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Introduction: Rangeland ponds are vital to the livelihoods of pastoral and

agropastoral communities in Africa, providing an important source of water

for livestock. However, sparse instrumentation across much of Africa makes it

extremely challenging to monitor surface water availability in these areas. Model

estimates of surface water, for example, as used by the Famine Early Warning

Systems Network (FEWS NET) Water Point Viewer, are one of the few operational

tools available to monitor surface water stress across pastoral areas of the Sahel

and East Africa.

Methods: Water availability data from these models are di�cult to validate. New

methods using satellite data to classify surface water provide an opportunity to

assess the performance of these tools. This study compares water availability

estimates derived from Landsat and Sentinel 1 satellite imagery to in situ

observations and model simulations of water availability in 22 ephemeral ponds

located in the Ferlo region of Senegal.

Results and discussion: The Active-Passive Water Classification (APWC)

algorithm detected surface water at each location. Over 2022 and 2023, water

was detected in pond locations annually at a frequency of 68.2% for all ponds

and at a frequency of 43.8% for ponds with a surface area <10,000 square meters

(m2). The APWC results outperformglobal and continental surfacewater datasets

in the Ferlo region. Seasonal water availability was captured in 12 ponds over

the 2022 and 2023 seasons. The 12 locations can function as sentinel ponds to

monitor local water availability. Study results demonstrate the viability of satellite

methods to assess water availability in the region, as well as the challenges to

using satellite-based methods to estimate water availability in small ponds.

KEYWORDS

rangelands, pastoral, agropastoral, Sentinel 1, surface water classification, Landsat,

water balance model

1 Introduction

Monitoring and forecasting rangeland water availability is critical to food security and

early warning systems in Africa. Rangelands feed more than half of Africa’s livestock,

providing a source of income for 268 million pastoralists and agropastoralists (Liniger

and Mekdaschi, 2019). Rangeland ponds are a vital source of water for pastoral livestock,
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directly contributing to household food security and health (Grace

and Davenport, 2021). However, many African rangelands are in

arid and semi-arid regions. Thus, pastoral livelihoods are extremely

vulnerable to climate shocks such as drought. In August 2023, the

United States Agency for International Development’s (USAID)

Famine Early Warning Systems Network (FEWS NET) projected

that >65 million people in sub-Saharan Africa in large rangeland

areas would require urgent food assistance (FEWS NET, 2023).

The Operational FEWS NET Water Point Viewer (Senay et al.,

2013) is one of the few resources to monitor the status of surface

water across the pastoral areas of Sahelian and East Africa. The

FEWS NET Water Point Viewer applies a water balance model

over 338 small ponds to assess water stress at each location

(USGS et al., n.d.). Water stress is determined by comparing daily

estimates of water depth at each location to its climatological

median water depth (Senay et al., 2013). Daily estimates of stress

are provided on the FEWS NET Water Point Viewer, available

at https://earlywarning.usgs.gov/fews/waterpoint/. Indicators such

as water stress are an important tool for assessing drought

impacts on livelihoods. FEWS NET uses estimates of surface water

availability from the FEWS NET Water Point Viewer to assess

water stress experienced by livestock herds. This information is

complementary to the water requirement satisfaction index for

rangeland areas, which provides information on pasture health over

the growing season (Senay et al., 2013). Livestock is critical to

pastoral livelihoods and, therefore, food security in rangeland areas

of Africa. However, sparse in situ hydrologic data across much of

Africa have historically limited our ability to assess the performance

of surface water models in estimating water availability.

Surface water classification methods using satellite remote

sensing provide an opportunity to assess surface water availability

in data-sparse regions. Data from passive optical sensors (e.g.,

Landsat and Sentinel 2) have been used to create global and

continental-scale maps of surface waterbodies (Carroll et al., 2016;

Feng et al., 2016; Mueller et al., 2016; Pekel et al., 2016). However,

map resolution is coarse relative to the size of pastoral ponds,

and time series miss a substantial amount of data due to clouds

and other sensor errors. Recent studies in the Ferlo region of

Senegal using Landsat and high-resolution PlanetScope data tomap

waterbodies (Mishra et al., 2020) and on the WENDOU platform

(Water ENvironment Dashboard for Observation in support of

Users; SERVIR, 2024) show promise, but are not yet used to

routinely assess water availability. Synthetic aperture radar (SAR)

data from active microwave sensors have been used alone as well as

fused with optical sensors to generate time series of surface water

extent (Slinski et al., 2019; Huang et al., 2018; Pulvirenti et al.,

2011; Schumann et al., 2011), wetlands inundation (Bourgeau-

Chavez et al., 2005; Chapman et al., 2015; Rebelo et al., 2012),

and flood maps (Brakenridge and Kettner, n.d.; Salamon et al.,

2021), but are not routinely used to map surface water in most

rangeland regions in Africa. SAR-derived surface water maps are

higher resolution and less affected by clouds, but classification

accuracy is affected by layover, floating vegetation, as well as sand

and other reflective surfaces. Confusion between sparsely vegetated

land cover and open water is a particular challenge for SAR-based

water classification in rangeland areas. However, combining SAR

and optical sensor data, for example, using the Active-Passive

Water Classification (APWC), reduces errors associated with the

individual sensor datasets (Slinski et al., 2019).

The overarching goal of this study is to assess the potential

of the APWC algorithm to validate the modeled representation

of water availability in rangeland areas. Previous studies have

demonstrated the algorithm’s ability to estimate water stress in

the Awash River basin in Ethiopia (Slinski et al., 2019) and for

small waterbodies in rangeland areas of East Africa (Slinski et al.,

2020). This study expands on this work, comparing surface water

classification results derived from the APWC algorithm to in situ

observations and model simulations of surface water availability in

West Africa. The specific objectives of this study are to answer the

following research questions:

1. To what extent can indicators from high resolution remote

sensing data be used to assess water availability in rangeland

ponds of West Africa?

2. To what extent can these indicators be used to assess model

representation of surface water availability?

To address the first research question, in situ measurements

of pond water depth collected during 2022 and 2023 in the

Ferlo region of northern Senegal are compared to surface water

classification results derived from the APWC algorithm. To address

the second research question, model-simulated estimates of pond

water depth during 2022 and 2023 for locations monitored by the

FEWS NET Water Point Viewer in the Ferlo region of northern

Senegal are compared to surface water classification results derived

from the APWC algorithm. This study is the first to compare in

situ data to satellite estimates of surface water availability in small

ponds (< 10,000 square meters [m2]) in the Sahel. This comparison

allows a robust assessment of the skill of satellite estimates of water

availability in this data-sparse region. This study is also the first

to use satellite estimates of surface water area to assess the model

estimates of water availability in the Sahel.

2 Materials and methods

2.1 Study area

The study area (Figure 1) is approximately a 35,000-square-

kilometer (km2) area of the Ferlo Region, a semi-arid pastoral zone

in northern Senegal. This region is part of the Sahelian climate zone

(Tappan et al., 2016). Annual rainfall over the study area ranges

from 250millimeters (mm) in the north to 480mm in the southwest

(Figure 2A). Nearly all rainfall in this region falls during June, July,

August, September, and October (Figure 2B) as part of the West

African Monsoon (WAM). The onset of the WAM corresponds

with the northern migration of the Intertropical Convergence Zone

(ITCZ). Monsoon rainfall intensity has been linked to the ITCZ;

large-scale atmospheric circulation features such as the Tropical

Easterly Jet, the African Easterly Jet, and the low-level African

Westerly Jet, as well as the Saharan Heat Low (Nicholson, 2013).

Monthly precipitation for most of the 2022 and 2023 rainy seasons

was above average across the study area (Figure 2B).

The primary land cover of the Ferlo Region is the Sahelian

shortgrass savanna (Tappan et al., 2016). Livelihoods in the region
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FIGURE 1

Location of the study area and ponds included in this study. Action Contre la Faim (ACF) pond locations are indicated by orange dots, and Famine

Early Warning Systems Network (FEWS NET) pond locations are indicated by green dots. Imagery: ©2023 TerraMetrics, Map data: ©2023 Google.

are largely dependent on resident and transhumance herds of cattle,

sheep, and goats that graze on the savanna, with some rain-fed

subsistence agriculture (World Food Program et al., 2011). The

region is characterized by a network of natural and constructed

ephemeral ponds that fill during the WAM. These ponds are an

important source of water for livestock during the rainy season,

when the pastureland greens up and herds are dispersed across the

region. When the ponds dry at the end of the rainy season, herds

are moved to areas with a year-round source of water, such as the

Sylvo-Pastoral Reserves, which are managed pastoral areas in the

Ferlo Region where high-yield boreholes have been installed.

Twenty-two natural ponds (shown in Figure 1) are included

in this study. Action Contre la Faim (ACF) collected in situ

water depth measurements from 12 ponds (denoted as “ACF

ponds”), and the FEWS NET Water Point Viewer simulated water

depth for 10 ponds (denoted as “FEWS NET ponds”). Remote

sensing-based estimates of surface water extent were generated over

all 22 ponds.

The following subsections provide additional detail on in situ,

modeled, and remote sensing-based estimates of water availability

for the ponds. Figures 3, 4 show dry season imagery for the ACF

and FEWS NET ponds, respectively. Pond size inferred from these

images indicates that these are small ponds, with pond diameters

ranging from approximately 25 to 200 meters (m).

2.2 In situ observations of water depth

ACF installed staff gauges in 12 ponds within the study area

during July 2022. The gauges were installed at the approximate

deepest point of each pond (Figures 5A, B). Data enumerators

documented the pond depth at the gauge and the extent of each

pond (Figure 5C) over the 2022 and 2023 rainy season and until

each pond dried up. Data were collected approximately every 2

weeks from July to December 2022 and ∼6 days from June to

December 2023. Photographs were taken of the gauge, showing

the water level reading, and of the pond, from the same vantage

point for each reading. The photographs were transmitted to the

ACF country office in Dakar, Senegal, for logging of the water level

readings and filing of the photographs. For three locations, the staff

gauge had to be decommissioned due to vandalism. At two of these
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FIGURE 2

(A) Shows mean annual precipitation over the study area based on Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) precipitation

(Funk et al., 2015) for 1993–2023. (B) Shows boxplots of monthly CHIRPS precipitation for 1993–2023 and monthly 2022 and 2023 CHIRPS

precipitation as green and yellow dots, respectively. The upper and lower boxplot hinges represent the first and third quartiles (25th and 75th

percentiles), respectively, and the whiskers extend to the largest/smallest value no farther than 1.5 times the interquartile range from the upper/lower

hinge. Monthly precipitation is calculated as the mean precipitation over the study area.
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FIGURE 3

Dry season satellite images of the 12 Action Contre la Faim (ACF) ponds. Map projection: UTM 28N, Imagery: ©2023 TerraMetrics, Map data: ©2023

Google.

locations, the gauge was moved to a pond in the same general

area. The third gauge was not reinstalled. Data from vandalized

gauges were discarded, resulting in shortened datasets for the Belel

Mouthiatédé, Loumbal Demak, and Weendou Lamma 2 ponds.

Pond depth data is archived at Slinski et al. (2025).

Observed water levels were scaled as follows:

ωs =
ωi

ωmax
× 100 (1)

where ωs (%) is scaled water depth, ωi (meters) is measured

water depth for the target month (i), and ωmax (meters) is the

maximum measured water depth. Scaling converts water depth to

a unitless value in the range of 0 and 100. A similar approach was

used to convert satellite and modeled estimates of water availability

to the same range, as described in the next subsections. Scaling

facilitates comparison between the satellite, in situ, and modeled

estimates of water availability.

2.3 Satellite remote sensing-based
estimates of water availability

Water availability was estimated from satellite datasets

following the APWC algorithm developed by Slinski et al. (2019).

APWC uses the K-means clustering algorithm to identify water

and non-water from SAR and optical datasets. K-means clustering

is a simple unsupervised machine learning algorithm (Lloyd,

1982). The APWC algorithm was chosen because it is a rapid,

computationally light surface water classification method that has

been shown to accurately identify water bodies in rangeland areas

of Africa (Slinski et al., 2019).

The APWC algorithm was implemented in Google Earth

Engine (GEE, Gorelick et al., 2017) using datasets obtained

from GEE data collections. First, monthly median composite

grids of Sentinel 1 SAR brightness and Landsat-derived modified

normalized difference water index (MNDWI; Xu, 2006) values

were generated over the study area for 100 target months:

October 2015–January 2023. The MDWI is used in the APWC

algorithm because it performs better than other water classification
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FIGURE 4

Dry season satellite images of the 10 Famine Early Warning Systems Network (FEWS NET) ponds. Map projection: UTM 28N, Imagery: ©2023

TerraMetrics, Map data: ©2023 Google.

indices, such as the normalized difference water index (McFeeters,

1996) and the automated water extraction index (Feyisa et al.,

2014). Pixels were then grouped into k clusters using the K-

means clustering algorithm, and the cluster associated with surface

water was identified. The final dataset consists of 109 monthly,

10-m resolution grids covering the study area, with each grid

pixel classified as “Surface Water,” “Not Surface Water,” or “No

Data.” The following paragraphs provide additional detail on this

study’s implementation of the APWC algorithm for surface water

classification. The Supplementary material (SM) contains a flow

chart of the APWCmethodology.

The MNDWI was calculated as follows:

MNDWI =
G− SWIR1

G+ SWIR1
(2)

where G is the visible green band and SWIR1 is the short-

wave infrared 1 band from the Landsat 8–9 Tier 1 Collection 2

surface reflectance (SR; Vermote et al., 2016) and Landsat 7 Level 2,

Collection 2, Tier 1 SR (Masek et al., 2006) datasets.

Each satellite has a 16-day return period. The Landsat 8 satellite

orbit is an 8-day offset from the Landsat 7 and 9. Thus, the

combined Landsat 7, 8, and 9 SR datasets provide data over the

study area every 8 days. Table 1 presents additional information

on the satellite platforms and associated datasets used to derive

MNDWI. The MNDWI composites were generated as follows: (1)

the MNWI was calculated for each Landsat scene available over

the study area for 1 October 2015 through 1 February 2023; (2) a

cloud and cloud shadow mask, derived from bits 3 and 4 of the

Landsat 7, 8, and 9 Pixel Quality Assessment Band (QA_PIXEL),

was applied to each scene; and (3) the 31-day median composite

MNDWI grid was derived for each target month by taking the

median pixel value of the masked Landsat scenes collected +/-

15 days around the 15th day of the target month. This method

was followed for each month, with the following exception: cloud

and cloud shadow contamination present over the south-central

and southwest region of the study area during August 2022 was

not identified in the QA_PIXEL and was masked manually. This

affected August 2022 results for ACF ponds Weendou Howandou,

Weendou Namma, and Weendou Mbayla. The FEWS NET pond

locations were not affected.

Thirty-one-day median composite SAR brightness grids were

derived from Sentinel 1A interferometric wide-swath ground range
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FIGURE 5

(A, B) Show photographs of the sta� gauge installation. (C) Shows a photograph of the sta� gauge reading.

TABLE 1 Characteristics of the satellite platforms and associated datasets used by the Active-Passive Water Classification (APWC) algorithm.

Landsat 7 Landsat 8/9 Sentinel 1A

Product Landsat 7 Level 2, Collection 2, Tier 1 surface

reflectance (Masek et al., 2006)

Landsat 8–9 Tier 1 Collection 2 surface

reflectance (Vermote et al., 2016)

Interferometric wide-swath ground range

detected (GRD) (Torres et al., 2012)

Band(s) Green: Band 2 (0.52–0.60 µm) SWIR (short-wave

infrared): Band 5, (1.55 - 1.75 µm)

Green: Band 3 (0.53–0.59µm)

SWIR: Band 6, (1.57 - 1.65µm)

VV receiver polarization

Spatial resolution 30 meters 30 meters 10 meters

Platform return

period

16-day 16-day 12-day

Record January 2015–September 2021 Landsat 8: January 2015–December 2023

Landsat 9: October 2021–December 2023

January 2015–December 2023

detected (GRD) data (Torres et al., 2012) with the vertical transmit-

vertical receive (VV) polarization. Sentinel 1B data are not available

over the study area. This study uses VV polarization because

it performs better than vertical transmit-horizontal receive (VH)

polarization at detecting water (Twele et al., 2016). Ascending and

descending data are available for some regions. However, only

ascending data are available for the study area. Table 1 presents

additional information on the Sentinel 1A platform and associated

dataset. GEE applied the following preprocessing routines to the

GRD images used in this study: orbital file application, border

noise removal, thermal noise removal, radiometric calibration,

terrain correction, and conversion of the detected backscatter

coefficients to decibels. Pixel values represent the detected

backscatter coefficient in decibels, which is also referred to as

“brightness.” Consistent with the MNDWI composite calculation,

31-day median composite SAR brightness grids were derived

for each target month by taking the median pixel value of

the SAR scenes collected +/- 15 days around the 15th of the

target month.

Following derivation, the MNDWI and SAR brightness median

composites were resampled to a common 10-m resolution grid

projected to the Universal Transverse Mercator 28 North (UTM

28N) coordinate system. Pixels were grouped into k clusters using

the cascade simple K-means clustering algorithm, where the best k

was selected following (Caliński and Harabasz, 1974). Finally, the

cluster number associated with Lac de Guiers, an area of known

permanent surface water in northern Senegal, was identified as

the reference surface water cluster. Pixels with K-means output

matching the reference cluster number were classified as “Surface

Water.” The remaining pixels were classified as “Not Surface

Water” or “No Data.” This method produced a 10-m resolution

surface water grid for each of the target months, with each grid pixel

classified as “Surface Water,” “Not Surface Water,” or “No Data.”

There are several limitations to the APWC method. The

APWCmethod requires a valid Landsat-derivedMNDWI and SAR

brightness value for pixel classification. This study uses 31-day

compositing to minimize the impact of data gaps in individual

Landsat and SAR scenes. However, sporadic data gaps remained in
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monthly composites of MNDWI due to clouds and cloud shadows.

Additionally, Sentinel 1A scenes for portions of the study area are

missing from the GEE archive for several dates, including July 2022,

July 2023, and October 2023. The “No Data” label was applied to

pixels where the MNDWI and/or the SAR brightness value for

the target month was not available. Slinski et al. (2019) discuss

additional method limitations, including errors of commission

when water is incorrectly identified in both the MNDWI and SAR

brightness datasets and errors of omission due to the presence of

floating vegetation and tree canopy in pond areas.

The area of the surface water pixels associated with each pond

was summed by month and scaled as follows:

as =
ai

amax
× 100 (3)

where as (%) is scaled pond surface water area, ai (square

meters) is the total pond surface water area for the target month

(i), and amax (square meters) is the maximum surface water area

detected over the period assessed. Scaled surface water area results

were compared to scaled observations of water depth to assess the

performance of the water classification approach.

The APWC results for October 2015 through December 2023

were used to derive estimates of surface water occurrence at each

location. Surface water occurrence for each calendar month was

calculated by pixel as follows:

occi,m =
SWi,m

Obsi,m
× 100% (4)

where occi,m is surface water occurrence for pixel i and calendar

month m, SWi,m is the count of the number of times surface water

was detected for the pixel and calendar month, and Obsi,m is the

count of the number of “Surface Water” and “Not Surface Water”

observations for the pixel and calendar month. “No Data” pixel

classifications are not included in the calculation. 100% surface

water occurrence indicates that surface water was detected in the

pixel for all valid observations for the month, while 0% surface

water occurrence indicates that surface water was never detected.

2.4 Model-based estimates of water
availability

Modeled estimates of water availability in ponds within the

study area were obtained from the FEWSNETWater Point Viewer.

Water availability estimates were generated using the water balance

model described by Senay et al. (2013) as follows:

1D = P + Rin − Rout − E− S (5)

where 1D (meters) is a change in pond water depth, and P

(meters) is satellite precipitation over the pond from the CHIRPS

data (Funk et al., 2015) precipitation product. Rin (meters) is

the watershed runoff into the pond estimated using the Soil

Conservation Service Curve Number method (Cronshey, 1986).

Rout (meters) is the outflow from the pond that occurs when the

water level exceeds maximum capacity, which is assumed to be

2m for each pond. S (meters) is pond seepage, estimated to be a

constant 0.002 m/day. E (meters) is open-water evaporation from

the pond, calculated as:

E = 1.05× ETo (6)

where ETo is the climatological reference for

evapotranspiration calculated using the American Society for

Civil Engineers formulation of the Penman–Monteith method

(Allen et al., 1998). The model assumes that the pond has negligible

inflow from the groundwater. The surface area of each pond was

delineated from ASTER satellite imagery and is kept constant over

time in the model.

For this analysis, the modeled pond depth was transformed

into scaled pond depth following Equation 1, consistent with the

approach used to scale the observed pond depths.

Modeled estimates of water availability were obtained for the

10 FEWS NET ponds shown in Figure 1. At the time of writing,

modeled water depth estimates were not available for the ponds

equipped with staff gauges. One additional location, FEWS NET

pond SN08, is located within the study area but was not included

in this analysis for data quality reasons; its behavior was an outlier

relative to nearby pond SN51 as well as the rest of the ponds

included in the analysis.

2.5 Precipitation data

Water availability estimates at each location were compared

to monthly rainfall estimates from the Climate Hazards Group

InfraRed Precipitation with Station (CHIRPS) precipitation

product. CHIRPS estimates rainfall by blending rain gauge

data with satellite precipitation estimates from thermal infrared

cold cloud duration statistics (Funk et al., 2015). The CHIRPS

precipitation product has a 0.05 × 0.05◦ degree spatial resolution.

The catchment area of the ponds used in this study is <2 km2.

Therefore, catchment area precipitation was estimated as the

precipitation associated with the pixel overlaying the pond location.

3 Results

3.1 Satellite-based surface water
classification results

This study found that surface water was detected by the APWC

method at each of the 22 pond locations. Figures 6, 7 show surface

water occurrence estimates for each of the ACF and FEWS NET

ponds, respectively. The surface water classification of ponds was

affected by the small size of some ponds. From 2022 to 2023, water

was detected in pond locations annually at a frequency of 68.2% for

all ponds and a frequency of 43.8% in ponds with a surface area of

<10,000 m2. The SM contains water classification results for each

month and pond over the 2022 and 2023 seasons.

Satellite-based surface water classification results were also

impacted by missing data. Partial results for July 2022 and 2023 are
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FIGURE 6

Percent surface water occurrence by month for the 12 Action Contre la Faim (ACF) ponds from October 2015 to December 2023. 100% surface

water occurrence indicates that surface water was detected in the pixel for all valid observations for the month, while 0% surface water occurrence

indicates that surface water was never detected.
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FIGURE 7

Percent surface water occurrence by month for the 10 Famine Early Warning Systems Network (FEWS NET) ponds from October 2015 to December

2023. 100% surface water occurrence indicates that surface water was detected in the pixel for all valid observations for the month, while 0% surface

water occurrence indicates that surface water was never detected.
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due to missing Sentinel 1A scenes, and partial results for August

and September 2022 and October 2023 are due to cloud cover and

cloud shadows in Landsat scenes. The pixels affected by the missing

data are classified as “No Data” on the surface water classification

maps included in the SM.

Surface water classification results at 12 locations (Gowe,

Loumbal Demak, Loumbal Peniol Naydé, Weendou Lamma 2,

Weendou Mawndou Mbelogne, Weendou Soukoundou, SB38,

SN39, SN40, SN46, SN50, and SN51) identified surface water for 3

or more consecutive months during 2022 and 2023. This allowed

inference of seasonality (i.e., the seasonal progression of pond

filling and drying at those locations).

The primary reasons that the APWC method failed to capture

seasonality during 2022 and 2023 in the remaining 10 locations

are (1) the small pond size (<10,000 m2) and (2) the presence

of vegetation. Seven of the locations (Bele Mouthiatédé, Weendou

Mbayla, Weendou Namma, SN09, SN10, SN47, and SN48) are

<10,000 m2. Three ponds (Weendou Howandou, Weendou

Ngueso Lombel, and Weendou Soukoundou) had substantial tree

cover, e.g., as illustrated for Weendou Soukoundou in Figure 8.

Algae or floating vegetation (Figure 8) may also have affected the

detection of surface water at some pond locations. Additionally, the

missing data for July 2022 and 2023 limited the assessment of the

timing of pond filling at the start of the season.

3.2 In situ water depth observations

In situ water depth observations show that all ACF ponds

contained water during the 2022 and 2023 rainy seasons (Figure 9).

The timing of pond filling following the onset of the Ferlo rainy

season and pond drying up lags its end by 1 to 3 months

(Figure 9). All ponds where observations were collected during

July and August contained water by the first week of August.

Pond depths reached near-maximum levels within a month of

the first observation of water in the pond and maintained that

level for most of the rainy season. The ponds progressively

dried up from September to January, after the end of the

rainy season. Bele Mouthiatédé dried up in September 2022,

but was subsequently refilled and contained water until the end

of October 2022. All other ponds contained water from the

date of the first observation of water until the date of the first

dry observation.

3.3 Comparison of satellite-based surface
water classification results with in situ data

The satellite-based surface water classification results for six

ACF ponds (Gowe, Loumbal Demak, Loumbal Peniol Naydé,

Weendou Lamma 2, Weendou Mawndou Mbelogne, Weendou

Soukoundou) were compared with in situ measurements of

seasonal water availability. These ponds were selected because

the satellite-based surface water classification results allowed

inference of the seasonal progression of pond filling and drying.

Figure 10 compares scaled in situ measurements of water depth to

scaled satellite estimates of water area for these ponds. The SM

contains plots showing scaled and unscaled comparisons for all

ACF ponds.

This study found good correspondence between the in situ

measurements of water depth and satellite-based estimates of water

area during the middle and end of the season (as depicted in

Figure 10). However, early season comparisons for 2022 and 2023

cannot be made due to missing data for July. Correlations or other

statistical metrics were not calculated because of the small sample

size. The SM contains plots showing unscaled depth measurements

and surface water area for the ACF ponds.

3.4 Comparison of satellite-based surface
water classification results with modeled
data

The satellite-based surface water classification results for six

FEWS NET ponds (SB38, SN39, SN40, SN46, SN50, and SN51)

allowed inference of the seasonal progression of pond filling and

drying. The satellite-based surface water classification results for

these ponds were compared with modeled estimates of seasonal

water availability. Figure 11 compares scaled modeled estimates

of water depth to scaled satellite estimates of water area for

these ponds. The SM contains plots showing scaled and unscaled

comparisons for all FEWS NET ponds.

Model simulations show all FEWSNET ponds containing water

during the 2022 and 2023 season, with all ponds beginning to

fill during July, drying up during April/May 2023, and containing

water at the end of December 2023 (Figure 11). This study found

good correspondence between the modeled estimates of water

depth and satellite-based estimates of water area during the middle

of the season (as shown in Figure 12).

Correspondence during the early season was mixed. For one

location, SN38, 2022 season pond filling in the satellite-based

dataset matches the model (i.e., both begin in July 2022). Satellite-

based pond filling estimates for the 2022 season are earlier than

model estimates at four locations (SN39, SN40, SN50, and SN51),

with these ponds filling in June 2022. The discrepancy between the

model- and satellite-based estimates of water availability in June

2022 at these locations may be due to model parameterization

and/or underreporting of June precipitation in the CHIRPS

product. The presence of June 2022 water in these ponds is not

considered a water classification error because it is consistent

across all locations in the eastern portion of the study area where

satellite-based time series were successfully derived, e.g., ACF pond

Weendou Lamma 2. The timing of pond filling could not be

determined due tomissing data for the sixth location, SN36, in 2022

and for all locations in 2023. It appears likely that unseasonal above-

normal rains in June may have been poorly captured by CHIRPS

version 2. This may be due to a systematic under-representation

of precipitation variance; this issue should be less pronounced in

CHIRPS version 3 (UCSB CHC, n.d.).

A major difference between modeled and satellite-derived time

series of water availability is the timing of the pond dries up. As

shown in Figure 12, the satellite-derived time series indicate that all

ponds dried up or were near-dry by the end of December of each

year. This is consistent with the in situ water depth observation
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FIGURE 8

(A) Shows floating vegetation at the Weendou Namma pond. (B) Shows tree cover at the Weendou Soukoundou pond.

FIGURE 9

(A) Shows total monthly Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) precipitation (Funk et al., 2015) at each Action Contre la

Faim (ACF) pond. (B) Shows the in situ water depth measured at each ACF pond.

time series. The water point model simulations retained water in

the ponds past December. The longer retention of pond water in

the model simulation may be due to a model parameterization

error, e.g., the modeled pond surface area may be smaller than the

observed pond capacity, or the model could underestimate seepage.

A larger pond watershed area could also increase overall pond

depth and thus lead to larger and longer storage. It might also be

due to the underestimation of the open-water evaporative demand

(E in Equation 5). Underestimates of seepage (S in Equation 5) are

also possible.

4 Discussion

Rangeland surface water is vital to the livelihoods of pastoral

and agropastoral communities in rangeland regions of Africa.

Modeling systems such as the FEWS NET Water Point Viewer

described by Senay et al. (2013) provide one of the few resources

to monitor the status of surface water across pastoral areas of the

Sahel and East Africa. However, sparse in situ hydrologic data

across much of Africa limit the ability to assess the performance

of these models. Satellite remote sensing-based surface water
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FIGURE 10

Comparison of scaled RS Area as percent of maximum measured and scaled in situ depth as percent of maximum measured for Gowe, Loumbal

Demak, Loumbal Peniol Naydé, Weendou Lamma 2, Weendou Mawndou Mbelogne, and Soukoundou ponds [(A–F) respectively].

FIGURE 11

(A) Shows total monthly Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) precipitation (Funk et al., 2015) at each Famine Early

Warning Systems Network (FEWS NET) pond. (B) Shows the mean monthly water depth modeled at each FEWS NET pond.

classification methods, such as the APWC algorithm, have been

shown to be a viable approach to assess water availability in the

small ponds used by pastoral communities (Slinski et al., 2019).

The overarching goal of this study was to assess the potential of

the APWC algorithm to fill this gap. The study demonstrates the

viability of this approach for assessing surface water availability

in the Ferlo region of Northern Senegal, as well as the challenges

to satellite-based estimates of water availability in small ponds.
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FIGURE 12

Comparison of scaled RS area as percent of maximum measured and scaled Modeled Depth as percent of maximum measured per month for SN38,

SN39, SN40, SN46, SN50, and SN51 ponds [(A–F) respectively].

The main findings of the study are discussed below, according to

research questions.

4.1 Research question 1: to what extent
can indicators from high-resolution remote
sensing data be used to assess water
availability in rangeland ponds in West
Africa?

Water occurrence derived from the APWC surface water extent

estimates for 2015–2023 (Figures 6, 7) shows that the APWC

method successfully detected water at all 22 pond locations. From

2022 to 2023, the annual detection frequencies for small ponds

(<10,000 m2) and all ponds are 43.8% and 68.2%, respectively. The

APWC results outperformed water occurrence products produced

by the Global Surface Water Explorer (Pekel et al., 2016) and the

Water Observations from Space (WOfS) (Halabisky et al., 2024).

Both datasets are 30-m resolution products derived from Landsat

data. The Global SurfaceWater Explorer identified water in 3 of the

22 locations, and WOfS identified water in 19 of the 22 locations.

The WOfS annual detection frequencies for small ponds and all

ponds in 2022–2023 are 37.5% and 65.9%, respectively.

Mishra et al. (2020) derived annual detection frequencies

for 867 small ponds in the Ferlo region of Senegal for 1 year,

2018, from Landsat and PlanetScope data. The APWC-derived

surface water classification performed better than the Landsat

classification method used by Mishra et al. (2020), which reported

annual detection frequencies of 21.6% for small ponds and 31.7%

for all ponds. PlanetScope are high-resolution (3-m) surface

reflectance data. Mishra et al. (2020) report that water classification

from these data performed considerably better, with an annual

detection frequency of 97.3% for small ponds. This demonstrates

PlanetScope’s promise for monitoring surface water in small ponds

such as those in the Ferlo region. However, PlanetScope data can be

challenging to work with, particularly for time series applications

over large domains, due to calibration issues, inadequate data flags,

and the large volume of data (Mishra et al., 2020; Wang et al.,

2021; Mullen et al., 2023). More recent studies by Mullen et al.

(2023) using PlanetScope data to identify the seasonal dynamics

of small ponds (<10,000 m2) in the Alaskan tundra indicate that

the more advanced Dove-R and Super Dove platforms and updated

processing algorithms (Planet Labs, 2023) reduce, but do not fully

resolve these issues. Key advantages of the APWC algorithm are

its computational efficiency, use of longer and stable datasets,

and ability to be implemented in the GEE cloud-computing

environment (Slinski et al., 2019).

Water classification maps included in the SM show that

seasonality over the 2022 and 2023 seasons can be inferred from the

surface water estimates for 12 locations: 6 ACF ponds and 6 FEWS

NET ponds. The APWC-derived surface water area estimates for

2022 and 2023 for the six ACF ponds were then compared to in situ

observations of water depth collected over the same period. The

remote sensing-derived and in situ time series shown in Figure 10

indicate that the timing of water availability in the ACF ponds is

generally consistent between the two datasets. The APWC-derived

seasonality could not be directly compared to the results reported

by Mishra et al. (2020) or the WOfS datasets for 2022 and 2023.
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Surface water classification at all locations was limited by

data gaps due to missing SAR data and cloud/cloud shadow

contamination of MNDWI data. Missing SAR data for July 2022

and 2023 limited the assessment of water availability during

the onset of the rainy seasons, when ephemeral ponds in the

study area begin to fill. However, APWC-derived surface water

extent estimates for this critical period are available in the longer

dataset used to derive the occurrence maps (covering 2015–

2023). Cloud cover and cloud shadows also impacted the surface

water classification results, but they are a minor limitation to the

application of the APWCmethod in this region.

Surface water classification was also impacted by tree cover,

algae, and floating vegetation. Classification in areas impacted by

vegetation could be improved by including SAR data with longer

wavelengths in the APWC algorithm, which better penetrates

vegetation. The NASA-ISRO SAR (NISAR) mission (launch

expected in 2025) will use L-band radar, which has a longer

wavelength than the C-band data provided by the Sentinel 1A

sensors. The longer wavelength will help overcome this issue, but

is not likely to eliminate it.

These results demonstrate that the APWC method is a viable

approach for assessing surface water availability in the Ferlo region

of Senegal. The method was not able to generate surface water

time series for all ponds, showing the importance of physical

characteristics of the ponds such as size and presence of vegetation

overlaying the water surface as well as gaps in the satellite datasets,

on method performance. However, seasonality is not expected

to vary widely across the region. Therefore, changes to model

parameters to improve performance at locations where the APWC

method was successful may be extended to nearby locations where

seasonality was not captured by the method.

4.2 Research question 2: to what extent
can these indicators be used to assess the
model representation of surface water
availability?

The APWC-derived surface water area and modeled water

depth time series shown in Figure 12 indicate that, while the timing

of the ponds’ fill and start to dry up is generally consistent between

the datasets, there are two notable differences. The remote sensing-

based dataset identified water in June 2022 at four locations (SN39,

SN40, SN50, and SN51), while the model simulations showed

pond filling starting in July 2022. In addition, the remote sensing-

based dataset indicated that all six ponds dried up by December

during the 2022 and 2023 seasons, while the model simulations

showed the ponds containing water past December. The differences

between the two datasets may be attributed to errors in model

parameters (e.g., pond surface area, watershed area, and maximum

pond depth), model forcing data (e.g., precipitation and open-water

evaporation), and/or surface water classification. Furthermore, the

runoff estimation method could be a source of error, and future

efforts will evaluate the potential of using other techniques, such

as the saturation excess principles, to simulate the rainfall-runoff

process. Like the ACF ponds, missing SAR data for July 2022 and

2023 limited the assessment of water availability during the onset

of these rainy seasons, but APWC-derived surface water extent

estimates for July are available in the longer dataset used to derive

the occurrence maps. This assessment shows the utility of satellite

remote sensing-based surface water in assessing model simulations

of surface water availability in the Study Area. The method is

subject to the previously mentioned challenges due to the physical

characteristics of the ponds and data gaps in the satellite datasets.

4.3 Concluding remarks

Remote sensing-based surface water classification using high-

resolution satellite datasets provides an important opportunity

to assess surface water availability in pastoral and agropastoral

regions, where surface water is critical to community livelihoods.

This study demonstrates the ability of the APWC method to

generate surface water extent datasets for ponds in the Ferlo region

of northern Senegal that can be used to assess the representation

of water availability by the FEWS NET Water Point Viewer. This

dataset is an important tool to assess the performance of hydrologic

models that would not otherwise be available in data-sparse areas

such as northern Senegal. Future studies will assess to extent the

new surface water estimates can be used to tune model parameters

to improve the performance of the FEWSNETWater Point Viewer.

This may be done by comparingmodeled estimates of surface water

area to satellite-derived estimates. Future studies will also assess

improvement to satellite-based estimates of surface water area in

the Sahel using datasets from new sensors, e.g., NISAR L-band data

and PlanetScope Dove-R/Super Dove platforms.
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