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Impact assessment of green 
infrastructure and urban growth 
on stormwater runoff through 
geospatial modeling
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Kochi city in southern India periodically experiences waterlogging or urban floods 
due to unabated urban growth and extreme rainfall events. This study aims to 
mitigate urban flood hazards through green infrastructure (GI) and its effective 
management. Assessment of storm water runoff (SWR) modeling is carried out in 
four scenarios, viz., baseline, past, severe, and green, using urban growth and GI 
driven simulations. Urban growth modeling and GI suitability analysis are carried 
out using Cellular Automata Markov (CA-Markov) and urban planning guidelines, 
respectively. The study provides insights into how GI influences SWR reduction 
and urban environment conservation, with 16% SWR reduction as compared to 
the baseline scenario and 18% when compared to the severe scenario.
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1 Introduction

Urban flooding is triggered by undesirable modification in land use/ land cover (LULC), 
which is an outcome of rising population, industrialization and encroachment into urban 
drainage systems. It brings life to a standstill while causing enormous damage to urban 
infrastructure and environment. It is intensified by the loss of green spaces and conversion of 
wetlands into buildings, parking lots, roads, etc. Due to these alterations from permeable to 
impermeable surfaces, the infiltration potential of soil decreases and runoff rises at two to six 
times (Ramachandra and Kumar, 2008). The situation gets exacerbated after an extreme rainfall 
event (ERE) overwhelming the capacity of urban drainage system. According to König et al. 
(2002), the urban flooding has following consequences: direct, indirect and social impacts. 
Direct damages are primarily caused by water or water velocity and largely affect buildings and 
their interiors. These damages can range from major structural issues like cracks in foundations, 
etc. to damage to perishable goods. Indirect damages are caused due to irregularities and their 
repercussions, while social consequences contain all the associated long-term negative effects.

Green Infrastructure (GI) is an environment-friendly approach to manage storm water 
runoff (SWR) (Zhang et al., 2015) and defined as an effective system of naturally occurring 
vegetative structures that provides numerous environmental, social, and economic benefits to the 
society (Zhang et al., 2012). It aims to mimic natural surfaces, allowing rainwater to infiltrate the 
ground where it falls and be naturally filtered by soil and vegetation (Goldstein et al., 2004; 
Harlan, 2021). Urban green spaces (UGS) are crucial components of urban environment, which 
are generally emphasized by urban planners based on their abundance and quality (Gupta et al., 
2012). GI utilizes flora, soils, and other elements and practices to restore natural processes which 
are essential to manage water effectively and create healthier cities. They provide flood resilience, 
improved air and water quality, and enhanced aesthetic and recreational values for communities 
(USEPA, 2014). Cities can have a variety of GIs including parks and gardens, roadside greens, 
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railway corridors, derelict sites, etc. These green infrastructures 
significantly impact human well-being by offering valuable ecosystem 
services (Brzoska and SpāĢe, 2020). Sanchez and Govindarajulu (2023) 
observed that widespread urbanization has changed the network of GIs 
that connects existing waterways and water bodies in India’s coastal 
cities. LULC transition in Kochi during the past 15 years was examined 
by Thekkeyil et al. (2023). They discovered that while urban grids are 
getting close to saturation, taking up almost two-thirds of the land with 
urban elements at the expense of green space; the change rates are higher 
in rural regions. Using geospatial data and a multi-criteria decision 
approach, Nandakrishnan and Prasad (2024) conducted risk assessment 
and classified flood risk zones in a low-lying deltaic region. Thirteen 
flood conditioning criteria were utilized to determine the flood risk.

Kim et al. (2017) investigated the impacts of flood on GI health 
using Normalized Difference Vegetation Index (NDVI) derived from 
Moderate Resolution Imaging Spectroradiometer (MODIS) data. The 
results highlighted the importance of GIs in reducing flood risk and 
emphasized the requirement of a greenery index with local and regional 
GI-based land use plans for decision makers. Mobilia et al. (2014) 
carried out a study to analyze the impact of green roofs using rational 
method to assess the adequacy of storm water facility. They reported 
that the installation of green roofs has reduced the SWR by 40–98%. 
Nagarajan and Basil (2014) used geospatial methods in conjunction 
with the Soil Conservation Service Curve Number (SCS-CN) approach 
to evaluate runoff in urbanized zones within the Cochin Corporation 
area. A research by Zimmermann et al. (2016) found that GIs like 
parks, green spaces, and green roofs significantly enhance the essential 
ecosystem services in urban environment. Through a comprehensive 
review of recent studies, Khodadad et  al. (2023) reported the 
importance of GIs to increase urban flood resistance. Chen et al. (2024) 
developed a multi-objective optimization tool for GIs planning and 
their hydrological linkages. Song et al. (2023) quantified the impacts of 
GIs and building resilience in coastal regions that are prone to disasters. 
The runoff reduction impact was highest when the maximum biotope 
area ratio of 30% was applied to artificial ground.

Although the impact of GIs on SWR has been studied previously, a 
comprehensive analysis of the effects of both GIs and urban expansion 
on SWR is still needed. Hence, the present study aims to analyze the 
impact of GIs and urban expansion on SWR based on urban growth 
modeling and GI suitability analysis in parts of Kochi city, India. The city 
frequently experiences the rapid recurrence of waterlogging and/ or 
urban flooding. These are very likely to increase, if nothing is done to 
address the unplanned growth of the city and poor management of 
urban drainage. This study focuses on finding the solution for flood risk 
reduction through increasing GI and management strategies. The 
objectives of the study are to: (a) generate a geodatabase of factors 
influencing the SWR, (b) analyze future urban growth using Cellular 
Automata Markov (CA-Markov) based technique, (c) carry out multi-
criteria based GI suitability analysis as per urban planning guidelines and 
(d) estimate peak runoff for baseline, past, severe and green scenarios.

2 Materials and methods

2.1 Study area

This study is carried out for an urban watershed with a 
geographical area of 400 ha within Kochi city, a major port city in 

southern India. The geographic coordinates of the city fall within 
9°49’N to 10°14’N and 76°10′ E to 76°31′E. Kochi or Cochin is a major 
commercial centre in Kerala province of southern India. It is situated 
on India’s Malabar coast and often referred to as the ‘queen of the 
Arabian sea’. It has long been a preferred hub for South Asian trade 
due to its strategic location between the Arabian sea, the western 
Ghats, and the Alappuzha lagoons. With 6,340 inhabitants per square 
kilometre, Kochi is the most populous city and largest urban 
agglomeration in Kerala (Chandramouli, 2011).

Kochi and the surrounding areas have a tropical climate, with 
average daily temperature ranging from 23°C to 34°C all year round. 
The annual average rainfall is 3,015 mm with an annual average of 
124 rainy days. Kochi city frequently gets affected by the flood as 
reported in the recent years. In 2018, Kerala received heavy rainfall 
which is 116 percent severe than the normal monsoon, and has also 
resulted into landslides and the worst floods in a century, killing over 
480 people and incurring property damage to the tune of Indian 
Rupees 4 lakh crore (Kerala: Three years and the ravages of climate 
change, 2021). Strong depression systems during the 2019 monsoon 
also produced heavy rains, which led to catastrophic flooding that 
killed 121 people, directly impacted over 200,000 people, completely 
destroyed 1,789 dwellings, and partially damaged 14,524 homes 
(Kerala Floods 2019: 121 dead, 1,789 Houses Collapsed, 2019). 
Similarly, in November 2021, the Kerala state received 394.1 mm 
rainfall against the normal of 153.3 mm, i.e., an excess of 157% 
according to India Meteorological Department (IMD) (Record 
rainfall for November in Kerala this year, 2021).

The average elevation in city varies from less than 1 m above mean 
sea level (MSL) toward west and 7 m above MSL toward the eastern 
fringes (Sowmya et  al., 2015). The soils of this region is broadly 
categorized into two categories as alluvial and lateritic. The central city, 
with flat terrain and low altitude, is interspersed with a network of canals 
that links to backwater. The city’s secondary canals serve as natural 
floodwater drainages, but are now severely clogged due to excessive silt 
and waste dumping. Several water bodies in the city are dwindling 
because of increasing urbanization and inefficient waste disposal system. 
Untreated sewage from industries and households is polluting the 
Periyar River, leading to water scarcity in the summer season 
(Shrivastava, 2016). Figure 1 shows the location map of study area.

2.2 Data used

The following datasets have been used in this study: (a) High-
resolution Google Earth, (b) Moderate resolution Landsat-8, (c) 
Digital Elevation Model (DEM), (d) Three-hourly precipitation, and 
(e) Population data. The list of data, utilized in the present study is 
given in Table 1.

2.3 Methodology

In this study, four scenarios, i.e., baseline, past, severe, and 
green, are developed to assess their impact on peak runoff. The 
baseline, past, and severe scenarios refer to runoff characteristics 
that are predicted through LULC and urban growth modeling for 
the years 2020, 2005 and 2035, respectively. The severe scenario 
is modeled using CA-Markov-based urban growth modeling for 
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the year 2035. The green scenario is developed using suitability 
analysis and urban planning guidelines for Cochin City (Model 
Building Bye-Laws, 2016). Initially, a micro-watershed within 
Kochi city is delineated and the LULC maps are prepared for the 
years 2005 and 2020 using Object-based Image Analysis (OBIA) 
and contextual classification technique. Image segmentation 
method was followed with eCognition software for OBIA based 
image classification. Using the Gumbel probability distribution 
model of Generalized Extreme Value (GEV), the rainfall 
intensities for 3-h, 6-h, 12-h, and 24-h duration are estimated 
from intensity–duration–frequency (IDF) curves and peak 
runoff for all the four scenarios are derived by applying the 

rational method. Figure  2 shows the overall methodology 
followed for analyzing the effects of urban growth and GI on 
urban SWR.

 a LULC classification: OBIA involves categorization of pixels 
into objects or segments based on their spatial relationship to 
the surrounding pixels, and with spatial contiguity of pixels of 
similar texture, color, and tone (Walsh et  al., 2008). LULC 
characteristics of the study area were identified using the OBIA 
approach. Initially, the image was segmented into vector 
objects using multiresolution segmentation. Next, the 
representative segments for each LULC class were selected, and 

FIGURE 1

Location map of study area.

TABLE 1 Data used in the study.

Sl. No. Data Source Spatial 
resolution

Use Remarks

1 Multispectral Google Earth data of two time period (2005 and 

2020)

More than 1 m LULC -

2 Multispectral Landsat-8 data in Visible, Near Infrared Band 

(NIR) and Short-wave infrared (SWIR) bands

30 m United States Geological Survey (USGS) earth 

explorer (Explorer, 2024)

3 Digital 

Elevation 

Model

Advanced Land Observing Satellite (ALOS) 

Phased Array L-band Synthetic Aperture Radar 

(PALSAR)

12.5 m Slope and 

watershed

Alaska Satellite facility (Alaska Data Search 

Vertex, 2024)

4 Rainfall Near real-time (3B42RT) 3-hourly precipitation 

data for the past 20 years of Tropical Rainfall 

Measuring Mission (TRMM) - Multi-Satellite 

Precipitation Analysis (TMPA)

Intensity-Duration-

Frequency (IDF) 

curve

Goddard Earth Sciences Data and Information 

Services Centre (https://www.earthdata.nasa.

gov/centers/gesdisc-daac)

5 Population Census of India Population Chandramouli (2011)
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the image was classified into 13 LULC classes using the nearest 
neighborhood technique.

 b Rainfall analysis: IDF curve represents the mathematical 
relationship between return period, rainfall duration, and 
intensity. It predicts the likelihood that a specific average 
rainfall will occur during the given timeframe (Sun et  al., 
2019). Maximum rainfall and floods are the extreme random 
hydrological variables, which are often described using the 
Extreme Value (EV) distribution model. Gumbel probability 
distribution model is a popular, asymmetric Type-1 EV model 
(Equation 1), which models maximum and minimum rainfall, 
and has been used in this study. The 3-hourly precipitation data 
for the past 20 years were sourced from Goddard Earth 
Sciences Data and Information Services Centre and near real-
time (3B42RT) data of Multi-Satellite Precipitation Analysis 
(TMPA) from Tropical Rainfall Measuring Mission (TRMM) 
(NASA EOSDIS Distributed Active Archive Centers (DAACs), 
2024) for IDF curve generation. Equation 1 defines the value 
of design rainfall corresponding to ‘T’ years return period.

 T TX X K S= +  (1)

Where, TX  is rainfall for return period T, X  is mean of 
observations, S denotes the standard deviation of observations, and 

TK  (Equation 2) is frequency factor associated with return period 
T. TK  factor is further defined as given in Equation 2.

 

6 0.5772 ln ln
1T

TK
Tπ=

   − +   −     
(2)

The 3-hourly rainfall data from TRMM 3B42 RT satellite for the 
past 20 years were aggregated as 6-hourly, 12-hourly, and 24-hourly 
rainfall data. Using the Gumbel probability distribution model, the 
IDF curve was generated to analyze the rainfall intensities.

 a Peak runoff Analysis: The rational method, which is initially 
proposed by Kuichling (1889) for peak runoff estimation has 
been used in this study. The rational method-based runoff 
coefficient for various LULC in the study area was drawn from 
the literature (Thanapura et al., 2007). The method is defined 
as Equation 3:

 

1
360

Q C i A = ∗ ∗ ∗ 
   

(3)

Where, Q is peak runoff (m3/s), C is runoff coefficient, ‘i’ denotes 
rainfall intensity (mm/h.), and A is area of watershed (hectare). The 
runoff coefficient (C) is 0 for impervious surfaces and 1 for pervious 
areas (Kuichling, 1889), which signifies that percentage of rainfall 
becoming runoff is proportional to the impervious surface percentage 
within watershed. The composite runoff coefficient is computed as 
follows (Equation 4):

 

1

1

n
i ii

n
ii

C A
C

A
=

=

=
∑
∑  

(4)

Where, C is composite runoff coefficient, ‘i’ is sub-area (with 
particular LULC), iC  is runoff coefficient for the given LULC, and iA  
is area of watershed.

FIGURE 2

Overall methodology for analyzing the effects of urban growth and GIs on urban SWR.
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Visual Basic (VB) language in the ArcGIS platform was used for 
the generation of CN map using thematic layers of hydrologic soil 
group and LULC maps.

 b Urban growth modeling: Markov chain method is one of the 
popular approaches for LULC computation that uses the past 
trends to predict the probability of a LULC change. It predicts 
the likelihood of land use changes for a future “t + 1” time 
using the progression from “t-1” to “t” (Wang et al., 2021). The 
probabilities obtained from past changes are utilized to forecast 
future changes. Markov chain method (Boerner et al., 1996) is 
described as follows (Equation 5):

 ( ) ( )1 ijS t P S t+ = ∗  (5)

Where, ( )1S t + is status of cell at a time t + 1, ijP  is transitional 
probability matrix, and ( )S t  is status of cell at the time t.

Cellular Automata (CA) incorporates the spatial component, 
while adding direction to the spatial modeling using a combination of 
methods such as Markov Chain, Multi-Criteria Evaluation (MCE), 
Multi-Objective Land Allocation (MOLA), etc. (Mondal et al., 2020). 
In the present study, CA-Markov analysis was carried out as a three-
step process. The first step includes the determination of transition 
through spatial overlay analysis of LULC images from 2005 and 2020, 
wherein the transition probability matrix and transfer areas are 
estimated. The second step includes the determination of CA filters 
based on standard kernel size. The standard 5*5 kernel size used in the 
study allowed for gains in individual categories to occur in close 
proximity to pre-existing categories. The third step is determining the 
starting point and the number of CA iterations required, where the 
LULC image of 2020 is taken as a starting point and 15 iterations were 
carried out to simulate the LULC for the year 2035. IDRISI software 
was used for predicting urban growth.

Five parameters were used as driving factors in the urban growth 
modeling process: (a) Distance from roads, (b) Distance from high-
density residential areas, (c) Distance from medium-density residential 
areas, (d) Distance from low-density residential areas, and (e) Slope. 
The distance from road and residential areas were estimated using 
Euclidian distance tool, while the slope percentage was estimated from 
DEM. In the distance from road and residential layers, the 0–500 m, 
500 m - 1000 m and 1,000 m - 1500 m buffers were considered as 
highly suitable, moderately suitable and marginally suitable, 
respectively for LULC conversion. In the slope layer, 0–3, 3–9% and 
9–15% classes were considered as highly suitable, moderately suitable 
and marginally suitable areas, respectively for LULC conversion. 
Above criteria were built based on ground evidence and interactions 
with field officials. The underlying assumption for urban growth 
within residential areas is that the density of built-up areas follows a 
steady transition, where low-density built-up gradually converts to 
medium-density and medium-density gets converted into high-
density based on various urban growth indicators. However, any 
change in Government policy or interventions by an individuals or 
institutions could either interrupt or accelerate the ongoing 
urbanization processes.

 a LULC scenarios: LULC change is one among the key indicators 
used to assess how urbanization affects runoff in the planning 

region. In the present study, initially, a ‘Baseline Scenario’ 
(Scenario-1) is generated which considers the LULC of the year 
2020. LULC classes were defined by OBIA classification and 
then runoff coefficients were assigned to each LULC class. 
Similarly, a ‘Past Scenario’ (Scenario-2) was defined based on 
LULC classes for the year 2005. Scenario-3, the ‘Severe 
Scenario’, which considers the future LULC for the year 2035, 
has also been analyzed where the LULC classes were predicted 
by CA-Markov modeling. The Scenario-4, the ‘Green Scenario’ 
was developed by identifying the suitable areas for GI according 
to the “Model Building Bye-Laws, 2016” by the Greater Cochin 
Development Authority (Model Building Bye-Laws, 2016), 
which recommends that 30% of the residential areas and 20% 
of vacant land can be converted into GI to maintain the city’s 
green environment. Five criteria were considered for GI 
suitability analysis, namely (i) Modified Normalized Difference 
Impervious Surface Index (MNDISI), (ii) Distance from 
waterbody, (iii) Slope, (iv) Distance from road, and (v) Distance 
from residential areas. MNDISI represents the percentage of 
impervious surface present within study area.

2.3.1 GI suitability analysis
GI suitability analysis was carried out using the Analytic Hierarchy 

Process (AHP) (Saaty, 1994) to identify suitable areas for UGS. Initially, 
a GIS database was developed with five parameters, namely, distance 
from roads, distance from water bodies, distance from residential 
areas, slope and MNDISI layers. The distance from roads, distance 
from water bodies, distance from residential areas were prepared from 
high-resolution satellite images and using buffer distance tool; the 
slope and MNDISI layer were generated from ALOS PALSAR DEM 
and Landsat-8 satellite image, respectively. The criteria maps were 
classified into five suitability classes, namely, (i) Suitability class-1: 
highly suitable, (ii) Suitability class-2: moderately suitable, (iii) 
Suitability class-3: marginally suitable, (iv) Unsuitable class-1: 
marginally not suitable and (v) Unsuitable class-2: least suitable. AHP 
table was prepared and suitable areas for GI were identified for the 
assessment of green scenario using ArcGIS software. Figure 3 shows 
the overall methodology for GI suitability analysis.

Normalized Difference Impervious Surface Index (NDISI) 
method proposed by Xu (2010) uses Visible, Near-Infrared (NIR), 
Thermal Infrared (TIR), and Shortwave Infrared (SWIR) bands 
(Equation 6):

 

( )
( )

1 1 / 3
1 1 / 3

TIR VIS NIR SWIR
NDISI

TIR VIS NIR SWIR
− + +

=
+ + +  

(6)

Where Landsat Enhanced Thematic Mapper (ETM) bands 4, 5, 
and 6 are NIR, SWIR1, and TIR bands, respectively; while the visible 
band (VIS1) is one of the ETM bands 1, 2, or 3. NDISI can range 
between −1 and + 1. The above equation is adjusted to generate 
MNDISI for defining impervious surfaces from background 
characteristics (Sun et al., 2017) as given in Equation 7. MNDISI is 
utilized in this study to assess the imperviousness of built-up surfaces 
and UGS suitability analysis.

 

( )
( )

1 / 3
1 / 3

TIR MNDWI NIR SWIR
MNDISI

TIR MNDWI NIR SWIR
− + +

=
+ + +  

(7)
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Where, Modified Normalized Difference Water Index (MNDWI) 
is computed as given in Equation 8.

 
1
1

Green SWIRMNDWI
Greeen SWIR

−
=

+  
(8)

AHP method was used for the multi-criteria evaluation 
(MCE) of green scenarios. In the AHP method, the consistency 
ratio (CR) aids to determine whether the evaluation is sufficiently 
consistent. The maximum acceptable threshold of CR is 10% and 
if it is not met, the adjustments are made to ensure consistency. In 
the present study, the CR of AHP table was estimated as 0.003, 
which is within the acceptable range as defined by Saaty and 
Tran (2007).

3 Results & discussion

3.1 Temporal LULC

3.1.1 Baseline (2005) and past (2020) scenario
In the present study, the LULC maps were prepared for the 

years 2005 and 2020 with thirteen classes as per Atal Mission for 
Rejuvenation and Urban Transformation (AMRUT) Design and 
Standards (MoUD, 2016) using the OBIA method and followed by 
contextual refinement. From this analysis, it is deduced that 
percentage of UGS within the city have reduced from 50% in 2005 
to 36% in 2020. The impervious areas had a significant increase 
during this period as the area under apartments have increased 
from 0.65% (2005) to 2.8% (2020), roads from 3.77% (2005) to 
4.68% in (2020), high density residential from 21.46% (2005) to 
30.96% (2020), and medium density residential from 9.22% (2005) 

to 13.94% (2020). Figure  4 shows the LULC for years 2005 
and 2020.

3.1.2 Severe scenario
‘Severe Scenario’ was developed based on urban growth 

modeling principles with an understanding that if ‘business as usual’ 
continues then unregulated urbanization will further affect the UGS, 
vacant lands, water bodies, etc. Hence, CA-Markov based urban 
growth modeling was carried out with LULC data of year 2005 and 
2020 as past trends and projections have been made for the year 
2035. Figure 5 shows various parameters used for urban growth 
modeling (Figures 5A–6E) and the projected LULC for the year 2035 
(Figure 5F). The comparison between LULC-2020 and LULC-2035 
shows a further decrease in UGS to 34% of the study area. The 
built-up classes have shown further increase such as apartments 
from 2.83 to 3.57%, high-density residential areas from 21.46 to 
30.96%, and medium-density residential from 13.94 to 14.1%. 
Similarly, the grassland and tree-clad area, vacant land and water 
bodies are predicted to decrease further in subsequent years. During 
year 2020 to 2035, the UGS (grass and tree-clad area) has further 
decreased to 34%; high-density residential area has increased from 
33.7 to 35.4%, while medium-density residential area has increased 
from 13.9 to 14.1%. Table 2 shows the geographic area under various 
LULC classes for the years 2005 and 2020 and the projected LULC 
for the year 2035.

3.1.3 Green scenario
The green scenario was built based on LULC characteristics of 

the study area. MCE-based evaluation of various parameters, 
namely, (i) MNDISI, (ii) distance from water bodies, (iii) slope, (iv) 
distance from roads, and (v) distance from residential areas were 
considered for green scenario prediction. These GIS layers were used 

FIGURE 3

Methodology for GI suitability analysis.
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to prepare GI suitability map. The weights for each criterion were 
determined based on MCE evaluation. Table 3 shows the results 
obtained from AHP-based MCE analysis and UGS suitability 
analysis. The weights are assigned to each criteria layer based on 
MCE analysis viz., MNDISI (48%), distance from road (29%), 
distance from residential areas (11%), distance from water body 
(7%), and slope (5%). To derive the UGS suitability map, a weighted 
overlay of the input parameters was carried out. The final suitability 
map is classified into five classes and is assigned the ranking as (i) 
Suitability class-1: highly suitable, (ii) Suitability class-2: moderately 
suitable, (iii) Suitability class-3: marginally suitable, (iv) Unsuitable 
class-1: marginally not suitable and (v) Unsuitable class-2: 
least suitable.

Three green scenarios were developed to enhance the green spaces 
according to “Model Building Bye-Laws” (Model Building Bye-Laws, 
2016). Figure  6 shows various parameters used for GI suitability 
analysis and UGS suitability map. Figure 7 shows the MCE based GI 
suitability analysis and the result obtained are as follows: (a) Green 
scenario-1: vacant land falling in the suitability class-1 is selected as 
most suitable area for the creation of GI. Accordingly, 16% of vacant 
land falls in the suitability class-1, (b) Green scenario-2: vacant land 
falling in suitability class-2 is considered as suitable places for GI. The 
result showed that 33% of vacant land are falling under suitability 
class-2, and (c) Green scenario-3: It is created with LULC classes of 
vacant land falling in the suitability class-3. The result showed that 
36.4% of vacant land falls under green scenario-3.

3.2 Peak runoff estimation

The peak runoff for various scenarios was estimated using the 
rational method (Table 4). The composite runoff coefficient for various 
scenario was estimated and multiplied with rainfall intensities and 
area of the watershed as per rational method.

 • Past scenario: Based on the LULC map for 2005, the 
composite runoff coefficient computed for the past scenario 
is 0.320 and the peak runoff is computed for the return period 
of 2-year, 5-year, 10-year, 30-year, 50-year, and 100-year 
return periods and the rainfall durations of 3-h, 6-h, 12-h, 
and 24-h.

 • Baseline scenario: LULC map of the year 2020 served as 
baseline year and the composite runoff coefficient is computed 
as 0.407. ‘Baseline scenario’ driven peak runoff is computed for 
3-h, 6-h, 12-h, and 24-h storm events for the 2-year, 5-year, 
10-year, 30-year, 50-year, and 100-year return periods. In 
comparison to the ‘Past scenario’, the peak runoff computed for 
the baseline scenario showed a significant increase due to 
increased impervious surfaces and decreased water bodies and 
green spaces, and consequently, the composite runoff coefficient 
has increased from 0.320 to 0.407. Under this scenario, the peak 
runoff has significantly increased, e.g., peak runoff has increased 
from 6.15 cumecs to 7.82 cumecs for a 3-h rainfall event and for 
the return period of 2-year, which has increased the flood risk 

FIGURE 4

LULC for years 2005 and 2020.
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in the baseline scenario by 27% as compared to the 
‘Past Scenario’.

 • Severe Scenario: Peak runoff is computed to predict the SWR 
for the ‘severe scenario’ based on projected LULC for the year 
2035 prepared through CA-Markov modeling. The estimated 
runoff coefficient for the severe scenario is 0.414. The composite 
runoff coefficient computed has increased from 0.407 (baseline 
scenario) to 0.414. In comparison to the peak runoff estimated 
for the baseline scenario for 3-h rainfall events with a 2-year 
return period, the peak runoff has increased from 7.82 cumecs 
to 7.93 cumecs, which increases the risk of flooding by 29% for 
3-hourly rainfall event.

 • Green Scenario: The green scenario is generated based on LULC 
and green spaces suitability maps. Model Building Bye-Laws 
(2016) states that 30% of the residential area and 20% of vacant 
land can be transformed into UGS in the city. It is observed that 
by increasing the green spaces according to above guidelines can 
reduce the peak runoff. The computed composite runoff 
coefficient for the ‘Green scenario-1’ is 0.352. In comparison to 
the baseline and severe scenarios, green scenario has shown a 
significant decrease in the peak runoff. In the green scenario, the 
computed peak runoff using the rational method has reduced 
from 7.82 cumecs to 6.81 cumecs, while in comparison to baseline 
scenario, it has decreased from 7.93 cumecs to 6.81 cumecs.

4 Discussion

Rapid urbanization processes have altered the urban 
hydrological characteristics of Cochi city alike to other coastal 
cities in India and other parts of the world. In this study, the LULC 
transition in Kochi city during 15 years (2005–2020) was 
examined using high-resolution satellite data to assess the impact 
of urbanization on peak runoff. In this process, the LULC 
characteristics of study area were examined using OBIA approach. 
The growth prediction of urban surfaces was analyzed using 
CA-Markov based technique. Verburg et al. (2004) classified the 
probable driving factors for urban expansion into five broad 
categories viz., environmental characteristics, social factors, 
spatial neighborhood variables, economic factors, and spatial 
policies. In this study, urban growth modeling principles were 
followed with an understanding that if ‘business as usual’ 
continues then unregulated urbanization will further affect the 
UGS, vacant lands, water bodies, etc. Accordingly, five parameters 
were considered as driving factors in the urban growth modeling 
process: (a) Distance from roads, (b) Distance from high-density 
residential areas, (c) Distance from medium-density residential 
areas, (d) Distance from low-density residential areas, and (e) 
Slope. The underlying assumption for urban growth modeling as 
followed in this study was also that the density of built-up areas 

FIGURE 5

Parameters used for urban growth modelling and the projected LULC: (a) density from low density residential, (b) distance from high density 
residential, (c) distance from medium density residential, (d) distance from road, (e) slope, and (f) projected LULC.
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follows a steady transition, where the low-density built-up 
gradually converts to medium-density and medium-density gets 
converted into high-density based on various urban growth 

indicators. However, any change in Government policies or 
interventions by an individuals or institutions could either 
interrupt or accelerate the ongoing urbanization processes.

Assessment of storm water runoff (SWR) was carried out in 
four scenarios, i.e., baseline, past, severe, and green, using urban 
growth and GI driven simulations. The ‘baseline scenario’ 
considered the LULC of the year 2020, ‘past Scenario’ was defined 
based on LULC classes for the year 2005. Scenario-3, the ‘severe 
scenario’, which considered future LULC for the year 2035, has 
also been analyzed where the LULC classes were predicted by 
CA-Markov modeling. Scenario-4, the ‘Green Scenario’ was 
developed by identifying the suitable areas for GI according to 
“Model Building Bye-Laws” (Model Building Bye-Laws, 2016), 
which recommends that 30% of residential areas and 20% of 
vacant land can be  converted into GI to maintain the city’s 
green environment.

The decline in UGS surfaces is observed in this study from 
50% in 2005 to 36% in 2020 and to 34% as per predicted LULC 
for the year 2035. The importance of GIS-based analyses is 
emphasized in several studies which encompasses the multi-
scalar aspects of GIs and as the nature-based solutions are still 
not mainstreamed in planning and governing practices of global 
cities (Yazar et al., 2023). Hence, in order to promote the UGS 
and improve the hydrological regime of urbanized surfaces, 
multi-criteria based GI suitability analyses was carried out in this 

FIGURE 6

Various parameters used for UGI suitability analysis and UGS suitability map: (a) NDISI, (b) distance from road, (c) slope, (d) distance from high density 
residential, (e) distance from waterbody and (f) UGS suitability map.

TABLE 2 Area under various LULC classes.

S. 
No.

LULC Class Area (%) in different years

2005 2020 2035 
(Projected)

1 Apartment 0.65 2.83 3.57

2 Road 3.77 4.68 4.68

3 Commercial 0.74 0.9 0.91

4 High density residential 21.46 30.96 31.62

5 Grass 8.74 4.25 4.01

6 Play ground 0.48 0.92 0.92

7 Low-density residential 6.4 6.54 6.39

8 Medium density residential 9.22 13.94 14.01

9 Park/cemetery 0.04 0.13 0.13

10 Stadium 0.06 0.13 0.12

11 Vacant land 3.81 2.16 2.04

12 Water body 3.21 0.86 0.72

13 Tree clad area 41.43 31.7 30.88
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study. Five criteria were considered for GI suitability analysis, 
namely (i) Modified Normalized Difference Impervious Surface 
Index (MNDISI), (ii) Distance from waterbody, (iii) Slope, (iv) 
Distance from road, and (v) Distance from residential areas. 
MNDISI represents the percentage of impervious surface present 
within study area. The study indicates that 16% (7.82 cumecs to 
6.81 cumecs) reduction in peak runoff is estimated as compared 
to baseline scenario and 18% (7.93 cumecs to 6.81 cumecs) 
reduction in peak runoff is estimated as compared to 
severe scenario.

Li et al. (2020) evaluated the impact of existing GIs in Ghent, 
Belgium to reduce SWR. The results showed forests had the least 
impact on SWR reduction, whereas grasslands have the highest. 
The implementation potential of GIs in urban neighborhoods was 
evaluated by Uribe et  al. (2022). They emphasized that the 
implementation of permeable pavement, infiltration trenches, and 
street planters reduced SWR the most in residential areas, whereas 
only permeable pavements had the capacity to significantly reduce 

runoff in industrial regions. Our study however, has not 
considered the impact of different types of GIs on SWR reduction. 
While city managers and environmentalists stress the importance 
of GIs in a typical urban setting; the population growth and the 
growing needs of local population lead to “infill,” which raises the 
built environment’s density and “extension” to the nearby 
countryside. The hydrological impact of increasing imperviousness 
is mostly disregarded by such urban expansion. Therefore, this 
study aimed to analyze the impact of both GIs and urban 
expansion on SWR based on urban growth modeling and GI 
suitability analysis.

5 Conclusion

This study utilized remote sensing data to derive runoff 
coefficients for various scenarios to assess the impact of improving 
UGS in Cochin City to mitigate the urban flood risks. The green 

TABLE 3 Results obtained from AHP based MCE analysis.

Criteria MNDISI Distance 
from water 

body

Slope Distance 
from 
road

Distance 
from 

residential

Total Average Consistency 
measure

MNDISI 0.54 0.65 0.44 0.42 0.4 2.46 0.48 5.33

Distance from road 0.18 0.22 0.33 0.36 0.35 1.44 0.29 5.18

Distance from residential 0.14 0.07 0.11 0.12 0.1 0.54 0.11 5.10

Distance from waterbody 0.08 0.04 0.06 0.06 0.1 0.33 0.07 5.02

Slope 0.07 0.03 0.06 0.03 0.05 0.23 0.05 5.03

FIGURE 7

MCE based GI suitability analysis: (A) Green scenario-1, (B) Green scenario-2, (C) Green scenario-3.
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scenario is developed based on “Model Building Bye-Laws (2016)” 
recommended by the Greater Cochin Development Authority. 
The past scenario and baseline scenarios, generated from LULC 
maps of years 2005 and 2020, respectively showed the reduction 
of UGS from 50 to 36%. Further, the severe scenario generated 
from the projected LULC for the year 2035 predicts a further 
decrease in the UGS to 34%. Rational method-based estimation 
of peak runoff showed the increase of peak runoff in baseline and 
severe scenarios. In comparison to the past scenario, the peak 
runoff has increased by 27% in baseline scenario and 29% in the 
severe scenario. To mitigate the urban flood risk, the study 
proposed a green scenario, which focuses on increasing the GI in 
the study area to reduce the peak runoff and consequently the 
urban flood risk. The findings show a 16% reduction in peak 
runoff compared to the baseline and 18% reduction when 
compared to the severe scenario.

The human beings and the nature are together responsible for the 
flood tribulations in urban surfaces. The recent floods in Kochi City 
and other neighboring districts of Kerala, India have accelerated the 
need for its scientific understanding to improve physical and social 
resilience. Thorough knowledge of LULC and flood duration is 
essential for effective planning and management of flood-prone areas. 
The findings of this study depict the relationship of peak runoff and 
LULC characteristics and also suggest for reducing the urban flood risk 
through GIs which can be a valuable tool to planners, water managers, 
and policymakers to take appropriate measures. The implementation 
of GI through government plans and policies, and people’s participation 
for effective urban SWR management shall help in improved resilience 
of the city toward urban flood risks. Further studies can be carried out 
to find the type of GIs which can be promoted within study area. The 
immediate need is to identify the vulnerable zones based on the 

location of water bodies, natural drains, etc. and it has to be made as 
“no building zones.” Moreover, awareness has to be created through 
campaigns at the local level about the causative factors for the flood 
disasters. The wide range of management will help the Cochin city to 
be relieved from the risk of flood at every monsoon.
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TABLE 4 Runoff (cumecs) for various scenarios and varying return periods.

Scenarios Duration (hr.) Return Period

2-yr 5-yr 10-yr 30-yr 50-yr 100-yr

Past

(2005)

3 6.15 7.88 9.02 10.75 11.54 12.61

6 3.21 3.93 4.41 5.14 5.47 5.92

12 1.6 1.97 2.21 2.57 2.74 2.96

24 0.8 0.98 1.1 1.28 1.37 1.48

Baseline

(2020)

3 7.82 10.02 11.48 13.68 14.68 16.04

6 4.08 5 5.62 6.54 6.96 7.53

12 2.04 2.5 2.81 3.27 3.48 3.77

24 1.02 1.25 1.4 1.63 1.74 1.88

Severe

(2035)

3 7.93 10.18 11.67 13.9 14.92 16.3

6 4.14 5.08 5.71 6.64 7.07 7.65

12 2.07 2.54 2.85 3.32 3.54 3.83

24 1.04 1.27 1.43 1.66 1.77 1.91

Green

3 6.81 8.57 9.82 11.7 12.56 13.72

6 3.49 4.28 4.8 5.59 5.95 6.44

12 1.74 2.14 2.4 2.8 2.98 3.22

24 0.87 1.07 1.2 1.4 1.49 1.61
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