flood-prone areas have special considerations when it 
comes to urban design such as proper allocation and placement of 
stormwater collection points.

4 Conclusion

The present study employed the FAHP methodology in GIS to 
produce a flood susceptibility map for the NEOM region. This 
methodology is extensively employed on a global scale and is 
commonly regarded as one of the most effective methods for this 
objective due to its ability to integrate spatial data from numerous 
sources at a consistent scale. To date, there have been no prior 
investigations that have employed this particular methodology to 
evaluate floods within the designated study area. The FAHP 
methodology was employed to integrate the existing criteria into a 
weighted overlay model implemented in ArcGIS Pro. The findings of 
the investigation indicate that NEOM, in general, is dominated by 
areas with varying degrees of moderate susceptibility to flooding. In 
general, areas with lower elevation and a steeper slope, commonly 
referred to as lowlands, exhibit the highest susceptibility to flooding. 
Conversely, regions characterized by higher elevation and a steep 
slope, known as highlands, demonstrate the lowest levels of flood 

hazard. A notable limitation of this study is the unavailability of 
in-situ and historical flood inventory data for the sake of validation. 
Another limitation is that this study did not incorporate existing 
flood-mitigation measures already available within the study area 
(i.e., culverts). Future research could be refined by incorporating 
in-situ data whenever it becomes available. Moreover, research can 
be  expanded to model future climate change scenarios and 
incorporate future LULC to predict the associated socio-
economic impact.
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