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Groundwater is essential for sustaining human life and ecosystems as a freshwater 
resource. However, intensive groundwater pumping (GWP) can deplete groundwater 
levels, and exacerbate issues such as sea-level rise and saltwater intrusion in coastal 
areas, further affecting the availability and accessibility of groundwater. To address 
these challenges, accurate monitoring and modeling of water table depth (WTD), 
a key indicator of groundwater storage, is useful for sustainable groundwater 
management. This work studies the implementation of a regression-enhanced 
random forest (RERF) model to predict WTD anomalies with pumping as a major 
input for New Jersey, a coastal state in the United States. The predicted WTD 
anomalies align well with observations, with a test Nash-Sutcliffe Efficiency (NSE) 
of 0.49, a test Pearson correlation coefficient (r) of 0.72, and a test root-squared 
mean error (RMSE) of 1.61 m. Based on a permutation feature importance, the 
most important input variables in the model for predicting WTD anomalies were 
long-term mean WTD, precipitation minus evapotranspiration (PME), and GWP. 
Using the trained RERF model, we generated 90 m spatial resolution WTD anomaly 
maps for New Jersey for January and July 2015, showing areas of increasing and 
decreasing WTD. We then inverted the RERF model to predict GWP using WTD 
anomalies, land cover, and a cross metric as additional inputs. This approach 
was less effective, yielding a test NSE of 0.40, a test r of 0.65, and a test RMSE of 
15.44 million liters/month. A permutation feature importance revealed the most 
important input variables to be PME, long-term mean WTD, and topographic 
slope. Again we generated 90 m GWP maps for New Jersey for January and 
July 2015, offering finer resolution than the previous maps at the subwatershed 
level. Focusing on New Jersey, the study provides insights into the relationship 
between WTD anomalies and its critical input variables including GWP in coastal 
areas. Moreover, significant gaps in WTD observations persist in New Jersey, 
highlighting the need for comprehensive monitoring efforts. Thus, by employing 
ML techniques and leveraging available data, this study contributes to improving 
groundwater management practices and informing future decision-making.
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1 Introduction

Groundwater is a critical natural resource for sustaining human 
life and ecosystems as a freshwater source. Shallow groundwater can 
impact land surface dynamics in various ways, especially during dry 
periods, by supplying baseflow to rivers and lakes, sustaining aquatic 
ecosystems, and providing root-zone soil water, which helps plants 
with photosynthetic production (Scanlon et al., 2023). Groundwater 
accessibility and availability are typically studied through water table 
depth (WTD), the distance between the upper surface of saturated 
aquifers, and the surface of the ground (Kollet and Maxwell, 2008). 
Thus, monitoring and recording WTD is crucial for sustainable 
groundwater management.

Groundwater depletion, referred to as the long-term increase in 
WTD, is a serious issue worldwide (Konikow and Kendy, 2005; 
Rodell et al., 2018; Rodell and Reager, 2023). In addition to climate 
change (Green et al., 2011), unsustainable groundwater pumping 
(GWP) is a major cause of groundwater depletion (de Graaf et al., 
2019; Jasechko et  al., 2024). In coastal areas, intensive GWP 
contributes to sea level rise, ultimately resulting in groundwater 
inundation and saltwater intrusion (Jasechko et al., 2020; Han and 
Currell, 2022; Peters et al., 2022; van Engelen et al., 2022; Kuang et al., 
2024). Therefore, it is important to improve the regulation of 
GWP. However, the biggest challenge to effectively managing and 
mitigating groundwater depletion is the limited availability of 
groundwater measurements including WTD and GWP records. 
Insufficient monitoring of groundwater is a problem even in 
developed countries because of little funding and investments in the 
equipment installations and maintenance. The way groundwater 
monitoring is fragmented also leads to inconsistent data collection 
methods and difficulties in sharing data between groups (Taylor and 
Alley, 2001).

Machine Learning (ML) approaches have recently emerged as an 
effective method for groundwater resource modeling (Tao et al., 2022). 
The appeal of ML models lies in their ability to rapidly predict 
groundwater data (e.g., WTD) after proper training, potentially 
reducing the need for an in-depth understanding of the underlying 
topographical and hydro-geophysical parameters (Ahmadi et  al., 
2022; Tao et al., 2022). Due to their comparable accuracy to physically-
based numerical methods and much lower computational cost, ML 
models have become a common alternative to traditional physically-
based hydrological models, especially for fast decision making. ML 
have been successfully applied to karst spring discharge simulation 
(De Filippi et al., 2024; Pölz et al., 2024), groundwater level forecasting 
(Boo et al., 2024), groundwater quality estimation (Che Nordin et al., 
2021), as well as groundwater salinization modeling (Sarkar et al., 
2024). As a popular use of ML in groundwater resource modeling, past 
studies have used a multitude of ML techniques for predicting 
groundwater levels or WTD, ranging from deep neural networks such 
as Long Short-Term Memory networks (Ma et al., 2021, 2022; Vu 
et al., 2021) and convolutional neural networks (Wunsch et al., 2022), 
simple feedforward neural networks (also called multilayer 
perceptrons) (Sun, 2013; Gholami et al., 2015), to tree-based ensemble 
learning methods such as random forest (RF) models (Sahoo et al., 
2018). Various datasets have been utilized, including simulation 
results, in-situ measurements, and remotely sensed data. Nevertheless, 
GWP has barely been considered in ML models due to the lack of 
long-term records.

While many studies have proven the effectiveness of using 
neural networks for WTD or groundwater level prediction, tree-
based ensemble learning methods present several benefits over 
them when training data is limited. In comparison with neural 
networks, tree-based models have a relatively simple architecture 
with a smaller number of hyperparameters to tune, thus requiring 
less training data (Ma et al., 2024). In addition, tree-based models 
do not need excessive input manipulation (e.g., data 
normalization), so comparatively little time is invested in input 
data preprocessing, one of the most important and time-
consuming steps in ML model construction. Above all, tree-based 
models provide feature importance, allowing for an easier 
understanding of their decision-making process (Breiman, 2001; 
Müller and Guido, 2017). Yet, traditional tree-based models face 
the extrapolation issue, and they cannot detect trends to infer 
values beyond the training set (Zhang et al., 2019). As a result, they 
are less frequently applied in regression problems such as WTD or 
groundwater level prediction.

Here we used a variant of the RF model, a regression-enhanced 
random forest (RERF) model, to predict WTD anomalies (i.e., a 
variable showing temporal variations in WTD) and GWP in New 
Jersey, a coastal state in the United  States with 30-year pumping 
records available at the 14-digit hydrologic unit (HUC14) level. Even 
in New Jersey, we did not have access to records for pumping rates and 
therefore used monthly aggregated groundwater withdrawal data to 
represent GWP. The HUC14s are subwatersheds delineated by the 
United States Geological Survey (USGS) based on surface hydrologic 
features, which are uniquely identified by a 14-digit number. The 
RERF model retains the advantages of tree-based models mentioned 
above and resolves the extrapolation issue, enabling it to predict for 
unseen inputs (Zhang et al., 2019). Hence, the model can provide 
spatially continuous predictions despite unmonitored regions lacking 
observations (Rosecrans et al., 2022). It also avoids biased results that 
ML regression often produces, where small values are overestimated 
and large values are underestimated (Belitz and Stackelberg, 2021). 
Our constructed RERF model is used to predict WTD anomalies in 
New Jersey with GWP as a major input and then inverted to estimate 
GWP with the WTD anomalies, land cover, and a cross metric as 
additional inputs. We calculated the permutation importance for each 
input variable in the RERF model and its inverted model to understand 
the relationship between WTD anomalies and its important input 
variables including GWP. Based on the trained models, we generated 
WTD anomaly and GWP maps for New Jersey for January and July 
2015 at a spatial resolution of 90 m, which represent the winter and 
summer months of an average year.

2 Study area and data

2.1 Study area

This study focuses on New Jersey, a coastal state located in the 
northeastern region of the United  States (Figure  1). As the most 
densely populated state with 9.26 million people living within its 
22,591 km2 (United  States Census Bureau, 2021), New Jersey 
comprises a mix of urban, forested, and coastal environments. The 
state is divided into 970 HUC14s, and each HUC14 subwatershed 
drains to a point of interest (NJDEP Bureau of GIS, 2023a).
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2.2 Study data

Nine input variables  – precipitation anomalies, temperature 
anomalies, precipitation minus evapotranspiration (PME), elevation, 
topographic slope, natural log of hydraulic conductivity (lnK), long-
term mean WTD, GWP, and land cover – were used for predicting 
either WTD anomalies and/or GWP. Spatial variations of the input 
data are shown in Figure  2. The input data are grouped into five 
categories: meteorology- and climatology-related, geology-related, 
WTD, GWP, and land cover. WTD anomalies calculated from WTD 
observations and GWP records were used to evaluate the RERF model 
performance in predicting WTD anomalies and GWP, respectively.

2.2.1 Meteorology- and climatology-related data
Three meteorology- and climatology-related inputs, precipitation 

anomalies, temperature anomalies, and PME (Figures 2A–C), were 
used in the RERF model and its inverted model. The precipitation 
anomaly was computed by subtracting the long-term mean 
precipitation value from the precipitation value. The temperature 
anomaly was obtained in a similar way. The precipitation and 
temperature data were from the precipitation and temperature 
datasets provided by the Center for Western Weather and Water 
Extremes (CW3E) for the years 1990–2020 (CW3E, 2024), 
respectively. The PME data was extracted from the potential recharge 
data utilized in the ParFlow contiguous United States (CONUS) 2.0 
platform (Yang et al., 2023), with an initial resolution of 1 km. ParFlow 
is a parallel, integrated hydrology model that simulates spatially 
distributed surface and subsurface flow, as well as land surface 
processes including evapotranspiration and snow (Maxwell 
et al., 2015).

2.2.2 Geology-related data
As for geology-related data, three inputs were used: elevation, 

topographic slope, and lnK (Figures  2D–F). The 90 m resolution 
elevation data were obtained from the seamless USGS 3D Elevation 
Program digital elevation model dataset (USGS, 2019). The 
topographic slope was calculated based on the elevation data. The lnK 
data, in which K had an initial resolution of 1 km, was derived from a 
continental-scale subsurface K dataset documented in Tijerina-
Kreuzer et al. (2023) and Swilley et al. (2023). We averaged K over ten 
vertical soil and geology layers of varying thicknesses (200, 100, 50, 
25, 10, 5, 1, 0.6, 0.3, and 0.1 m from bottom to top) with a depth to 
bedrock of 392 m, and calculated the nature log of averaged K to 
obtain lnK.

2.2.3 Water table depth data
WTD observations used in this study were from the United States 

Geological Survey (USGS) (USGS, 2024), measured in feet. 
We converted the units to m. They were not available for all of New 
Jersey, and only certain areas. There were only about 1,250 to 2,100 
WTD observations for each year, spread across 288 HUC14s, some 
areas with more observations than others. The long-term mean WTD 
was calculated based on WTD measurements since 1914. By 
subtracting the long-term mean WTD from the WTD observations, 
WTD anomalies (Figure 2I) were calculated and used as the output 
variable of the RERF model. As displayed in Figure 2I, positive WTD 
anomalies indicate increasing WTD while negative WTD anomalies 
indicate decreasing WTD based on the long-period averages. During 
prediction, the long-term mean WTD estimates (Figure  2G) in a 
resolution of 90 m were input to the model to estimate WTD 
anomalies in grid cells without observations. This was clipped from 

FIGURE 1

Geographic location of New Jersey with the inset showing the 14-digit hydrologic units (HUC14s) in New Jersey (NJDEP, 2006).
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long-term mean WTD estimates across the CONUS generated using 
an RF model and all available WTD observations, expanded from the 
study of Ma et al. (2024).

2.2.4 Groundwater pumping records
GWP used in the study (Figure  2H) was monthly aggregated 

groundwater withdrawal data from the New Jersey Geological & 
Water Survey (NJDEP, 2022), measured in million gallons per month. 
We converted the units to liters per month (L/month). The data was 
on a HUC14 level and monthly basis from 1990 to 2020. More 
specifically, there were about 126,000 to 20,000 records of GWP 
spread across 903 HUC14s or the entire New Jersey state, some 
HUC14s with more observations than others.

2.2.5 Land cover data
Land cover data (Figure 2J) was used as additional input to the 

inverted RERF model to predict GWP in New Jersey to improve 
model performance. Land cover can provide valuable information 
related to GWP because certain land cover types are correlated to 
human activities that use groundwater (e.g., agricultural land for 
irrigation and urban land for industrial uses). The data was for the 
year of 2015, obtained from the New Jersey Department of 
Environmental Protection Bureau of GIS (NJDEP Bureau of GIS, 
2023b). The original data included a large range of land cover 
types, such as “residential,” “industrial,” “deciduous forest,” 
“coniferous forest,” etc., and to reduce the complexity and improve 
the generalization of unseen data, the land cover categories were 
limited to four general land cover types: “urban,” “wetlands,” 
“forests,” and “agriculture.” Additionally, to further normalize the 
land cover data and have it in a viable form to input into the 
model, the data was converted into numerical values where 
“urban” = 1, “wetlands” = 2, “forests” = 3, and “agricultural” = 4. 
In a total of 56,198,158 grid cells covering New Jersey, 33,065,431 
were urban, 116,524,495 were wetland, 8,168,695 were forest, and 

3,311,537 were agricultural. Therefore, a large majority, 59%, of 
the state was considered urban, reflecting the dense population 
and extensive urban development in the state. To construct the 
inverted RERF model, a total of 47,280 grid cells with available 
WTD observations were used, including 20,496 urban grid cells, 
16,873 forest grid cells, 6,330 wetland grid cells, and 3,581 
agriculture grid cells.

3 Methods

3.1 Regression-enhanced random forest 
model

The RERF model is an extension of the traditional RF model 
proposed by Breiman (2001), which encompasses a combination of 
both RF and Lasso regression (Zhang et al., 2019). The RF model is 
a type of ML method using ensemble learning. It consists of many 
decision trees, and each decision tree serves as an independent 
estimator. The collection of different tree outputs enables the RF 
model to capture the nonlinear and complex input–output 
relationship well within the range of the training set  (Breiman, 
2001; Müller and Guido, 2017). However, as aforementioned, like 
other tree-based ensemble learning methods, the RF model has 
poor generalizability to unknown inputs (referred to as the 
extrapolation issue). Lasso regression is employed to address the 
issue, which is a type of penalized parametric regression. It is used 
to capture the global trend within the data in a linear manner 
(Zhang et al., 2019). In the RERF model, Lasso regression is run 
first, and then an RF of the residuals is constructed from Lasso, as 
illustrated in Figure 3.

For predicting WTD anomalies, Lasso regression was trained on 
observed WTD anomalies. The residual was then calculated by 
comparing the output from the Lasso regression model and observed 

FIGURE 2

Spatial visualizations of input data for New Jersey, including (A) precipitation anomalies (mm), (B) temperature anomalies (K), (C) precipitation minus 
evapotranspiration (PME, mm), (D) elevation (m), (E) topographic slope (m), (F) natural log of hydraulic conductivity (lnK), (G) long-term estimated 
mean WTD (m), (H) GWP (liters per month, L/month), (I) observed WTD anomalies (m), and (J) land cover. The data of precipitation anomalies, 
temperature anomalies, and GWP are for January 2015 while the observed WTD anomalies are the averages for the years 1990–2020.
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WTD anomalies. Then the RF model was trained on the residual. 
Finally, the outputs of the two models were combined as the final 
WTD anomaly estimate. For hyperparameters of the RF model, the 
number of estimators was set to 300 and the maximum tree depth 
was set to 900, the same as Ma et al. (2024). Eight variables were used 
as inputs for the model to predict WTD anomalies, which are 
precipitation anomalies, temperature anomalies, PME, elevation, 
topographic slope, lnK, long-term mean WTD, and GWP. These 
predictor variables were selected as factors that can affect 
groundwater levels. During the model construction, the long-term 
mean WTD inputs were derived from observed data. A total of 
48,719 grid cells with WTD observations were used to train and test 
the model, with 80% of them randomly selected for training and the 
other 20% for testing. Later for generating WTD anomalies for the 
entire state, estimated long-term mean WTD were used. The trained 
RERF model provides spatiotemporally continuous estimates for 
WTD anomalies and considers human impacts by including GWP 
as input.

Then, the RERF model was inverted to use WTD anomalies as 
input to predict GWP. The input variables except GWP remained 
consistent with the original RERF model, and land cover data was 
used as additional input for the model together with WTD 
anomalies. A cross metric (described in Section 3.2) was also 

added as input to improve the performance of the inverted RERF 
model. A total of 48,719 grid cells were used to train and test the 
inverted model, with 80% of them again randomly selected for 
training and the other 20% for testing. Observed WTD anomalies 
were used to construct the model, and during the prediction 
process, WTD anomalies estimated by the RERF model were fed 
into the inverted model to produce GWP maps for the entire 
New Jersey.

3.2 Cross metric

A cross metric was introduced to establish explicit connections 
between different input variables and to reduce the prediction error in 
the inverted RERF model. After analyzing the results from the 
inverted model without the cross metric as input and conducting a 
trial and error of combining different input variables in the cross 
metric, the cross metric that produced the highest accuracy involved 
PME, land cover, WTD anomaly, and the temperature anomaly. More 
specifically, the cross metric was generated by converting PME, land 
cover, and the WTD anomaly into binary conditions and then adding 
them up and multiplying by the temperature anomaly, as expressed in 
Equation 1.

FIGURE 3

Flow diagram of a regression-enhanced random forest (RERF) model for predicting water table depth (WTD) anomalies or groundwater pumping 
(GWP).
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( )b b bCross metric PME land cover WTD anomaly
temperature anomaly

= + +
×  (1)

where the subscript b represents the binary condition.
For PME, if 0.0005 < PME < 0.0008, PMEb is equal to 1, and 

otherwise, 0. For land cover, land coverb is equal to 1 if urban or 
agriculture, and equal to 0 if wetlands or forest. For WTD anomalies, 
if −0.1 < WTD anomaly <0.1, WTD anomalyb is equal to 1, and 
otherwise, 0. These ranges were based on the analysis presented in the 
Supplementary material.

3.3 Importance of input variables

The importance of input variables in the RERF model and the 
inverted model were determined via permutation importance 
(Breiman, 2001) to show how sensitive the outputs are to different 
input variables. This method involves randomly shuffling values of 
each input variable and measuring the decrease in the model 
performance, which is expressed by the Nash-Sutcliffe Efficiency 
(NSE) values. Compared to the commonly used SHapley Additive 
exPlanations (SHAP) values, the permutation importance method 
provides a very similar rank of input variables based on their relative 
contributions to the outputs over the entire study domain, but in 
much less computational time.

3.4 Evaluation metrics

The performances of the RERF model and the inverted model 
were assessed by comparing the predicted and observed WTD 
anomaly and GWP predictions, respectively.

For both WTD anomaly and GWP predictions, evaluation metrics, 
specifically the training and testing NSE, root-squared mean error 
(RMSE), and Pearson correlation coefficient (r) scores, were calculated 
using Equations 2–4 to further measure the models’ performances. 
These metrics provide insights into the model’s predictive performance, 
with the NSE indicating the model’s ability to capture the variance in 
the observed data, the RMSE quantifying the average deviation 
between predicted and observed values, and the r indicating the linear 
correlation between predicted and observed values.
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where yi represents the observed values, ˆiy  represents the predicted 
values, y  is the mean of the observed values, ˆiy is the mean of the 
predicted values, and n is the number of data points.

3.5 Software

The RERF model and its inverted model was developed using 
scikit-learn, an open-source python library for ML applications 
(Pedregosa et  al., 2011). QGIS is a free and open-source cross-
platform desktop geographic information system application that 
supports the viewing, editing, printing, and analysis of geospatial data 
(QGIS, 2023). In this study, we applied QGIS 3.34 to identify land 
cover in each 90 m grid cell.

4 Results and discussion

4.1 Testing model performance in 
predicting water table depth anomalies 
and groundwater pumping

Here we  built a RERF model using available WTD anomaly 
observations and input data including GWP, and then inverted the 
model to predict GWP with WTD anomaly, land cover, and the cross 
metric introduced in Section 3.2 as additional input. Table 1 lists the 
testing scores of the RERF model and its inverted model in predicting 
WTD anomalies and GWP. Both the trained RERF model and the 
inverted model had acceptable performance dealing with unseen 
inputs in the testing set, with high r values (> 0.5). The RERF model 
achieved better scores in predicting WTD anomaly with a test NSE 
of 0.49, RMSE of 1.61 m, and r of 0.72, while the model for predicting 
GWP obtained a test NSE of 0.4, RMSE of 15.44 × 106 L/month, and 
r of 0.65. The relatively poor performance of the inverted model may 
be attributed to the more heterogeneous pattern of GWP compared 
to WTD anomalies and additional biases introduced by the inclusion 
of estimated WTD anomalies.

Figure 4 compares the estimated and observed values of WTD 
anomalies and GWP for the test set from 1990 to 2020, which shows 
variations in the testing performance for individual data points. The 
data points in Figure 4A are more concentrated on the 1:1 line compared 
to Figure 4B, which demonstrates again that the model for predicting 
WTD anomalies outperformed the inverted model for GWP. In 
Figure 4B, a vertical line of data points is close to the y axis, indicating 
areas with no or small amount of pumping that were predicted to have 
higher levels of pumping. We studied the data points on the vertical line 
and found that they came from 20 HUC14s located in southern New 
Jersey. Within these HUC14s, there were a mix of high predictions for 
low observations and low predictions for high observations, which 
requires further investigation. These false positive predictions greatly 
contribute to the large RMSE for predicting GWP shown in Table 1.

4.2 Sensitivity analysis of the models to 
input variables

We derived the permutation importance of each input variable in 
both the RERF model and its inverted model (illustrated in Figure 5) 
to reveal how sensitive the model results were to the input variable.

Based on Figure  5A, the most important input for predicting 
WTD anomalies was the long-term mean WTD, which shows how 
groundwater behaves over a long time. In areas with small long-term 
mean WTD values (known as shallow groundwater), groundwater 
systems are typically active in the hydrologic cycle, resulting in 
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frequent changes in WTD anomalies. In contrast, in areas with large 
long-term mean WTD values (known as deep groundwater), 
groundwater systems may be disconnected with other components in 
the hydrologic cycle, leading to rare changes in WTD anomalies if no 
GWP exists. While the inclusion of the estimated long-term mean 
WTD during testing introduces additional biases into the estimates, 
it allows the mapping of WTD anomalies over the entire New Jersey, 
even for areas without WTD observations. The second most important 
feature was GWP, which is reasonable as pumping has a direct impact 
on WTD by extracting groundwater from aquifers and lowering the 
water table. Hence, more GWP should lead to larger positive WTD 
anomalies. The third most important feature was PME. PME 
represents the surplus or deficit of water available in that area after 
accounting for precipitation and evapotranspiration, the combined 
process of water evaporation from surfaces and transpiration from 
plants. The importance of PME for predicting WTD anomalies is 
consistent with the finding in Condon et  al. (2020) that 
evapotranspiration has a direct effect on groundwater depletion under 
warming. When PME is a larger value, it suggests either an increased 
likelihood of groundwater recharge or minimal evapotranspiration, 
both of which potentially raise the water table. Conversely, smaller or 
negative values imply a deficit, which could contribute to reduced 
groundwater recharge, possibly leading to lowered water tables.

As with predicting WTD anomalies (Figure 5A), PME played a 
critical role in estimating GWP (Figure 5B), more important than the 
other inputs. PME provides information about groundwater recharge, 
directly affecting groundwater storage. The significance of PME for 
predicting GWP suggests that the variations in groundwater recharge 
strongly affect GWP behavior. The long-term mean WTD was 
recognized as the second most important input variable. Areas with 

deeper or shallower mean WTDs may exhibit different groundwater 
availability and pumping requirements, which can influence GWP 
patterns. The third most important input variable was slope. Geological 
data can reflect groundwater flow patterns, infiltration rates, and 
recharge processes. In the case of slope, areas with higher slope or land 
steepness may experience faster surface runoff, reduced infiltration, 
and limited groundwater recharge compared to flatter terrains. 
Surprisingly, the least important feature was land cover due to its 
categorical rather than numerical nature. Despite its low permutation 
importance, land cover still captured important information on GWP 
activities as it still improved the model performance by a considerable 
amount. By including land cover, the NSE increased from 0.19 to 0.36; 
the RMSE decreased from 18.28 × 106 to 15.44 × 106 L/month; and the 
r increased from 0.52 to 0.62 (Supplementary Table S3). The RF model 
in the RERF model did not understand the difference between grid 
cells with a land cover of, e.g., 1 (“urban”), and the ones with a land 
cover of, e.g., 2 (“wetlands”). In future work, a tree-based model that 
can better understand categorical inputs, such as LightGBM (Ke et al., 
2017), can replace the RF model in the current model.

4.3 Estimated water table depth anomaly and 
groundwater pumping maps for New Jersey

Using the trained RERF model, we  generated estimated 90 m 
WTD anomaly maps across New Jersey for January and July 2015 
(Figures  6, 7, respectively), which are typical winter and summer 
months. Note that the input long-term mean WTD was replaced by 
the estimates for the entire state to produce the maps.

For January (Figure 6A), the maximum WTD anomaly observation 
was 7.83 m while the minimum anomaly observation was −11.18 m. The 
mean anomaly observation was −0.90 m. For January (Figure 6B), the 
maximum WTD anomaly prediction was found to be 12.22 m while the 
minimum anomaly prediction was determined to be −8.94 m. The mean 
anomaly prediction was predicted to be −0.21 m. The small mean value 
also suggests that the average WTD estimations are similar to the long-
term estimated mean WTD and are not particularly low or high in 
January 2015 since the anomalies represent the difference between them. 
The standard deviation was also computed to be 0.62 m, so the range of 

FIGURE 4

Scatter plots comparing the estimated and observed values of (A) water table depth (WTD) anomalies and (B) groundwater pumping (GWP) during 
testing. The solid red lines represent lines of 1:1.

TABLE 1 Testing Nash-Sutcliffe Efficiency (NSE), root-squared mean error 
(RMSE), and Pearson correlation coefficient (r) values of the RERF model 
for predicting water table depth (WTD) anomalies and the inverted model 
for predicting groundwater pumping (GWP).

Model NSE RMSE r

RERF Model 0.49 1.61 m 0.72

Inverted Model 0.40 15.44 × 106 L/month 0.65
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predictions is also relatively small. For July (Figure 7A), the maximum 
WTD anomaly observed was 7.95 m and the minimum anomaly 
observed was −11.34 m. The mean anomaly observed was −0.32 m. For 
July (Figure 7B), the maximum WTD anomaly predicted was found to 
be 14.46 m while the minimum anomaly predicted was determined to 
be −5.62 m, which are both higher than for January, indicating lower 
GWL. The mean anomaly was estimated to be 0.54 m, which was also 
positive and higher than the mean anomaly for January. However, the 
standard deviation of 0.61 m was similar to that of January.

While sparse WTD observations exist in New Jersey (Figures 6A, 
7A), both maps show reasonable predictions (Figures  6B, 7B) 
compared to available observations through visual inspection of the 
colors. For both the observations in Figure 6A and the predictions in 
Figure  6B for January 2015, the WTD anomalies were negative, 
meaning that WTD predictions are below the estimated long-term 

mean WTDs. In other words, there was more groundwater storage 
than long-term averages. This could potentially be due to typically 
less GWP and evapotranspiration during the winter than during the 
rest of the year, thus groundwater levels tend to be higher. For both 
observations and predictions, very negative WTD anomalies were 
prominent in the outskirts of New York City or Philadelphia with 
high urban development. In addition, we also noticed positive WTD 
anomaly predictions in areas such as the central-eastern region and 
the southern-western border of New Jersey. Differently, for both the 
observations in Figure 7A and the predictions in Figure 7B for July 
2015 (Figure 7B), the values were predicted to be mainly positive, 
indicating deeper WTD than the long-term average. This is more 
likely to happen during the summer than in other seasons, which 
may contribute to the deeper WTD. Higher positive WTD anomalies 
are more prominent in the northern parts of New Jersey and along 

FIGURE 5

Permutation importance of input variables in the RERF models for predicting (A) water table depth (WTD) anomalies and (B) groundwater pumping 
(GWP).

FIGURE 6

Maps of (A) water table depth (WTD) anomaly observations and (B) WTD anomaly predictions over New Jersey for January 2015.
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the state’s left border near Philadelphia. Some of these are the same 
areas that were predicted to have very negative WTD anomalies in 
January. The discrepancy in WTD anomalies can be  due to the 
increase in temperature during summer, which often leads to lower 
groundwater recharge, larger GWP, and ultimately higher WTD 
anomalies. Overall, the WTD anomaly maps reveal changes in 
groundwater storage in various regions for both cold and warm 
months and help understand the reasons behind them.

Similarly, we produced estimated GWP maps across New Jersey 
for the same months using the trained inverted RERF model, as 
shown in Figures 8, 9. To predict GWP for the entire state, the 
estimated WTD anomaly outputs from the RERF model were used 
as input as WTD observations are only available for a few grid cells. 
We summed up GWP for each HUC14 to compare with original 
GWP records.

While in Figure  8A, the GWP observations are randomly 
distributed, in Figures 8B,C, the model predictions suggest higher GWP 
rates in northern New Jersey and near the suburbs of New York City and 
Philadelphia. Extremely high GWP rates were found in a few areas 
spread across the state indicated by their dark colors. Similar results are 
found in Figure 9 for July. These discrepancies between observed and 
predicted pumping patterns may stem from limitations or uncertainties 
in the model, such as inaccurate input data and potentially missing 
input data. It is important to note that the estimated GWP data have 
much higher resolution than the GWP records, and the different scales 
may also be attributed to the discrepancies in Figures 8, 9.

For January, the maximum predicted pumping value was 
331.48 × 106 L/month. The minimum predicted value was 
0.53 × 106 L/month, meaning that the model never predicted a GWP 
value of 0 despite being trained on sites where there was 0 GWP. The 

FIGURE 7

Maps of (A) water table depth (WTD) anomaly observations and (B) WTD anomaly predictions over New Jersey for July 2015.

FIGURE 8

Maps of (A) groundwater pumping (GWP) records at the HUC14 level, (B) GWP predictions in a 90 m resolution, and (C) summed GWP predictions at 
the HUC14 level over New Jersey for January 2015 measured in liters per month (L/month).
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mean predicted value was 49.13 × 106 L/month. These values do not 
completely align with the observed pumping values as the maximum 
value was much higher at 1804.55 × 106 L/month and the minimum 
value was 0 L/month, respectively. The mean observed value was 
found to be 14.39 × 106 L/month. For July, the maximum predicted 
pumping value was 507.91 × 106 L/month. The minimum predicted 
value was 2.61 × 106 L/month, and again the model never predicted a 
GWP value of 0. The mean predicted value was 51.26 × 106 L/month. 
Once again, these values are not that close with the observed pumping 
values, especially the maximum observed value, which was 
1994.91 × 106 L/month. The minimum observed value was 0 L/month, 
and the mean observed value was 18.71 × 106 L/month. As expected, 
the mean predicted GWP for July was slightly higher than the mean 
prediction for January. This is further supported by the darker colors 
in Figure  9 than in Figure  8, indicating higher pumping rates. 
Additionally, in both cases, the maximum predicted GWP value was 
decently high, raising questions about the model’s potential for 
outliers or inaccuracies in the predictions.

Overall, the better model performance for predicting WTD 
anomalies than for predicting GWP may be attributed to a more direct 
input–output relationship in the former model. GWP often results in 
groundwater depletion and increasing WTD, as illustrated in Kuang 
et al. (2024) and Figure 5A. Conversely, GWP is an anthropogenic 
activity closely linked to socio-economic development (e.g., 
urbanization), and does not necessarily change as a result of WTD and 
WTD anomalies. Thus, for predicting GWP, the long-term mean WTD 
was not the most important input variable, and the WTD anomaly had 
little contribution to the predictions (as shown in Figure 5B). There 
were a considerable amount of false positives in the results for 
predicting GWP (as shown in Figure 4B), which can only be slightly 
eliminated by adding the cross metric (described in Section 3.2) as 
input. The large number of false positives may indicate missing 
information in the inverted model, which requires further investigation.

In addition, a critical contributor to the model’s acceptable WTD 
anomaly predictions was the integration of GWP data as input. GWP 
was the third most important input variable (Figure 5A), emphasizing 
the value of incorporating pumping information to groundwater 
resource modeling when pumping records are available. Indeed, the 

RERF model with GWP as input outperformed the one without GWP 
as input (Supplementary Table S2). As a coastal state, the WTD in New 
Jersey is generally shallow (as shown in Figure 2G), and groundwater 
is actively involved in the hydrologic cycle. Therefore, we also observed 
non-zero WTD anomalies in areas with zero GWP in Figures 6, 7, 
which were impacted by the meteorology- and climatology-related 
inputs. Constructing RERF models in mountainous regions with deep 
groundwater may lead to different findings.

Although we only showed estimated WTD anomaly and GWP 
maps for New Jersey in January and July 2015 (Section 4.3), the 
trained RERF model and inverted RERF model can be employed to 
produce WTD anomaly and GWP maps for any month during 1990–
2020 at a high spatial resolution (i.e., 90 m). Based on the 
spatiotemporally continuous WTD anomaly and GWP estimates 
during 1990–2020, we  can gain some insights into the impact of 
climate change on both WTD anomalies and GWP in a coastal region 
like New Jersey. This can be an application of the developed models.

5 Conclusion

In this study, we built RERF models to estimate WTD anomalies 
and GWP for a coastal state in the United States, New Jersey, based on 
available WTD observations, long-term mean WTD estimates, 
meteorology- and climatology-related data, geology-related data, 
GWP data, and land cover data. The RERF model for predicting WTD 
anomalies had a test NSE of 0.49, RMSE of 1.61 m, and r of 0.72, while 
the inverted RERF model for predicting GWP with the cross metric 
as additional input had a test NSE of 0.40, RMSE of 15.44 × 106 L/
month, and r of 0.65. The top three important inputs for predicting 
WTD anomalies were long-term mean WTD, PME, and GWP, while 
the top three important inputs for predicting GWP were the PME, 
long-term mean WTD, and topographic slope. Using the trained 
models, we generated WTD anomaly and GWP maps for New Jersey 
for January and July 2015, which are the winter and summer months 
of an average year without many extreme events. As a coastal state 
with shallow groundwater, most areas in New Jersey had small WTD 
anomalies within the range between −1 m and 1 m. GWP showed a 

FIGURE 9

Maps of (A) groundwater pumping (GWP) records at the HUC14 level, (B) GWP predictions in a 90 m resolution, and (C) summed GWP predictions at 
the HUC14 level over New Jersey for July 2015 measured in liters per month (L/month).
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more heterogeneous pattern in New Jersey than WTD anomalies. 
Overall, the RERF models offer insights into groundwater availability 
and pumping capacity in coastal states like New Jersey, of which 
groundwater systems are vulnerable to GWP. Based on the findings, 
the study demonstrates that even though the RERF models have room 
for improvement, they can be  effective in producing acceptable 
estimates for WTD anomalies and GWP, serving as a viable alternative 
for predicting in areas with limited or unavailable WTD observations.

As aforementioned, the RERF models have some limitations and can 
be further improved. As data-driven models, their predictions are highly 
affected by the quality and quantity of the given data. Sparse WTD 
monitoring wells with long records (Figure 2I) constrained the model 
behavior. As many of the grid cells with WTD observations were around 
the Philadelphia suburbs, the models were trained on mostly urban areas 
with similar geological and climate conditions. Along with the spatial 
restriction, the temporal limitation of WTD data may also introduce 
biases, as it could be concentrated in certain years or months. There were 
very few grid cells with monthly continuous WTD observations over a 
long time period. Hence, increasing WTD observations and training on 
a larger diverse range of grid cells and a longer time period may improve 
the model performance. Also, utilizing predicted WTD anomalies instead 
of observed WTD anomalies to generate GWP maps for the entire New 
Jersey can introduce additional errors to the inverted model, as the WTD 
anomaly predictions are usually different from the observations. 
We noticed that the RF model in the RERF model somehow failed to 
understand categorical data such as land cover, resulting in its low 
importance rank. Moreover, the importance of the input variable to the 
output variable cannot demonstrate the causal relationship between the 
input and output variables, which can also be due to external drivers 
(Tesch et al., 2023). Future work can focus on studying and resolving 
some of the uncertainties, issues, and challenges encountered within the 
scope of this study. For instance, one path of exploration is to continuously 
test different inputs and cross metrics for the RERF model and its inverted 
model to improve the model performance. One can also replace the RF 
model in the RERF model with a ML method that understands various 
types of data, such as LightGBM. Assuming that New Jersey has a similar 
hydrogeological setting and pumping conditions to other regions, the 
RERF models trained for New Jersey, without additional training, may 
be  extrapolated to these regions to predict WTD anomalies and 
GWP. This is known as domain adaptation in ML terminology (Pan et al., 
2011). Extending the RERF models to predict WTD anomalies and GWP 
in other regions can help assess the generalizability of the models. One 
can also link the WTD and GWP predictions from the developed model 
to sea level rise to better understand seawater intrusion in New Jersey 
during the study period. Hence, by leveraging advanced computational 
algorithms and existing datasets, ML models can enable accurate and 
timely groundwater level and quality predictions, which then can enhance 
groundwater monitoring and management practices and inform future 
decision-making processes.
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