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Flood is the most frequent and destructive natural disaster, causing significant 
negative impacts on humans and built and natural ecosystems. While it is extremely 
challenging to prevent floods, their associated hazards can be mitigated through 
well-planned and appropriate measures. The present study combined the analytical 
hierarchy process (AHP) analysis and an ArcGIS-based multi-criteria decision-
making (MCDM) approach to assess, categorize, quantify, and map the flood-
prone areas in Khyber Pakhtunkhwa, Pakistan, a region particularly vulnerable 
to recurrent flooding. Eight key factors including precipitation, rivers/streams, 
slope, elevation, soil, normalized difference vegetation index, and land use were 
used for flood susceptibility modeling. The weighted sum overlay tool in global 
positioning system ArcGIS was utilized to give weightage to each raster layer, 
based on the AHP ranking to produce a flood susceptibility map for the study 
area. According to the AHP analysis, the most impactful factors defining the flood 
susceptibility in our study area were streams (0.29%), precipitation (0.23%), slope 
of the area (14%), and LST (10%). Our flood model achieved excellent accuracy, 
with Area Under the Curve (AUC) value of 0.911. The model predicted that 9% 
of the total area is classified as very high risk, while 14% is identified as high risk, 
covering approximately 923,257 hectares and 1,419,480 hectares, respectively. 
These high-risk zones are predominantly concentrated in the central and lower 
northern, densely populated districts of the province. Our flood susceptibility 
results would assist policymakers, concerned departments, and local communities 
in assessing flood risk in a timely manner and designing effective mitigation and 
response strategies.
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Introduction

As the most prevalent and destructive natural disaster, floods negatively impact both 
human populations and built and natural ecosystems (Kia et al., 2012; Mehravar et al., 2023; 
Samanta et  al., 2018). It causes a significant damage to human lives, agricultural lands, 
infrastructure, properties, and the overall economy (Charlton et al., 2006; Dang and Kumar, 
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2017; Scheuer et al., 2017). Alarming statistics revealed that floods 
result in over 2000 human casualties annually, and affecting over 75 
million people worldwide either directly or indirectly (Calil et al., 
2015; Gain et al., 2015). This catastrophe is the outcome of several 
correlated natural “climate driven irregular rainfall and excessive 
snowmelts” and human-caused events including rapid urbanization, 
deforestation excessive use of greenhouse gases (Rao, 2001; Scheuer 
et al., 2017; Xu et al., 2023).

As the risk of floods and associated damages have intensified 
in recent decades (Alfieri et al., 2015; Arnell and Gosling, 2016; 
Zhao et  al., 2022), effective flood susceptibility assessment 
modeling is required to minimize the floods hazards (Jamali et al., 
2022; Otieno, 2004). Although floods are incredibly difficult to 
prevent entirely, with well-planned strategies and implementation 
of appropriate mitigation measures, the inherent risks related to 
flooding can be significantly reduced. To address these risks and 
enhance flood management, researchers have developed different 
method to assess, map, and manage the flood susceptibility for an 
area (Das and Gupta, 2021; Dou et al., 2018; Khosravi et al., 2016a). 
Accurate flood susceptibility assessment needs a thorough 
understanding of an area’s topographical and climatic variables, as 
some parameters are detrimental in defining an area’s vulnerability 
to flood hazards.

For instant, elevation is a major factor affecting the water depth 
and flow direction (Gigović et  al., 2017). Higher-elevation areas 
having steep slopes are less vulnerable to floods in comparison to 
lower-elevation and flat areas (Das, 2019; Kazakis et al., 2015; Liuzzo 
et al., 2019). Similarly, the slope measures the extent to which an 
object is inclined either steeply or obliquely in relation to a horizontal 
plane and is considered one of the crucial variables in flooding 
(Gigović et al., 2017). The duration and water flow rate are greatly 
impacted by the slope (Islam and Sado, 2000). Compared to steeper 
terrains, flat surfaces are more flood-prone because the water flow is 
slower and it accumulates there for longer periods of time (Gigović 
et al., 2017; Rimba et al., 2017). Precipitation is also an important 
factor, as intense and heavy rainfall over a short period could increase 
the chances of flooding in an area (Gao et al., 2023; Santato et al., 
2013). Moreover, the rainfall-runoff process is determined directly by 
the soil properties and type of the area, like the thickness, infiltration 
rate, permeability, and wetness before the rainfall (Ouma and Tateishi, 
2014; Zhiyu et al., 2013). Different soil types have varying resistance 
and absorption capacities of water (Ouma and Tateishi, 2014; Zhiyu 
et al., 2013). Consequently, the water-holding capacity and infiltration 
properties of different soils also influence flood susceptibility 
(Sugianto et al., 2022; Hill et al., 2010; Shen and Chui, 2023). Many 
flood hazard management experts highlighted the importance of land 
use-land cover (LULC) in determining the rainfall-runoff process 
(Fernández and Lutz, 2010). Another variable that is a key indicator 
of flood hazards and flood risk zones is the distance of a location from 
streams and river (Fernández and Lutz, 2010). Areas closer to 
waterbodies like rivers and streams are more prone to flooding 
compared to those located away from riverbeds. Similarly, normalized 
difference of vegetation index (NDVI) is one of the crucial variables 
to determine the flood susceptibility of an area (Ali et al., 2020). Dense 
vegetation can reduce the effect of floods (Ali et al., 2020). Finally, land 
surface temperature (LST) is a basic component of a regional climate 
and impacts ecosystems both locally and globally. LST is the measure 
and a good indicator of the thermal radiation emission from the land 

surface, which determine air flow temperature and its flow, 
consequentially effecting floods (Xue et al., 2018).

Flood management is crucial component in understanding flood 
and the formulation of risk-curtailing strategies to minimize the 
associated threats (Abbaszadeh, 2016; Dandapat and Panda, 2017). 
Numerous studies have highlighted the importance of identifying and 
mapping flood-risk areas to lower flood-related losses (Calil et al., 
2015; Gain et al., 2015; Rao, 2001; Samanta et al., 2018; Zou et al., 
2013). Flood hazard mapping is a pivotal tool, as it plays a critical role 
in planning, early warning systems, appropriate response efforts, and 
risk mitigation (Gain et al., 2015; Siahkamari et al., 2018). Advanced 
experimental and modeling analyses are crucial for the prediction and 
monitoring of natural variables and their impacts on flood 
susceptibility. For example, the use of UAV-acquired multispectral 
images has been shown to effectively assess the biomass of riparian 
plants and its influence on the hydrodynamics of vegetated streams 
(Crimaldi and Lama, 2021). Moreover, understanding the flow 
resistance of floodplain vegetation mixtures plays a significant role in 
modeling river flows, with vegetation cover directly affecting water 
movement and flood behavior (Box et  al., 2021). Similarly, the 
validation of global flow resistance models in experimental drainage 
channels can improve predictions related to flow dynamics in 
vegetated waterways (Errico et al., 2019). However, the significance of 
flood hazard mapping cannot be overstated, as it encompasses crucial 
elements such as flood awareness, early warning systems, and the 
development of initiatives to reduce flood hazards (Dang and Kumar, 
2017; Das and Gupta, 2021).

Innumerable attempts have been made to estimate and illustrate 
the areas susceptible to flooding (Hong et al., 2018; Shafapour Tehrany 
et al., 2017; Zhao et al., 2018). A variety of techniques and statistical 
models have been developed for a precise flood assessment 
(Abbaszadeh, 2016; Dandapat and Panda, 2017; Naulin et al., 2013). 
However, conventional flood hazard mapping techniques have various 
shortcomings (Guo et al., 2014). Traditional flood hazard mapping 
relies on historical flood records, simple hydrological models, or static 
inundation maps, which fail to account for dynamic factors like 
urbanization, deforestation, or climate change. While useful for 
baseline data, these methods lack the precision and spatial accuracy 
needed for detailed risk assessments, especially in rapidly changing 
environments. They are also less effective in predicting extreme 
weather or compound flood hazards, which require advanced, multi-
criteria decision-making models. Moreover, in developing countries 
with limited resources, the traditional methods pose additional 
obstacles due to their resource-intensive nature, thus making them 
inappropriate in such regions.

Since traditional approaches may not provide an extensive 
understanding of river and flood dynamics, this emphasizes the need 
for alternative and innovative approaches (Mahmood and Ullah, 2016; 
Ozdemir and Altural, 2013). In recent years, researchers have 
developed various models and methods, often in combination with 
geospatial technologies, to identify and delineate flood hazard areas 
(Ali et al., 2020; Shafapour Tehrany et al., 2017; Yariyan et al., 2020). 
This study integrates global positioning system ArcGIS 10.5 (hereafter 
GIS), remote sensing, and multi-criteria decision analysis (MCDA) 
using the analytical hierarchy process (AHP) analysis to model flood 
susceptibility, due to the high accuracy, efficiency and convenience of 
this approach (Ajibade et al., 2021; Allafta and Opp, 2021; Aydin and 
Sevgi Birincioğlu, 2022; Das and Gupta, 2021; Karymbalis et al., 2021). 
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Recently, this method has been used in many studies to track down 
and depict flood-prone zones (Ali et al., 2020; Hagos et al., 2022; Hong 
et al., 2018; Khosravi et al., 2016b; Mahmood and Rahman, 2019; 
Negese et al., 2022).

Pakistan has been impacted by floods on every front (Hussain et al., 
2020), experiencing 21 major floods between 1950 and 2011, averaging 
one major flood every three years (Shah et al., 2017). These floods claimed 
8,887 lives, caused an estimated economic loss of 19 billion US dollars, 
and destroyed more than 100,000 villages (Ali, 2013). Prior to 2022 flood, 
the country faced one of the biggest floods in 2010, which affected over 
14–20 million people and caused 1,700 fatalities and caused economic 
damage worth US$9.7 billion by effecting almost every sector of the 
country (Floods, 2010). However, Pakistan was hit by an even more 
catastrophic event in 2022, often referred to as the “monster” flood, which 
simultaneously affected all four provinces (Nanditha et al., 2023). By 
October 11, 2022, a total of 94 districts of all four provinces of the country, 
were proclaimed flood afflicted. Alone in Khyber Pakhtunkhwa (KP) 
province, 17 districts were affected by the 2022 flood. It affected a 
population of around 4,350,490, resulting in 306 human casualties [males 
149 (49%), females 41 (13%), and children 116 (38%)] and 21,328 
livestock losses. Furthermore, 91,463 households (HHs) were fully or 
partially damaged due to the floods. Additionally, 107 bridges crumbled, 
and 1,275 kilometers (km) of roads were damaged. Crops, being no 
exception, as about 107,220 hectares of agricultural land was hit by the 
2022 flood. Given KP’s vulnerability to recurring floods (Mahmood and 

Ullah, 2016; Ullah et  al., 2018), this study focuses on assessing, 
categorizing, mapping, and quantifying the flood susceptibility of the 
province. The region’s complex topography and sensitive climate have 
aggravated flood susceptibility (Rahman et al., 2023; Ullah et al., 2018). 
Moreover, the study area is the first impact zone for most of the flood 
events in the country. This study aims to asses, categorize, map, and 
quantify the flood susceptibility of the Khyber Pakhtunkhwa province.

Materials and methods

Study area

Our study area is the Pakistan’s northernmost province, Khyber 
Pakhtunkhwa (KP) (34° 036.20 N, 71° 35′9.53E) (Figures 1A–D). It 
spreads across 10,174,100 hectares with an elevation range of 
149–7,371 meters above sea level (Figure 1C). According to the most 
recent national census (https://www.pbs.gov.pk/), he  province has 
experienced a growth rate of 2.38% since 2017, bringing the total 
population to 40.8 million (with a population density of 401.6 people/
km2). The majority of the population resides in the central and lower 
northern regions of the province (Figure 1D). The KP is the third-most 
populous province in Pakistan, yet smallest by land area and second-
most underdeveloped within the country (Zaidi et  al., 2013). The 
province’s terrain consists of landforms, ranging from forest-covered 

FIGURE 1

Location of the study area, (A) Location of Pakistan in the world, (B) Location of study area in Pakistan, (C) Elevation range of KP, (D) Human population 
density and location of 2002 flood extent.
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and snow-capped mountain ranges in the north to undulating 
submontane areas and plains surrounded by hills in the south. The 
snow-caped northern mountains serve as a source of water for 
different rivers and streams that emerge from these mountains and run 
down toward the lower southern parts of the area. The climate of the 
province generally changes with elevation. The province experiences 
varying amounts of precipitation, with an average of 16 inches per year 
with highest from January to April. During the winters, the northern 
zone is snowy and cold and receives heavy rainfall, while the summer 
season is pleasant with moderate rainfall, except in the capital 
Peshawar, which is hot in the summer and has comparatively cold 
winters with less rainfall. The northern parts receive heavy rains and 
snowfall between the months of November and February as compared 
to the southern parts, where rainfall is lower. A variety of wildlife fauna 
is found in the province, including a few captivating wild mammals 
like the snow leopard (Panthera uncia), common leopard (Panthera 
pardus), Himalayan lynx (Lynx lynx isabellinus), Kashmir markhor 
(Capra falconeri cashmiriensis), Himalayan ibex (Capra ibex sibirica), 
and urial (Ovis vignei) (Molur, 2003; Roberts and Bernhard, 1977).

Data acquisition for flood susceptibility 
map

In this study, the selection of eight factors—precipitation, 
streams/rivers density, slope, elevation, soil type, land use/land cover 
(LULC), NDVI, and LST—was based on their established relevance 
to flood susceptibility in the region. These factors were identified 
through a comprehensive literature review, which highlights their 
significant influence on flood dynamics in similar topographical and 
climatic settings (Khosravi et al., 2016a; Ali et al., 2020). Specifically, 
precipitation and streams/rivers density directly impact flood events, 
while slope and elevation influence water accumulation and flow. 
NDVI and LULC assess land cover’s role in flood mitigation, and soil 
type and LST provide insights into water retention and regional 
climate variations that exacerbate flood risk. Eight factors including 
streams/rivers, precipitation, slope, land surface temperature (LST), 
soil, land use and land cover (LULC), elevation (DEM), and 
normalized difference of vegetation index (NDVI) are expected to 
be impactful in defining the flood susceptibility in the study area 
(Figure  2; Table  1). These factors have been extensively used in 
previous literature with similar objectives (Alarifi et  al., 2022; 
Almodayan, 2018; Ogato et al., 2020; Radwan et al., 2019). A detailed 
description of the factors used in our study is given in Table 1, while 
the complete methodological flowchart is shown in Figure 3.

Streams/rivers density of the area

The distance from the river/streams network is a key indicator of 
flood hazards and flood risk (Fernández and Lutz, 2010). Areas in close 
proximity to rivers and streams, or those having higher density of 
rivers and streams, are more vulnerable to flooding compared to areas 
located farther from riverbeds, or with a lower density of waterbodies. 
From the elevation range of the region, the river/streams density map 
was made using GIS (Table 1; Figure 2A). The rivers/streams were 
reclassified into 5 different categories (Supplementary Figure S1A; 
Supplementary Table S2), with the index range from 2 to 10.

Precipitation/rainfall of the area

The study area receives heaviest rains in the month of July (usually 
called monsoon rains). We downloaded precipitation data for the said 
month from WorldClim (Table 1; Figure 2B). The precipitation map was 
generated with GIS. The precipitation of the area was reclassified into 5 
classes considering the areas experiencing the heaviest rains have the 
highest flood susceptibility (Supplementary Figure S1B; 
Supplementary Table S2).

Slope range

The slope raster layer was derived from the elevation layer (with a 
10 meters resolution) using the surface tool in GIS (Table 1; Figure 2C). 
The slope was reclassified into five classes (ranging from 2 to 10) using 
the reclassify tool in GIS. Regions with the highest slope and the 
lowest flood susceptibility were assigned value of 2, while areas with 
the lowest slope and highest flood susceptibility were represented by 
10 (Supplementary Figure S1C; Supplementary Table S2).

Elevation range of the area

For this study, we downloaded NASA SRTM raster layer with a 
10-meter resolution to acquire elevation (Table 1; Figure 2D). Since the 
lower elevation areas are more prone to flood hazards, the elevation of the 
area was reclassified (Supplementary Figure S1A; Supplementary Table S2) 
into five classes, where areas with the lowest risk of flooding (the highest 
elevation) are represented by 2 and areas with the highest flood risk (the 
lowest elevation) are represented by 10. GIS was used to prepare, present, 
and reclassify the elevation layer of the area (Supplementary Figure S1D; 
Supplementary Table S2).

Soil of the area

The rainfall-runoff process is directly influence by the soil properties 
of the area, like the thickness, infiltration rate, permeability, and wetness 
before the rainfall (Ouma and Tateishi, 2014; Zhiyu et al., 2013). Different 
types of soil have varying resistance and absorption capacities of water 
(Ouma and Tateishi, 2014; Zhiyu et  al., 2013). This water holding 
capacities and infiltration properties of different soil types effect the flood 
susceptibility of a region (Sugianto et al., 2022). Generally, as compared to 
sand, the runoff is greater and faster in loam and clay soils (Hill et al., 
2010). The soil data (in raster format) was obtained from FAO, 2003 
(Table  1; Figure  2E). The reclassification of soil is given in 
Supplementary Figure S1E; Supplementary Table S2.

Land surface temperature of the area (LST)

Land surface temperature (LST) is a fundamental component 
of climate and biology, influencing organisms and ecosystems 
both locally and globally. LST is the measure and a good indicator 
of the thermal radiation emission from the land surface. 
Alternatively, LST describes how hot the land is to the touch. LST 
(Table 1; Figure 2F) and air temperature (the temperature given 
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in weather reports) are two different parameters because, as 
compared to air, land heats and cools faster. Varied environmental 
irregularities can be caused by land surface temperature, flooding 

being one of them (Xue et al., 2018). Built-up areas typically have 
higher LST compared to forests and vegetation-covered regions 
(Supplementary Figure S1F; Supplementary Table S2).

FIGURE 2

Presentation and range of the variables used for flood hazard assessment. The figure includes different environmental and topographic factors: 
(A) Precipitation, (B) Streams, (C) Slope, (D) Elevation, (E) Soil, (F) Land surface temperature (LST), (G) Normalized difference vegetation index (NDVI), 
and (H) Land use land cover (LULC).
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Normalized difference of vegetation index 
(NDVI) of the area

NDVI is one of the crucial variables for flood susceptibility of an 
area (Ali et  al., 2020). Densely vegetated areas are less likely to 
be impacted by flooding as compared to regions where there is less or 
no vegetation (Ali et al., 2020). On map, the higher NDVI (Table 1; 

Figure 2G) values indicate a lower risk of flooding, while lower values 
are an indicator of high flood susceptibility (Rehman et al., 2022; 
Ullah and Zhang, 2020). Additionally, the elevated, snow-capped 
northern regions are covered with sparse or unhealthy vegetation and 
thus have the lowest NDVI values (Shrestha et al., 2020; Ziwei et al., 
2023). In short, flood susceptibility decreases with an increase in 
vegetation (Supplementary Figure S1G; Supplementary Table S2).

TABLE 1 Details of the factors used for flood susceptibility modeling.

S.No. Environmental variables and abbreviations Abbreviation Unit Source

1 Precipitation Precipitation Millimeter https://www.worldclim.org/data/

worldclim21.html

2 Elevation above sea level Elevation Meter NASA (SRTM)

3 Slope of the area Slope Meter Created from SRTM DEM

4 Density of streams/rivers of the area Streams Created from SRTM DEM in GIS

5 Digital soil map of the world Soil FAO, 2003

6 Land use land cover LULC USGS: http://edcsns17.cr.usgs.gov/glcc

7 Normalized difference vegetation index NDVI USGS: http://edcsns17.cr.usgs.gov/glcc

8 Land surface temperature LST Degree Landsat 8 Collection 1 Tier 1 8-Day 

TOA Reflectance Composite; using 

google earth engine

FIGURE 3

Stepwise methodological flowchart.
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Land use and land cover (LULC)

Many flood hazard experts highlighted the role of land use-land 
cover (LULC) in determining the rainfall-runoff process and flood 
vulnerability (Fernández and Lutz, 2010). In our study, the LULC 
(Table 1; Figure 2H) in raster format was obtained from USGS. The 
LULC of the area was reclassified (Supplementary Figure S1H; 
Supplementary Table S2) on the basis that the forest areas are less 
likely to be affected by floods as compared to the buildup areas and 
water bodies.

Flood susceptibility categorization, 
quantification, and spatial distribution

The flood susceptibility model integrated each factor based on 
its contribution to flood risk in Khyber Pakhtunkhwa (KP). We used 
the Analytical Hierarchy Process (AHP) to assign weights through 
expert judgment and empirical relevance. The AHP analysis ranked 
streams/rivers density and precipitation as the most influential, 
followed by slope and NDVI, validating the relevance and 
significance of all factors in the modeling process. After 
reclassification, relative weights for each factor were assigned using 
the Analytical Hierarchy Process (AHP) model, a method also used 
in similar studies across different countries (Ali et al., 2020; Allafta 
and Opp, 2021; Aydin and Sevgi Birincioğlu, 2022; Das and Gupta, 
2021; Dash and Sar, 2020; Hadipour et al., 2020). The integration of 
GIS-based MCDM and AHP outputs was employed to assess, 
categorize, quantify, and map areas susceptible to flood hazards 
across the study region. To develop the final flood susceptibility 
map, the weighted sum overly tool in GIS was used to give 
weight to each raster based on the AHP confusion matrix 
(Supplementary Tables S3, S4; Supplementary Figure S5). The flood 
susceptibility output map was then reclassified into five distinct 
classes including very high-risk area, high-risk area, medium-risk 
area, low-risk area, and no-risk area using GIS. To ensure the 
robustness of the AHP weight assignment, we  performed a 
consistency check on pairwise comparisons, yielding a CR value of 
0.05, well within the acceptable threshold of 0.10 (Khosravi et al., 
2016a; Ali et al., 2020). This confirms that the pairwise comparisons 
were consistent and logically aligned. Additionally, expert validation 
was crucial in confirming the relevance and accuracy of the factor 
weightings, with local experts providing insights based on their 
knowledge of regional flood dynamics, further supporting the 
model’s reliability.

Flood model validation
Model accuracy and validation are crucial for ensuring the 

model reflects real flood occurrences (Hagos et al., 2022; Mahmoud 
and Gan, 2018; Ogato et al., 2020; Tadesse et al., 2022). This study 
used the ROC technique to validate the model, a widely recognized 
method for assessing flood susceptibility maps (Chung and Fabbri, 
2003; Liuzzo et al., 2019; Tehrany et al., 2013). The model validation 
was based on flood occurrence points from the 2022 flood, 
collected during field surveys in affected areas. While historical 
data was also compiled, most points overlapped with the 2022 flood 
zones. Given this, we  focused the validation on the 2022 data, 
ensuring its relevance and accuracy by cross-checking with 
government records and satellite imagery. These validated points 
were used to assess the model’s performance and validate the flood 
susceptibility map. The flood occurrence data was converted into a 
point shapefile using ArcCatalog 10.5, with training points used for 
the success rate and testing points for the prediction rate (Tayyab 
et al., 2021; Zhao et al., 2019). The ROC curve was generated using 
ArcSDM in GIS, and cross-validation was employed to fine-tune 
parameters and improve model accuracy. This iterative process 
achieved the highest AUC value, verifying model performance. The 
AUC (ranging from 0 to 1) indicated model accuracy, with values 
closer to 1 representing better fit (Li et  al., 2020; Swets, 1988; 
Walden-Schreiner et  al., 2017; Wang et  al., 2020). Model 
classification and performance details are provided in 
Supplementary Table S4.

Results

Analytical hierarchy process (AHP) results

The AHP analysis was conducted to assign relative weights to 
each of the eight flood-influencing parameters. The pairwise 
confusion matrix allowed for a systematic comparison, ranking the 
parameters based on their contribution to flood susceptibility. The 
ranking and weightage of the factors was determined by the 
pairwise confusion matrix (Table 2). The ranking of factors ranged 
from 1 (least influential) to 8 (most influential). According to the 
AHP results the final criteria weight of factor is as follow: streams 
(0.29%), the precipitation (0.23%), slope of the area (14%), LST 
(10%), soil (0.047%), LULC (0.044%), DEM (0.044%), and NDVI 
(0.042%) (Figure 4; Table 2). A total of 28 comparisons were made, 

TABLE 2 Weights for the factors/parameters based on pairwise comparisons in AHP analysis (comparative importance of the factors with respect to one 
another).

Factor/parameter Priority/contribution (weightage) Rank Impact (+, −)

Streams 0.298 1 0.146

Precipitation 0.273 2 0.124

Slope 0.149 3 0.072

LST 0.104 4 0.042

Soil 0.047 5 0.016

LULC 0.044 6 0.011

DEM 0.044 7 0.007

NDVI 0.042 8 0.014
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with a consistency ratio (CR) of 0.05 and a principal eigenvalue of 
8.493. The principal eigenvector and eigen value provide a way to 
summarize the importance of each factor in the decision matrix. 

The iterative solution with a small delta indicates that after six 
iterations, the method used to find these values reached a 
stable solution.

High-risk zone
The study shows that the very high-risk area is spread across 

approximately 923,257 hectares which makes up 9% of the total area 
(Figure 5; Table 3). This zone primarily includes the lower northern 
and central districts, including Swat, Lower and Upper Dir, Swabi, 
Noshehra, Abbottabad, Manshera, Shangla, Buner, Orakzai, Kurram, 
Mohmand, and Khyber. A small patch in the very high-risk area 
category was identified in the DIK district too (Figure 6). The high-
risk area, on the other hand, covers nearly 1,419,480 hectares (14% of 
the total area) (Supplementary Table S5) and is spanning in the central 
region of the study area.

Medium-risk area (vulnerable zone)
Covering a wide area of approximately 3,143,183 hectares, the 

medium-risk areas account for 31% of the total area. These areas are 
distributed across the entire study zone, with a higher concentration 
observed in the southern parts.

Low-risk area and no-risk area (safe zone)
The low-risk areas span an area of 2,968,593 hectares (29%), 

primarily covering the extreme northern and southern parts of the 

FIGURE 5

Model based flood susceptibility map of KP.

FIGURE 4

Parameters/factors weightage based on the APH analysis.
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study region. The no-risk areas cover 1,719,586 hectares, which 
account for 17% of the total area and are also predominantly located 
in the extreme northern and southern sectors. According to our flood 
model outputs, these areas are considered safe zones. Complete detail 
and breakdown of flood categorization for all districts of KP is given 
in Supplementary Table S6.

Model performance and accuracy
A valid robust model was produced by the flood hazard analysis 

that combined GIS-based MCDM and the AHP analysis. To assess the 
accuracy of the flood susceptibility map, we  used the Receiver 
Operating Characteristic (ROC) curve and Area Under the Curve 
(AUC) metrics. The AUC value of 0.911, as calculated from the 131 
flood observation points, demonstrated the model’s excellent 
predictive performance (Figure 6).

Discussion

In this study, we used GIS-based MCDM and AHP analysis to 
map flood-prone areas across Khyber Pakhtunkhwa, the country’s first 
impact zone for floods. This method has been widely employed in 
previous studies to identify and map flood-susceptible regions (Ali 
et al., 2020; Hagos et al., 2022). Due to its efficacy and precision, this 
technique, along with other contributing factors, has been widely used 
in various studies to assess and map flood-vulnerable areas 
(Abdelkarim et al., 2020; Ali et al., 2020; Allafta and Opp, 2021; Aydin 

and Sevgi Birincioğlu, 2022; Das and Gupta, 2021; Karymbalis 
et al., 2021).

In our case this method proved its efficiency, reliability and 
accuracy, as the AUC value was 0.911, indicating that the model 
performance was excellent (Sharif et al., 2016; Wang et al., 2023). To 
assess our model’s performance, we compared its AUC value (0.911) 
with other commonly applied models, such as those by Hagos et al. 
(2022) and Mahmoud and Gan (2018), which reported AUC values 
of 0.85 and 0.88, respectively. The higher AUC value indicates that 
our model, incorporating AHP and expert validation, more 
accurately captures the complex flood dynamics of Khyber 
Pakhtunkhwa. Additionally, the model’s integration of local 
knowledge and adaptability to dynamic environmental factors 
further enhances its reliability in predicting flood susceptibility in 
this rapidly changing region. A complete understanding of the flood 
hazards susceptibility for the area is provided by the flood 
susceptibility model categorization that are derived from the AHP 
analysis. The resulting map and classifications would be helpful for 
timely decision-making and efficient flood risk management. 
Understanding the probability and extent of flood occurrences 
provides the basis for effective management of flood hazards (Binns, 
2022). Flood-prone area maps are vital for managing and mitigating 
flood hazards, providing key information to residents and 
stakeholders (Abdelkarim et al., 2020; Rahmati et al., 2016). Recently, 
sensitivity analysis and natural resource monitoring have gained 
importance in flood risk mitigation, particularly for ecohydrological 
systems and vegetated waterways (Lama and Crimaldi, 2021). 
Remote sensing techniques like NDVI and dNBR are effective for 
monitoring environmental changes that influence flood susceptibility 
(Mohammad et al., 2023). Additionally, flood-mitigation reservoir 
designs, with varied configurations, can significantly reduce peak 
discharge during floods (Pirone et  al., 2024). These advanced 
methods enhance flood hazard understanding and improve 
mitigation strategies.

According to AHP analysis, four factors—rivers/streams, 
precipitation, slope, and LST—contribute 82% to the flood susceptibility 
map. Precipitation is particularly critical as heavy rainfall causes river 
overflow, leading to floods. Similar results were registered by Shahabi 
et al. (2021). Precipitation is a key factor that triggers flood occurrences, 
as heavy or prolonged rainfalls leads to large volumes of runoff water 
entering streams and rivers, causing flood inundation (Allafta and Opp, 
2021; Feng et al., 2023; Xu et al., 2023).

Like the volume of water, its velocity, which is greatly influenced 
by slope, also determines the flood susceptibility of an area. Generally, 
water flows more slowly in areas with lower slope, causing water 
accumulation in lowlands or flatlands, thereby increasing the risk of 
flooding. In contrast, steeper slopes mountainous regions prevent 

TABLE 3 Flood susceptibility categorization, quantification and risk priority ranking.

Flood risk Area (hectares) Percent area (%) Priority ranking

No-Risk Area 1,719,586 17 Safe zone

Low-Risk Area 2,968,593 29

Medium-Risk Area 3,143,183 31 Vulnerable zone

High-Risk Area 1,419,480 14 Risk zone

Very High-Risk Area 923,257 9 High risk zone

FIGURE 6

ROC curves and corresponding AUC values of the machine learning 
model.
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FIGURE 7

Spatial distribution of high-risk zone and human population density across KP.

water from accumulating (Das and Gupta, 2021; Mujib et al., 2021; 
Wang et al., 2015; Zzaman et al., 2021). Our findings showed a clear 
pattern: the extreme northern edges of the area, which are 
characterized by steep mountain ranges, correspond with the safe 
zone identified in our flood susceptibility results. The results have 
clearly shown that plain areas with a minimum slope are more 
vulnerable to floods compared to areas with steeper slope (Shahabi 
et al., 2021). The findings of this criterion are consistent with the 
findings of Khosravi et al. (2016b).

In addition to rainfall and slope, the occurrence, density, length, 
and proximity of streams and rivers also play an important role in 
influencing flooding. The flood vulnerability is higher in the areas that 
are near the streams or with a higher density of the streams than the 
areas situated away from the rivers and streams since heavy rainfall 
results in overbank flows, which cause flooding of adjoining lowland 
areas (Mahmoud and Gan, 2018; Termeh et  al., 2018). Moreover, 
usually areas away from the rivers are at the higher elevation, which 
also adds to low flood risks (Kia et al., 2012; Lee and Rezaie, 2022; 
Zzaman et al., 2021). Our study’s results align with these findings, 
showing that areas nearer to rivers and streams indicate a greater 
susceptibility to flood hazards (Abdelkarim et  al., 2020; Das and 
Gupta, 2021; Lee and Rezaie, 2022; Mahmoud and Gan, 2018; Zzaman 
et al., 2021).

Studies have also revealed an association between LST and 
flooding. The global warming and climate change are the reasons 
for an increase in the LST, causing ice caps in the Himalayan region 
to melt rapidly, leading rivers to flood (Jain et  al., 2023). The 
relationship between rise in LST and flooding is indirect, as many 
studies have shown that LST varies considerably with the LULC and 
vegetation cover. With an increase in urban cover and barren land 
the LST values also increases while it decreases in areas with higher 

vegetation (Achmad and Muftiadi, 2019; Jamali et  al., 2022; 
Rahaman and Shermin, 2022). Many studies have established a 
correlation between higher NDVI and lower flood vulnerability 
(Das, 2018; Tehrany et al., 2013). Vegetation cover affects climate 
and land surface fluxes both regionally and globally, while climate 
also plays a significant role in determining vegetation cover 
(Hussain et al., 2023). A positive relationship between the La Niña 
events and temperature has been established by depicting higher 
land surface temperatures with an increase in La Niña events (Eboy 
and Kemarau, 2023; Yan et al., 2020).

The intense monsoon rains in Pakistan were linked to strong La 
Niña events (Ju and Slingo, 1995; Safdar et al., 2019). Abnormally 
high temperatures during the spring and summer of 2022 enhanced 
a deep depression from the Arabian Sea, resulting in heavy rainfall 
across the country (Mallapaty, 2022; Otto et al., 2023). Temperatures 
rose to more than 50°C in few parts of the country in the months 
of March and April 2022, which is an atypical time of year to witness 
severe heat. The rise in temperature speeds up the melting of 
Pakistan’s around 7,000 glaciers in the northern parts, that feed the 
country’s rivers. Recent studies have highlighted that climate 
induced fluctuations in temperature and rainfall are the driving 
forces of repeated floods (Mahmood and Ullah, 2016; Qi et  al., 
2024; Ullah et  al., 2018). Simultaneously, changes in land use 
pattern and excessive urbanization leads to an increase in 
impervious surfaces and a consequent increase in flow velocity 
(Sugianto et al., 2022) triggers flood disasters within a specific 
locale (Charlton et al., 2006). Pakistan is located in the south Asian 
monsoon region (Ahmed et al., 2019). Northern parts of Pakistan 
often receive heavy rainfall from June to September and 
approximately, about half a million people are affected by flooding 
every year (Baqir et al., 2012).
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This study used raster layers with consistent spatial resolution 
and projection, a best practice for geospatial modeling (Hong et al., 
2018; Khosravi et  al., 2016a), ensuring spatial consistency and 
minimizing errors in flood susceptibility modeling (Zhao et  al., 
2022). The integration of GIS-based MCDM and AHP provides a 
robust framework for assigning weights to variables, which is widely 
recognized as reliable for flood assessments (Aydin and Sevgi 
Birincioğlu, 2022; Hagos et  al., 2022). If these considerations—
consistent data resolution, appropriate projection, and the use of 
MCDM with AHP—had not been addressed, model accuracy would 
have been compromised, undermining the results’ reliability in 
capturing flood risk dynamics in Khyber Pakhtunkhwa (Ali et al., 
2020; Aydin and Sevgi Birincioğlu, 2022).

Flood management implication

Pakistan is experiencing climate disasters, despite 
contributing less than 1% to the f global carbon emissions. In the 

recent past, rapid and heavy rains in Pakistan have triggered 
severe flooding, submerging one-third of Pakistan. In August 
2022, Pakistan received 192.7 mm heavy rains against its normal 
of 56.2 mm causing the most devastation flood in the country’s 
history. The overall estimated damage due to the floods amounts 
to 14.9 billion US dollars. The housing sector incurred a 
substantial damage of 5.6 billion US dollars, while the agriculture 
and livestock were also adversely affected, resulting in a combine 
damage of 3.7 billion US dollars. The transportation and 
communications sectors also faced a damage of 3.3 billion US 
dollars. One of the major contributors to Pakistan’s flood 
susceptibility is the inadequate capacity of locals to respond 
effectively to disaster risks (Shah et  al., 2022a). Poor 
socioeconomic conditions, absence of flood warning system, and 
low confidence in the local government institutions present 
significant challenges to effective flood warning and mitigation 
strategies (Rana et  al., 2021). Climate change and increasing 
temperature would increase and occurrence and intensity of 
floods (Hall et al., 2014; Qi et al., 2024; Santato et al., 2013).

FIGURE 8

Proposed flood management strategies for the study area derived from the study results.
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Based on our findings and the highly flood-prone nature of 
the study area, we recommend initiating an Early warning system 
(EWS), particularly in rural areas. As shown in our study area, 
northern rural areas are first to be hit by floods. In rural areas, 
people are usually not familiar with the early warning system, 
which makes it more difficult for them to deal with flood hazards 
(Mustafa et  al., 2015; Shah et  al., 2022b). EWS is helpful in 
providing substantial information for effective disaster 
management that enables people to protect their lives and 
property (Sufri et al., 2020). Social media is also a very valuable 
medium to disseminate flood related updates and information 
with the people (Jamali et al., 2022). We identified four hotspot 
areas that fall in the very high-risk category (Figure 7) by relating 
the spatial distribution of very high flood susceptibility areas and 
human population density across the study area. Two of those 
areas are vulnerable to urban flooding, including the districts of 
Abbottabad, Swabi, Nowshera, Peshawar (to some extent), 
Hazara, and Mansehra, while districts Swat, Lower and Upper 
Dir, Khyber, Buner, Mohmand, Shangla, and Orakzai are prone 
to rural flooding. Climate change and rapid urbanization would 
intensify the rate of urban flooding (Qi et al., 2024). Apart from 
this, the upper areas of Kohistan, Tank, and DIK are also 
susceptible to flooding. These districts were severely affected 
during the 2022 flood, and they have been consistently impacted 
during every minor and major flooding (Hamidi et  al., 2022; 
Hussain et al., 2021; Khan et al., 2023; Nazeer and Bork, 2021; 
Qasim et al., 2017; Rana and Routray, 2018). Building upon the 
findings of this study and on ground experience, we  have 
formulated few mitigation strategies aimed at reducing the flood 
hazards (Figure 8). This method has been successfully applied 
worldwide, with adjustments made for local topography, climate, 
and data availability (Ali et al., 2020; Hagos et al., 2022). Several 
studies in diverse regions further demonstrate the method’s 
versatility and replicability (Abdelkarim et al., 2020; Ali, 2013; 
Allafta and Opp, 2021; Aydin and Sevgi Birincioğlu, 2022; Das 
and Gupta, 2021; Karymbalis et al., 2021).

Conclusion

This study assessed, quantify, and map flood prone areas in the 
Khyber Pakhtunkhwa (KP), Pakistan, which is one of the most 
vulnerable and first impact points of floods in the country. The 
study concluded that 9% of the KP province fell into the very high-
risk area, spanning over an area of 923,257 hectares while 14% 
(1,419,480 hectares) was categorized as high-risk area. These high-
risk zones are predominantly concentrated in the lower northern, 
and central densely populated districts of the study area. Based on 
our results, we recommend strengthening the flood risk mitigation 
policies, focusing primarily on the high-risk zones. Additionally, an 
early warning system is needed to be established across the study 
area, which will help minimize economic loss, injuries, and deaths 
due to the floods. The findings of this study will be  valuable to 
policymakers, concern departments, and local communities in 
implementing safety measures and developing effective flood risk 
mitigation strategies.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material, further inquiries can be directed 
to the corresponding author/s.

Author contributions

TK: Conceptualization, Data curation, Formal analysis, 
Investigation, Methodology, Project administration, Software, 
Validation, Visualization, Writing – original draft, Writing – review & 
editing. GN: Methodology, Validation, Investigation, Writing – review 
& editing. SU: Methodology, Supervision, Validation, Writing – 
review & editing. AA: Validation, Investigation, Writing - review & 
editing. JO: Data curation, Investigation, Methodology, Project 
administration, Validation, Visualization, Writing – review & editing. 
JA: Validation, Investigation, Writing  – review & editing. AI: 
Conceptualization, Funding acquisition, Investigation, Project 
administration, Resources, Supervision, Validation, Writing – review 
& editing.

Funding

The author(s) declare that no financial support was received for 
the research and/or publication of this article.

Acknowledgments

The authors are grateful to the relevant government departments 
for facilitating the field surveys. We are also thankful to the local 
communities for supporting our survey teams in collecting field data 
on flood occurrences.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and 
do not necessarily represent those of their affiliated organizations, or those 
of the publisher, the editors and the reviewers. Any product that may 
be evaluated in this article, or claim that may be made by its manufacturer, 
is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/frwa.2025.1465505/
full#supplementary-material

https://doi.org/10.3389/frwa.2025.1465505
https://www.frontiersin.org/journals/Water
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/frwa.2025.1465505/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frwa.2025.1465505/full#supplementary-material


Khan et al. 10.3389/frwa.2025.1465505

Frontiers in Water 13 frontiersin.org

References
Abbaszadeh, P. (2016). Improving hydrological process modeling using optimized 

threshold-based wavelet de-noising technique. Water Resour. Manag. 30, 1701–1721. 
doi: 10.1007/s11269-016-1246-5

Abdelkarim, A., Al-Alola, S. S., Alogayell, H. M., Mohamed, S. A., Alkadi, I. I., and 
Ismail, I. Y. (2020). Integration of GIS-based multicriteria decision analysis and analytic 
hierarchy process to assess flood hazard on the Al-shamal train pathway in Al-Qurayyat 
Region, Kingdom of Saudi Arabia. Water 12:1702. doi: 10.3390/w12061702

Achmad, A., and Muftiadi, M. (2019). The relationship between land surface 
temperature and water index in the urban area of a tropical city. IOP Conference Series 
365:012013. doi: 10.1088/1755-1315/365/1/012013

Ahmed, K., Shahid, S., Wang, X., Nawaz, N., and Khan, N. (2019). Spatiotemporal 
changes in aridity of Pakistan during 1901–2016. Hydrol. Earth Syst. Sci. 23, 3081–3096. 
doi: 10.5194/hess-23-3081-2019

Ajibade, F. O., Ajibade, T. F., Idowu, T. E., Nwogwu, N. A., Adelodun, B., Lasisi, K. H., 
et al. (2021). Flood-prone area mapping using GIS-based analytical hierarchy 
frameworks for Ibadan City, Nigeria. J. Multi-Criteria Decision Analysis 28, 283–295. 
doi: 10.1002/mcda.1759

Alarifi, S. S., Abdelkareem, M., Abdalla, F., and Alotaibi, M. (2022). Flash flood hazard 
mapping using remote sensing and GIS techniques in southwestern Saudi  Arabia. 
Sustain. For. 14:14145. doi: 10.3390/su142114145

Alfieri, L., Burek, P., Feyen, L., and Forzieri, G. (2015). Global warming increases the 
frequency of river floods in Europe. Hydrol. Earth Syst. Sci. 19, 2247–2260. doi: 
10.5194/hess-19-2247-2015

Ali, A. (2013). Indus basin floods: mechanisms, impacts, and management. Manila, 
Philippines: Asian Development Bank.

Ali, S., Khalid, B., Kiani, R. S., Babar, R., Nasir, S., Rehman, N., et al. (2020). Spatio-
temporal variability of summer monsoon onset over Pakistan. Asia-Pac. J. Atmos. Sci. 
56, 147–172. doi: 10.1007/s13143-019-00130-z

Ali, S. A., Parvin, F., Pham, Q. B., Vojtek, M., Vojteková, J., Costache, R., et al. (2020). 
GIS-based comparative assessment of flood susceptibility mapping using hybrid multi-
criteria decision-making approach, naïve Bayes tree, bivariate statistics and logistic 
regression: a case of Topľa basin, Slovakia. Ecological Indicators 117:106620. doi: 
10.1016/j.ecolind.2020.106620

Allafta, H., and Opp, C. (2021). GIS-based multi-criteria analysis for flood prone areas 
mapping in the trans-boundary Shatt Al-Arab basin, Iraq-Iran. Geomat. Nat. Haz. Risk 
12, 2087–2116. doi: 10.1080/19475705.2021.1955755

Almodayan, A. (2018). Analytical hierarchy (AHP) process method for environmental 
hazard mapping for Jeddah City, Saudi Arabia. J. Geosci. Environ. Protection 6, 143–159. 
doi: 10.4236/gep.2018.66011

Arnell, N. W., and Gosling, S. N. (2016). The impacts of climate change on river 
flood risk at the global scale. Clim. Chang. 134, 387–401. doi: 10.1007/s10584- 
014-1084-5

Aydin, M. C., and Sevgi Birincioğlu, E. (2022). Flood risk analysis using gis-based 
analytical hierarchy process: a case study of Bitlis Province. Appl Water Sci 12:122. doi: 
10.1007/s13201-022-01655-x

Baqir, M., Sobani, Z. A., Bhamani, A., Bham, N. S., Abid, S., Farook, J., et al. (2012). 
Infectious diseases in the aftermath of monsoon flooding in Pakistan. Asian Pac. J. Trop. 
Biomed. 2, 76–79. doi: 10.1016/S2221-1691(11)60194-9

Binns, A. D. (2022). “Sustainable development and flood risk management” in (New 
Jersey: Wiley Online Library), 15:e12807.

Box, W., Järvelä, J., and Västilä, K. (2021). Flow resistance of floodplain vegetation mixtures 
for modelling river flows. J. Hydrol. 601:126593. doi: 10.1016/j.jhydrol.2021.126593

Calil, J., Beck, M. W., Gleason, M., Merrifield, M., Klausmeyer, K., and Newkirk, S. 
(2015). Aligning natural resource conservation and flood hazard mitigation in 
California. PLoS One 10:e0132651. doi: 10.1371/journal.pone.0132651

Charlton, R., Fealy, R., Moore, S., Sweeney, J., and Murphy, C. (2006). Assessing the 
impact of climate change on water supply and flood hazard in Ireland using statistical 
downscaling and hydrological modelling techniques. Clim. Chang. 74, 475–491. doi: 
10.1007/s10584-006-0472-x

Chung, C.-J. F., and Fabbri, A. G. (2003). Validation of spatial prediction models for landslide 
hazard mapping. Nat. Hazards 30, 451–472. doi: 10.1023/B:NHAZ.0000007172.62651.2b

Crimaldi, M., and Lama, G. (2021). Impacts of riparian plants biomass assessed by 
UAV-acquired multispectral images on the hydrodynamics of vegetated streams. 
Proceedings of the 29th European biomass conference and exhibition: ETA-Florence 
Renewable Energies.

Dandapat, K., and Panda, G. K. (2017). Flood vulnerability analysis and risk 
assessment using analytical hierarchy process. Model. Earth Syst. Environ. 3, 1627–1646. 
doi: 10.1007/s40808-017-0388-7

Dang, A. T. N., and Kumar, L. (2017). Application of remote sensing and GIS-based 
hydrological modelling for flood risk analysis: a case study of district 8, Ho Chi Minh 
City, Vietnam. Geomatics Natural Hazards Risk 8, 1792–1811. doi: 10.1080/19475705. 
2017.1388853

Das, S. (2018). Geographic information system and AHP-based flood hazard zonation 
of Vaitarna basin, Maharashtra, India. Arab. J. Geosci. 11:576. doi: 
10.1007/s12517-018-3933-4

Das, S. (2019). Geospatial mapping of flood susceptibility and hydro-geomorphic 
response to the floods in Ulhas basin, India. Remote Sensing App. 14, 60–74. doi: 
10.1016/j.rsase.2019.02.006

Das, S., and Gupta, A. (2021). Multi-criteria decision based geospatial mapping of 
flood susceptibility and temporal hydro-geomorphic changes in the Subarnarekha basin, 
India. Geosci. Front. 12:101206. doi: 10.1016/j.gsf.2021.101206

Dash, P., and Sar, J. (2020). Identification and validation of potential flood hazard area 
using GIS-based multi-criteria analysis and satellite data-derived water index. J. Flood 
Risk Manag. 13:e12620. doi: 10.1111/jfr3.12620

Dou, X., Song, J., Wang, L., Tang, B., Xu, S., Kong, F., et al. (2018). Flood risk assessment and 
mapping based on a modified multi-parameter flood hazard index model in the Guanzhong 
urban area, China. Stoch. Env. Res. Risk A. 32, 1131–1146. doi: 10.1007/s00477-017-1429-5

Eboy, O. V., and Kemarau, R. A. (2023). Study variability of the land surface 
temperature of land cover during El Niño southern oscillation (ENSO) in a Tropical 
City. Sustain. For. 15:8886. doi: 10.3390/su15118886

Errico, A., Lama, G. F. C., Francalanci, S., Chirico, G. B., Solari, L., and Preti, F. (2019). 
Validation of global flow resistance models in two experimental drainage channels 
covered by Phragmites australis (common reed). Proceedings of the 38th IAHR world 
congress-water connecting the world. The International Association for Hydro-
Environment Engineering and Research (IAHR).

Feng, J., Li, D., Li, Y., and Zhao, L. (2023). Analysis of compound floods from storm surge 
and extreme precipitation in China. J. Hydrol. 627:130402. doi: 10.1016/j.jhydrol.2023.130402

Fernández, D., and Lutz, M. A. (2010). Urban flood hazard zoning in Tucumán 
Province, Argentina, using GIS and multicriteria decision analysis. Eng. Geol. 111, 
90–98. doi: 10.1016/j.enggeo.2009.12.006

Floods, P. (2010). Preliminary damage and needs assessment. Asian Development 
Bank, government of Pakistan, World Bank Available at: http://reliefweb.int/sites/
reliefweb.int/files/resources/64AE3DC5BEDA4E18492577DA001FBE55-Full_Report. 
pdf (Accessed December 24, 2011).

Gain, A. K., Mojtahed, V., Biscaro, C., Balbi, S., and Giupponi, C. (2015). An integrated 
approach of flood risk assessment in the eastern part of Dhaka City. Nat. Hazards 79, 
1499–1530. doi: 10.1007/s11069-015-1911-7

Gao, L., Du, H., Huang, H., Zhang, L., and Zhang, P. (2023). Modelling the compound 
floods upon combined rainfall and storm surge events in a low-lying coastal city. J. 
Hydrol. 627:130476. doi: 10.1016/j.jhydrol.2023.130476

Gigović, L., Pamučar, D., Bajić, Z., and Drobnjak, S. (2017). Application of GIS-
interval rough AHP methodology for flood hazard mapping in urban areas. Water 9:360. 
doi: 10.3390/w9060360

Guo, E., Zhang, J., Ren, X., Zhang, Q., and Sun, Z. (2014). Integrated risk assessment of flood 
disaster based on improved set pair analysis and the variable fuzzy set theory in Central 
Liaoning Province, China. Nat. Hazards 74, 947–965. doi: 10.1007/s11069-014-1238-9

Hadipour, V., Vafaie, F., and Deilami, K. (2020). Coastal flooding risk assessment using 
a GIS-based spatial multi-criteria decision analysis approach. Water 12:2379. doi: 
10.3390/w12092379

Hagos, Y. G., Andualem, T. G., Yibeltal, M., and Mengie, M. A. (2022). Flood hazard 
assessment and mapping using GIS integrated with multi-criteria decision analysis in upper 
Awash River basin, Ethiopia. Appl. Water Sci. 12:148. doi: 10.1007/s13201-022-01674-8

Hall, J., Arheimer, B., Borga, M., Brázdil, R., Claps, P., Kiss, A., et al. (2014). 
Understanding flood regime changes in Europe: a state-of-the-art assessment. Hydrol. 
Earth Syst. Sci. 18, 2735–2772. doi: 10.5194/hess-18-2735-2014

Hamidi, A. R., Jing, L., Shahab, M., Azam, K., Atiq Ur Rehman Tariq, M., and 
Ng, A. W. (2022). Flood exposure and social vulnerability analysis in rural areas of 
developing countries: an empirical study of Charsadda District, Pakistan. Water 14:1176. 
doi: 10.3390/w14071176

Hill, C., Verjee, F., and Barrett, C. (2010). Flash flood early warning system reference guide. 
Boulder, CO: University Corporation for Atmospheric Research, 204.

Hong, H., Panahi, M., Shirzadi, A., Ma, T., Liu, J., Zhu, A.-X., et al. (2018). Flood 
susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference 
system with genetic algorithm and differential evolution. Sci. Total Environ. 621, 
1124–1141. doi: 10.1016/j.scitotenv.2017.10.114

Hussain, M., Butt, A. R., Uzma, F., Ahmed, R., Irshad, S., Rehman, A., et al. (2020). A 
comprehensive review of climate change impacts, adaptation, and mitigation on 
environmental and natural calamities in Pakistan. Environ. Monit. Assess. 192, 1–20. doi: 
10.1007/s10661-019-7956-4

Hussain, S., Raza, A., Abdo, H. G., Mubeen, M., Tariq, A., Nasim, W., et al. (2023). 
Relation of land surface temperature with different vegetation indices using multi-
temporal remote sensing data in Sahiwal region, Pakistan. Geoscience Letters 10:33. doi: 
10.1186/s40562-023-00287-6

https://doi.org/10.3389/frwa.2025.1465505
https://www.frontiersin.org/journals/Water
https://www.frontiersin.org
https://doi.org/10.1007/s11269-016-1246-5
https://doi.org/10.3390/w12061702
https://doi.org/10.1088/1755-1315/365/1/012013
https://doi.org/10.5194/hess-23-3081-2019
https://doi.org/10.1002/mcda.1759
https://doi.org/10.3390/su142114145
https://doi.org/10.5194/hess-19-2247-2015
https://doi.org/10.1007/s13143-019-00130-z
https://doi.org/10.1016/j.ecolind.2020.106620
https://doi.org/10.1080/19475705.2021.1955755
https://doi.org/10.4236/gep.2018.66011
https://doi.org/10.1007/s10584-014-1084-5
https://doi.org/10.1007/s10584-014-1084-5
https://doi.org/10.1007/s13201-022-01655-x
https://doi.org/10.1016/S2221-1691(11)60194-9
https://doi.org/10.1016/j.jhydrol.2021.126593
https://doi.org/10.1371/journal.pone.0132651
https://doi.org/10.1007/s10584-006-0472-x
https://doi.org/10.1023/B:NHAZ.0000007172.62651.2b
https://doi.org/10.1007/s40808-017-0388-7
https://doi.org/10.1080/19475705.2017.1388853
https://doi.org/10.1080/19475705.2017.1388853
https://doi.org/10.1007/s12517-018-3933-4
https://doi.org/10.1016/j.rsase.2019.02.006
https://doi.org/10.1016/j.gsf.2021.101206
https://doi.org/10.1111/jfr3.12620
https://doi.org/10.1007/s00477-017-1429-5
https://doi.org/10.3390/su15118886
https://doi.org/10.1016/j.jhydrol.2023.130402
https://doi.org/10.1016/j.enggeo.2009.12.006
http://reliefweb.int/sites/reliefweb.int/files/resources/64AE3DC5BEDA4E18492577DA001FBE55-Full_Report
http://reliefweb.int/sites/reliefweb.int/files/resources/64AE3DC5BEDA4E18492577DA001FBE55-Full_Report
https://doi.org/10.1007/s11069-015-1911-7
https://doi.org/10.1016/j.jhydrol.2023.130476
https://doi.org/10.3390/w9060360
https://doi.org/10.1007/s11069-014-1238-9
https://doi.org/10.3390/w12092379
https://doi.org/10.1007/s13201-022-01674-8
https://doi.org/10.5194/hess-18-2735-2014
https://doi.org/10.3390/w14071176
https://doi.org/10.1016/j.scitotenv.2017.10.114
https://doi.org/10.1007/s10661-019-7956-4
https://doi.org/10.1186/s40562-023-00287-6


Khan et al. 10.3389/frwa.2025.1465505

Frontiers in Water 14 frontiersin.org

Hussain, M., Tayyab, M., Zhang, J., Shah, A. A., Ullah, K., Mehmood, U., et al. (2021). 
GIS-based multi-criteria approach for flood vulnerability assessment and mapping in 
district Shangla: Khyber Pakhtunkhwa, Pakistan. Sustainability 13:3126. doi: 
10.3390/su13063126

Islam, M., and Sado, K. (2000). Flood hazard map and land development priority map 
developed using NOAA AVHRR and GIS data. Asian J. Geoinform 45, 605–620.

Jain, V., Dhingra, A., Gupta, E., Takkar, I., Jain, R., and Islam, S. M. (2023). Influence 
of land surface temperature and rainfall on surface water change: an innovative machine 
learning approach. Water Resour. Manag. 37, 3013–3035. doi: 
10.1007/s11269-023-03476-2

Jamali, A. A., Kalkhajeh, R. G., Randhir, T. O., and He, S. (2022). Modeling relationship 
between land surface temperature anomaly and environmental factors using GEE and 
Giovanni. J. Environ. Manag. 302:113970. doi: 10.1016/j.jenvman.2021.113970

Ju, J., and Slingo, J. (1995). The Asian summer monsoon and ENSO. Q. J. R. Meteorol. 
Soc. 121, 1133–1168. doi: 10.1002/qj.49712152509

Karymbalis, E., Andreou, M., Batzakis, D.-V., Tsanakas, K., and Karalis, S. (2021). 
Integration of GIS-based multicriteria decision analysis and analytic hierarchy process 
for flood-hazard assessment in the Megalo Rema River catchment (East Attica, Greece). 
Sustain. For. 13:10232. doi: 10.3390/su131810232

Kazakis, N., Kougias, I., and Patsialis, T. (2015). Assessment of flood hazard areas at 
a regional scale using an index-based approach and analytical hierarchy process: 
application in Rhodope–Evros region, Greece. Sci. Total Environ. 538, 555–563. doi: 
10.1016/j.scitotenv.2015.08.055

Khan, A., Gong, Z., Shah, A. A., and Haq, M. (2023). A multi-criteria decision-making 
approach to vulnerability assessment of rural flooding in Khyber Pakhtunkhwa 
Province, Pakistan. Environ. Sci. Pollution Res. 30, 56786–56801. doi: 
10.1007/s11356-023-25609-1

Khosravi, K., Nohani, E., Maroufinia, E., and Pourghasemi, H. R. (2016a). A GIS-
based flood susceptibility assessment and its mapping in Iran: a comparison between 
frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria 
decision-making technique. Nat. Hazards 83, 947–987. doi: 10.1007/s11069-016-2357-2

Khosravi, K., Pourghasemi, H. R., Chapi, K., and Bahri, M. (2016b). Flash flood 
susceptibility analysis and its mapping using different bivariate models in Iran: a 
comparison between Shannon’s entropy, statistical index, and weighting factor models. 
Environ. Monit. Assess. 188, 1–21. doi: 10.1007/s10661-016-5665-9

Kia, M. B., Pirasteh, S., Pradhan, B., Mahmud, A. R., Sulaiman, W. N. A., and 
Moradi, A. (2012). An artificial neural network model for flood simulation using GIS: 
Johor River basin, Malaysia. Environ. Earth Sci. 67, 251–264. doi: 
10.1007/s12665-011-1504-z

Lama, G. F. C., and Crimaldi, M. (2021). Remote sensing of ecohydrological, 
ecohydraulic, and ecohydrodynamic phenomena in vegetated waterways: The role of leaf 
area index (LAI). Biology and life sciences forum,

Lee, S., and Rezaie, F. (2022). Data used for GIS-based flood susceptibility mapping. 
Data Geol. Ecol. Oceanogr. Space Sci. Polar Sci. 4, 1–15. doi: 10.22761/DJ2022.4.1.001

Li, Y., Li, M., Li, C., and Liu, Z. (2020). Optimized maxent model predictions of 
climate change impacts on the suitable distribution of cunninghamia lanceolata in 
China. Forests 11:302. doi: 10.3390/f11030302

Liuzzo, L., Sammartano, V., and Freni, G. (2019). Comparison between different 
distributed methods for flood susceptibility mapping. Water Resour. Manag. 33, 
3155–3173. doi: 10.1007/s11269-019-02293-w

Mahmood, S., and Rahman, A.-U. (2019). Flash flood susceptibility modeling using 
geo-morphometric and hydrological approaches in Panjkora Basin, eastern Hindu Kush, 
Pakistan. Environ. Earth Sci. 78, 1–16. doi: 10.1007/s12665-018-8041-y

Mahmood, S., and Ullah, S. (2016). Assessment of 2010 flash flood causes and 
associated damages in Dir Valley, Khyber Pakhtunkhwa Pakistan. Int. J. Disaster Risk 
Reduction 16, 215–223. doi: 10.1016/j.ijdrr.2016.02.009

Mahmoud, S. H., and Gan, T. Y. (2018). Multi-criteria approach to develop flood 
susceptibility maps in arid regions of Middle East. J. Clean. Prod. 196, 216–229. doi: 
10.1016/j.jclepro.2018.06.047

Mallapaty, S. (2022). Why are Pakistan's floods so extreme this year? Nature. doi: 
10.1038/d41586-022-02813-6

Mehravar, S., Razavi-Termeh, S. V., Moghimi, A., Ranjgar, B., Foroughnia, F., and 
Amani, M. (2023). Flood susceptibility mapping using multi-temporal SAR imagery and 
novel integration of nature-inspired algorithms into support vector regression. J. Hydrol. 
617:129100. doi: 10.1016/j.jhydrol.2023.129100

Mohammad, L., Bandyopadhyay, J., Sk, R., Mondal, I., Nguyen, T. T., Lama, G. F. C., 
et al. (2023). Estimation of agricultural burned affected area using NDVI and dNBR 
satellite-based empirical models. J. Environ. Manag. 343:118226. doi: 
10.1016/j.jenvman.2023.118226

Molur, S. (2003). Status and red list of Pakistan’s mammals. MDPI.

Mujib, M. A., Apriyanto, B., Kurnianto, F. A., Ikhsan, F. A., Nurdin, E. A., 
Pangastuti, E. I., et al. (2021). Assessment of flood hazard mapping based on 
analytical hierarchy process (AHP) and GIS: application in kencong district, 
jember regency, Indonesia. Geosfera Indonesia 6, 353–376. doi: 
10.19184/geosi.v6i3.21668

Mustafa, D., Gioli, G., Qazi, S., Waraich, R., Rehman, A., and Zahoor, R. (2015). 
Gendering flood early warning systems: the case of Pakistan. Environ. Hazards 14, 
312–328. doi: 10.1080/17477891.2015.1075859

Nanditha, J., Kushwaha, A. P., Singh, R., Malik, I., Solanki, H., Chuphal, D. S., et al. 
(2023). The Pakistan flood of august 2022: causes and implications. Earth's. Future 
11:e2022EF003230. doi: 10.1029/2022EF003230

Naulin, J.-P., Payrastre, O., and Gaume, E. (2013). Spatially distributed flood 
forecasting in flash flood prone areas: application to road network supervision in 
southern France. J. Hydrol. 486, 88–99. doi: 10.1016/j.jhydrol.2013.01.044

Nazeer, M., and Bork, H.-R. (2021). A local scale flood vulnerability assessment in the 
flood-prone area of Khyber Pakhtunkhwa, Pakistan. Nat. Hazards 105, 755–781. doi: 
10.1007/s11069-020-04336-7

Negese, A., Worku, D., Shitaye, A., and Getnet, H. (2022). Potential flood-prone area 
identification and mapping using GIS-based multi-criteria decision-making and 
analytical hierarchy process in Dega Damot district, northwestern Ethiopia. Appl Water 
Sci 12:255. doi: 10.1007/s13201-022-01772-7

Ogato, G. S., Bantider, A., Abebe, K., and Geneletti, D. (2020). Geographic 
information system (GIS)-based multicriteria analysis of flooding hazard and risk in 
ambo town and its watershed, west shoa zone, Oromia regional state, Ethiopia. J. Hydrol. 
27:100659. doi: 10.1016/j.ejrh.2019.100659

Otieno, J. A. (2004). Scenario study for flood Hazard assessment in the lower Bicol 
floodplain Philippine using a 2D flood model. Enschede, The Netherlands: International 
Institute for Geo-information Science and Earth Observation (ITC).

Otto, F. E., Zachariah, M., Saeed, F., Siddiqi, A., Kamil, S., Mushtaq, H., et al. (2023). 
Climate change increased extreme monsoon rainfall, flooding highly vulnerable 
communities in Pakistan. Environmental Research 2:025001. doi: 
10.1088/2752-5295/acbfd5

Ouma, Y. O., and Tateishi, R. (2014). Urban flood vulnerability and risk mapping 
using integrated multi-parametric AHP and GIS: methodological overview and case 
study assessment. Water 6, 1515–1545. doi: 10.3390/w6061515

Ozdemir, A., and Altural, T. (2013). A comparative study of frequency ratio, weights 
of evidence and logistic regression methods for landslide susceptibility mapping: Sultan 
Mountains, SW Turkey. J. Asian Earth Sci. 64, 180–197. doi: 10.1016/j.jseaes.2012.12.014

Pirone, D., Cimorelli, L., and Pianese, D. (2024). The effect of flood-mitigation 
reservoir configuration on peak-discharge reduction during preliminary design. Journal 
of Hydrol. 52:101676. doi: 10.1016/j.ejrh.2024.101676

Qasim, S., Qasim, M., Shrestha, R. P., and Khan, A. N. (2017). An assessment of flood 
vulnerability in Khyber Pukhtunkhwa province of Pakistan. AIMS Environ. Sci. 4, 
206–216. doi: 10.3934/environsci.2017.2.206

Qi, W., Ma, C., Xu, H., Lian, J., Xu, K., and Yao, Y. (2024). An exploratory framework 
to urban flood collaborative mitigation strategy considering synergistic effect of 
inundation volume. J. Hydrol. 628:130555. doi: 10.1016/j.jhydrol.2023.130555

Radwan, F., Alazba, A., and Mossad, A. (2019). Flood risk assessment and mapping 
using AHP in arid and semiarid regions. Acta Geophys. 67, 215–229. doi: 
10.1007/s11600-018-0233-z

Rahaman, S. N., and Shermin, N. (2022). Identifying the effect of monsoon floods on 
vegetation and land surface temperature by using Google earth engine. Urban Clim. 
43:101162. doi: 10.1016/j.uclim.2022.101162

Rahman, Z. U., Ullah, W., Bai, S., Ullah, S., Jan, M. A., Khan, M., et al. (2023). GIS-based 
flood susceptibility mapping using bivariate statistical model in Swat River basin, Eastern 
Hindukush region, Pakistan. Front. Environ. Sci. 11. doi: 10.3389/fenvs.2023.1178540

Rahmati, O., Zeinivand, H., and Besharat, M. (2016). Flood hazard zoning in Yasooj 
region, Iran, using GIS and multi-criteria decision analysis. Geomat. Nat. Haz. Risk 7, 
1000–1017. doi: 10.1080/19475705.2015.1045043

Rana, I. A., Bhatti, S. S., and Jamshed, A. (2021). Effectiveness of flood early warning 
system from the perspective of experts and three affected communities in urban areas 
of Pakistan. Environmental Hazards 20, 209–228. doi: 10.1080/17477891.2020.1751031

Rana, I. A., and Routray, J. K. (2018). Multidimensional model for vulnerability 
assessment of urban flooding: an empirical study in Pakistan. Int. J. Disaster Risk Sci. 9, 
359–375. doi: 10.1007/s13753-018-0179-4

Rao, G. N. (2001). Occurrence of heavy rainfall around the confluence line in 
monsoon disturbances and its importance in causing floods. J Earth Syst. Sci. 110, 87–94. 
doi: 10.1007/BF02702232

Rehman, A., Song, J., Haq, F., Mahmood, S., Ahamad, M. I., Basharat, M., et al. (2022). 
Multi-hazard susceptibility assessment using the analytical hierarchy process and 
frequency ratio techniques in the Northwest Himalayas, Pakistan. Remote Sensing 
14:554. doi: 10.3390/rs14030554

Rimba, A. B., Setiawati, M. D., Sambah, A. B., and Miura, F. (2017). Physical flood 
vulnerability mapping applying geospatial techniques in Okazaki City, Aichi prefecture. 
Japan. Urban Science 1:7. doi: 10.3390/urbansci1010007

Roberts, T. J., and Bernhard. (1977). The mammals of Pakistan. Ernest Benn Limited.

Safdar, F., Khokhar, M. F., Arshad, M., and Adil, I. H. (2019). Climate change 
indicators and spatiotemporal shift in monsoon patterns in Pakistan. Adv. Meteorol. 
2019, 1–14. doi: 10.1155/2019/8281201

https://doi.org/10.3389/frwa.2025.1465505
https://www.frontiersin.org/journals/Water
https://www.frontiersin.org
https://doi.org/10.3390/su13063126
https://doi.org/10.1007/s11269-023-03476-2
https://doi.org/10.1016/j.jenvman.2021.113970
https://doi.org/10.1002/qj.49712152509
https://doi.org/10.3390/su131810232
https://doi.org/10.1016/j.scitotenv.2015.08.055
https://doi.org/10.1007/s11356-023-25609-1
https://doi.org/10.1007/s11069-016-2357-2
https://doi.org/10.1007/s10661-016-5665-9
https://doi.org/10.1007/s12665-011-1504-z
https://doi.org/10.22761/DJ2022.4.1.001
https://doi.org/10.3390/f11030302
https://doi.org/10.1007/s11269-019-02293-w
https://doi.org/10.1007/s12665-018-8041-y
https://doi.org/10.1016/j.ijdrr.2016.02.009
https://doi.org/10.1016/j.jclepro.2018.06.047
https://doi.org/10.1038/d41586-022-02813-6
https://doi.org/10.1016/j.jhydrol.2023.129100
https://doi.org/10.1016/j.jenvman.2023.118226
https://doi.org/10.19184/geosi.v6i3.21668
https://doi.org/10.1080/17477891.2015.1075859
https://doi.org/10.1029/2022EF003230
https://doi.org/10.1016/j.jhydrol.2013.01.044
https://doi.org/10.1007/s11069-020-04336-7
https://doi.org/10.1007/s13201-022-01772-7
https://doi.org/10.1016/j.ejrh.2019.100659
https://doi.org/10.1088/2752-5295/acbfd5
https://doi.org/10.3390/w6061515
https://doi.org/10.1016/j.jseaes.2012.12.014
https://doi.org/10.1016/j.ejrh.2024.101676
https://doi.org/10.3934/environsci.2017.2.206
https://doi.org/10.1016/j.jhydrol.2023.130555
https://doi.org/10.1007/s11600-018-0233-z
https://doi.org/10.1016/j.uclim.2022.101162
https://doi.org/10.3389/fenvs.2023.1178540
https://doi.org/10.1080/19475705.2015.1045043
https://doi.org/10.1080/17477891.2020.1751031
https://doi.org/10.1007/s13753-018-0179-4
https://doi.org/10.1007/BF02702232
https://doi.org/10.3390/rs14030554
https://doi.org/10.3390/urbansci1010007
https://doi.org/10.1155/2019/8281201


Khan et al. 10.3389/frwa.2025.1465505

Frontiers in Water 15 frontiersin.org

Samanta, R. K., Bhunia, G. S., Shit, P. K., and Pourghasemi, H. R. (2018). Flood 
susceptibility mapping using geospatial frequency ratio technique: a case study of 
Subarnarekha River basin, India. Modeling Earth Systems Environ. 4, 395–408. doi: 
10.1007/s40808-018-0427-z

Santato, S., Bender, S., and Schaller, M. (2013). The European floods directive and 
opportunities offered by land use planning. CSC report 12.

Scheuer, S., Haase, D., and Volk, M. (2017). Integrative assessment of climate change 
for fast-growing urban areas: measurement and recommendations for future research. 
PLoS One 12:e0189451. doi: 10.1371/journal.pone.0189451

Shafapour Tehrany, M., Shabani, F., Neamah Jebur, M., Hong, H., Chen, W., and 
Xie, X. (2017). GIS-based spatial prediction of flood prone areas using standalone 
frequency ratio, logistic regression, weight of evidence and their ensemble techniques. 
Geomat. Nat. Haz. Risk 8, 1538–1561. doi: 10.1080/19475705.2017.1362038

Shah, A. A., Ajiang, C., Khan, N. A., Alotaibi, B. A., and Tariq, M. A. U. R. (2022a). 
Flood risk perception and its attributes among rural households under developing 
country conditions: the case of Pakistan. Water 14:992. doi: 10.3390/w14060992

Shah, A. A., Ullah, A., Khan, N. A., Pal, I., Alotaibi, B. A., and Traore, A. (2022b). 
Gender perspective of flood early warning systems: people-centered approach. Water 
14:2261. doi: 10.3390/w14142261

Shah, A. A., Ye, J., Abid, M., and Ullah, R. (2017). Determinants of flood risk 
mitigation strategies at household level: a case of Khyber Pakhtunkhwa (KP) province, 
Pakistan. Nat. Hazards 88, 415–430. doi: 10.1007/s11069-017-2872-9

Shahabi, H., Shirzadi, A., Ronoud, S., Asadi, S., Pham, B. T., Mansouripour, F., et al. 
(2021). Flash flood susceptibility mapping using a novel deep learning model based on 
deep belief network, back propagation and genetic algorithm. Geosci. Front. 12:101100. 
doi: 10.1016/j.gsf.2020.10.007

Sharif, H. O., Al-Juaidi, F. H., Al-Othman, A., Al-Dousary, I., Fadda, E., 
Jamal-Uddeen, S., et al. (2016). Flood hazards in an urbanizing watershed in Riyadh, 
Saudi Arabia. Geomat. Nat. Haz. Risk 7, 702–720. doi: 10.1080/19475705.2014.945101

Shen, M., and Chui, T. F. M. (2023). Quantifying the relative contributions of different 
flood generating mechanisms to floods across CONUS. J. Hydrol. 626:130255. doi: 
10.1016/j.jhydrol.2023.130255

Shrestha, S., Sattar, H., Khattak, M. S., Wang, G., and Babur, M. (2020). Evaluation of 
adaptation options for reducing soil erosion due to climate change in the Swat River 
basin of Pakistan. Ecol. Eng. 158:106017. doi: 10.1016/j.ecoleng.2020.106017

Siahkamari, S., Haghizadeh, A., Zeinivand, H., Tahmasebipour, N., and Rahmati, O. 
(2018). Spatial prediction of flood-susceptible areas using frequency ratio and maximum 
entropy models. Geocarto Int. 33, 927–941. doi: 10.1080/10106049.2017.1316780

Sufri, S., Dwirahmadi, F., Phung, D., and Rutherford, S. (2020). Enhancing community 
engagement in disaster early warning system in Aceh, Indonesia: opportunities and 
challenges. Nat. Hazards 103, 2691–2709. doi: 10.1007/s11069-020-04098-2

Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science 240, 
1285–1293. doi: 10.1126/science.3287615

Sugianto, S., Deli, A., Miswar, E., Rusdi, M., and Irham, M. (2022). The effect of land 
use and land cover changes on flood occurrence in Teunom Watershed. Aceh Jaya. Land 
11, 1271. doi: 10.3390/land11081271

Tadesse, D., Suryabhagavan, K. V., Nedaw, D., and Hailu, B. T. (2022). A model-based 
flood hazard mapping in Itang District of the Gambella region, Ethiopia. Geol. Ecol. 
Landscapes, 8:8–25. doi: 10.1080/24749508.2021.2022833

Tayyab, M., Zhang, J., Hussain, M., Ullah, S., Liu, X., Khan, S. N., et al. (2021). Gis-based 
urban flood resilience assessment using urban flood resilience model: a case study of 
Peshawar city, khyber pakhtunkhwa, Pakistan. Remote Sens. 13:1864. doi: 10.3390/rs13101864

Tehrany, M. S., Pradhan, B., and Jebur, M. N. (2013). Spatial prediction of flood susceptible 
areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate 
statistical models in GIS. J. Hydrol. 504, 69–79. doi: 10.1016/j.jhydrol.2013.09.034

Termeh, S. V. R., Kornejady, A., Pourghasemi, H. R., and Keesstra, S. (2018). Flood 
susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and 
metaheuristic algorithms. Sci. Total Environ. 615, 438–451. doi: 10.1016/j.scitotenv.2017.09.262

Ullah, S., You, Q., Ullah, W., and Ali, A. (2018). Observed changes in precipitation in 
China-Pakistan economic corridor during 1980–2016. Atmos. Res. 210, 1–14. doi: 
10.1016/j.atmosres.2018.04.007

Ullah, K., and Zhang, J. (2020). GIS-based flood hazard mapping using 
relative frequency ratio method: a case study of Panjkora River basin, eastern 
Hindu Kush, Pakistan. Plos one 15:e0229153. doi: 10.1371/journal.pone. 
0229153

Walden-Schreiner, C., Leung, Y.-F., Kuhn, T., Newburger, T., and Tsai, W.-L. (2017). 
Environmental and managerial factors associated with pack stock distribution in high 
elevation meadows: case study from Yosemite National Park. J. Environ. Manag. 193, 
52–63. doi: 10.1016/j.jenvman.2017.01.076

Wang, Z., Chen, X., Qi, Z., and Cui, C. (2023). Flood sensitivity assessment of super 
cities. Sci. Rep. 13:5582. doi: 10.1038/s41598-023-32149-8

Wang, Z., Lai, C., Chen, X., Yang, B., Zhao, S., and Bai, X. (2015). Flood hazard risk 
assessment model based on random forest. J. Hydrol. 527, 1130–1141. doi: 
10.1016/j.jhydrol.2015.06.008

Wang, G., Wang, C., Guo, Z., Dai, L., Wu, Y., Liu, H., et al. (2020). Integrating Maxent 
model and landscape ecology theory for studying spatiotemporal dynamics of habitat: 
suggestions for conservation of endangered red-crowned crane. Ecol. Indic. 116:106472. 
doi: 10.1016/j.ecolind.2020.106472

Xu, K., Wang, C., Bin, L., Shen, R., and Zhuang, Y. (2023). Climate change impact on 
the compound flood risk in a coastal city. J. Hydrol. 626:130237. doi: 
10.1016/j.jhydrol.2023.130237

Xue, Y., Diallo, I., Li, W., David Neelin, J., Chu, P. C., Vasic, R., et al. (2018). Spring 
land surface and subsurface temperature anomalies and subsequent downstream late 
spring-summer droughts/floods in North America and East Asia. J. Geophys. Res. Atmos. 
123, 5001–5019. doi: 10.1029/2017JD028246

Yan, Y., Mao, K., Shi, J., Piao, S., Shen, X., Dozier, J., et al. (2020). Driving forces of land 
surface temperature anomalous changes in North America in 2002–2018. Sci. Rep. 
10:6931. doi: 10.1038/s41598-020-63701-5

Yariyan, P., Avand, M., Abbaspour, R. A., Torabi Haghighi, A., Costache, R., 
Ghorbanzadeh, O., et al. (2020). Flood susceptibility mapping using an improved 
analytic network process with statistical models. Geomat. Nat. Haz. Risk 11, 2282–2314. 
doi: 10.1080/19475705.2020.1836036

Zaidi, S., Bhutta, Z. A., Wajid, A., Nawaz, G., Nazeer, K., Mohmand, S. K., et al. (2013). 
Nutrition political economy, Pakistan. Province Report: Khyber Pakhtunkhwa.

Zhao, J., He, S., and Wang, H. (2022). Historical and future runoff changes in the 
Yangtze River basin from CMIP6 models constrained by a weighting strategy. Environ. 
Res. Lett. 17:024015. doi: 10.1088/1748-9326/ac3f61

Zhao, G., Pang, B., Xu, Z., Peng, D., and Xu, L. (2019). Assessment of urban flood 
susceptibility using semi-supervised machine learning model. Sci. Total Environ. 659, 
940–949. doi: 10.1016/j.scitotenv.2018.12.217

Zhao, G., Pang, B., Xu, Z., Yue, J., and Tu, T. (2018). Mapping flood susceptibility in 
mountainous areas on a national scale in China. Sci. Total Environ. 615, 1133–1142. doi: 
10.1016/j.scitotenv.2017.10.037

Zhiyu, L., Xiaotao, C., Zuhua, C., Haotao, W., Li, Z., Lai, E., et al. (2013). Guidelines 
on urban flood risk management (UFRM). Macao, China: ESCAP/WMO Typhoon 
Committee Secretariat.

Ziwei, L., Xiangling, T., Liju, L., Yanqi, C., Xingming, W., and Dishan, Y. (2023). GIS-
based risk assessment of flood disaster in the Lijiang River basin. Sci. Rep. 13:6160. doi: 
10.1038/s41598-023-32829-5

Zou, Q., Zhou, J., Zhou, C., Song, L., and Guo, J. (2013). Comprehensive flood risk 
assessment based on set pair analysis-variable fuzzy sets model and fuzzy AHP. Stoch. 
Env. Res. Risk A. 27, 525–546. doi: 10.1007/s00477-012-0598-5

Zzaman, R. U., Nowreen, S., Billah, M., and Islam, A. S. (2021). Flood hazard 
mapping of Sangu River basin in Bangladesh using multi-criteria analysis of 
hydro-geomorphological factors. J. Flood Risk Manag. 14:e12715. doi: 10.1111/jfr3.12715

https://doi.org/10.3389/frwa.2025.1465505
https://www.frontiersin.org/journals/Water
https://www.frontiersin.org
https://doi.org/10.1007/s40808-018-0427-z
https://doi.org/10.1371/journal.pone.0189451
https://doi.org/10.1080/19475705.2017.1362038
https://doi.org/10.3390/w14060992
https://doi.org/10.3390/w14142261
https://doi.org/10.1007/s11069-017-2872-9
https://doi.org/10.1016/j.gsf.2020.10.007
https://doi.org/10.1080/19475705.2014.945101
https://doi.org/10.1016/j.jhydrol.2023.130255
https://doi.org/10.1016/j.ecoleng.2020.106017
https://doi.org/10.1080/10106049.2017.1316780
https://doi.org/10.1007/s11069-020-04098-2
https://doi.org/10.1126/science.3287615
https://doi.org/10.3390/land11081271
https://doi.org/10.1080/24749508.2021.2022833
https://doi.org/10.3390/rs13101864
https://doi.org/10.1016/j.jhydrol.2013.09.034
https://doi.org/10.1016/j.scitotenv.2017.09.262
https://doi.org/10.1016/j.atmosres.2018.04.007
https://doi.org/10.1371/journal.pone.0229153
https://doi.org/10.1371/journal.pone.0229153
https://doi.org/10.1016/j.jenvman.2017.01.076
https://doi.org/10.1038/s41598-023-32149-8
https://doi.org/10.1016/j.jhydrol.2015.06.008
https://doi.org/10.1016/j.ecolind.2020.106472
https://doi.org/10.1016/j.jhydrol.2023.130237
https://doi.org/10.1029/2017JD028246
https://doi.org/10.1038/s41598-020-63701-5
https://doi.org/10.1080/19475705.2020.1836036
https://doi.org/10.1088/1748-9326/ac3f61
https://doi.org/10.1016/j.scitotenv.2018.12.217
https://doi.org/10.1016/j.scitotenv.2017.10.037
https://doi.org/10.1038/s41598-023-32829-5
https://doi.org/10.1007/s00477-012-0598-5
https://doi.org/10.1111/jfr3.12715

	Mapping flood resilience: a comprehensive geospatial insight into regional vulnerabilities
	Introduction
	Materials and methods
	Study area
	Data acquisition for flood susceptibility map
	Streams/rivers density of the area
	Precipitation/rainfall of the area
	Slope range
	Elevation range of the area
	Soil of the area
	Land surface temperature of the area (LST)
	Normalized difference of vegetation index (NDVI) of the area
	Land use and land cover (LULC)
	Flood susceptibility categorization, quantification, and spatial distribution
	Flood model validation

	Results
	Analytical hierarchy process (AHP) results
	High-risk zone
	Medium-risk area (vulnerable zone)
	Low-risk area and no-risk area (safe zone)
	Model performance and accuracy

	Discussion
	Flood management implication

	Conclusion

	References

