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Training a hidden Markov model 
with PMDI and temperature to 
create climate informed scenarios
Burcu Tezcan * and Margaret Garcia 

School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 
United States

Understanding the nature of climatic change impacts on spatial and temporal 
hydroclimatic patterns is important to the development of timely and spatially 
explicit adaptation options. However, regime-switching behavior of hydroclimatic 
variables complicates the modelling process as many traditional time series methods 
do not capture this behavior. Accurately representing spatial correlation across 
hydroclimatic regimes is particularly important for water resources planning in 
large watersheds such as the Colorado River, and regions where interbasin transfers 
and shared demand nodes link multiple watersheds. Here, we developed a hidden 
Markov model (HMM) with covariates that generates an ensemble of plausible 
future regional scenarios of the Palmer modified drought index (PMDI) for any 
projected temperature sequence. The resulting spatially explicit scenarios represent 
the historical spatial and temporal patterns of the training data while incorporating 
non-stationarity by conditioning on temperature. These ensembles can aid water 
resources managers, infrastructure planners, and government policymakers tasked 
with building of more resilient water systems. Moreover, these ensembles can 
be used to generate streamflow ensembles, which, in turn, will be a valuable input 
to study the impact of climate change on regional hydrology.
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1 Introduction

Over the last century interbasin water transfers have fulfilled growing demands and 
facilitated economic growth (Siddik et al., 2023). Linking previously disconnected watersheds 
has also enabled water suppliers to increase reliability during droughts by balancing multiple 
supply sources. The Western United States (U.S.) is a key example of this where the Colorado 
River, is linked to the Rio Grande and California State Water Project via interbasin transfers 
and shared demand nodes (National Research Council, 2007). This network of supply systems 
provides a buffer for individual water suppliers in times of stress or change by enabling users 
to balance a portfolio of water sources (Anderies, 2015). However, gaps in our understanding 
of spatial correlation of wet and dry conditions across regions, such as the Western U.S., limit 
our ability to fully characterize the reliability of these systems.

At the regional scale hydroclimatic variables exhibit regimes or recurrent, large scale 
spatial patterns in one or more hydroclimatic variables. The regime-shifting (e.g., the transition 
between different regimes) behavior of hydroclimate patterns, influenced by large-scale 
climatic factors such as El Niño, the Pacific Decadal Oscillation, and the Multi-Decadal 
Oscillation presents an additional challenge (Cayan, 1996; Ho et al., 2018). These climatic 
patterns interact to shape hydroclimatic regimes, yet their effects cannot be resolved into a 
clean variable set (Ho et al., 2018). Hydroclimatic regimes often lead to prolonged periods of 
high or low water availability, making water management and planning even more complicated 
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(Bracken et  al., 2014). However, the ability of large-scale climate 
factors to explain regional regime-shifting behavior of hydroclimate 
patterns is limited since hydroclimatic regimes can also be influenced 
by regional phenomena (Gupta et al., 2023a; Dettinger and Cayan, 
2014). Furthermore, hydrological systems are non-stationary (Zhao 
et al., 2018; Milly et al., 2008) with observed and projected changes in 
the intensity, duration, and frequency of hydrological extremes 
(Marvel et al., 2023; Jakob, 2013). The formulation of effective regional 
water management strategies requires an understanding of spatio-
temporal patterns, including regime-shifts, and how these patterns 
may change in the future.

A variety of statistical methods have been applied to the 
regionalization of hydrological variables such as regression analysis 
(Merz and Blöschl, 2004), proximity-based methods (Betterle et al., 
2019), geostatistical techniques (e.g., inverse distances, kriging, space–
time models) (Adamowski and Bocci, 2001; Bourges et al., 2012), 
machine learning algorithms (Song et al., 2022; Wang et al., 2023), and 
combination of time series and spatial statistical methods (Adamowski 
et al., 2013). Despite the flexibility of statistical methods, they are 
limited by computational requirements and data availability (Blöschl 
et al., 2013a). Physically-based classification frameworks also have 
been used to characterize regional hydrological variables (Doulatyari 
et  al., 2017), yet these too are limited by the availability of 
observational data.

Building this understanding necessitates quantification of regional 
spatiotemporal patterns from field measurements, which is challenged 
by limited observational data (Betterle et  al., 2017; Blöschl et  al., 
2013b; Razavi and Coulibaly, 2013; Sivapalan et  al., 2003). The 
relatively short duration of observational data limits the ability to 
characterize possible nonstationarity, and regime switching behavior 
of hydroclimate patterns, particularly when regime lengths extend 
over a decade or more (Wilhelm et  al., 2018). Several studies 
concluded that developing a reliable model using long time series—
spanning at least more than 100 years—that cover a broad range of 
hydrological variability, from yearly to multidecadal variations, is 
required to identify persistence structure of hydroclimate patterns, 
capture non-stationarity, and feed into projections (Thyer et al., 2006; 
Thyer and Kuczera, 2000; Nasri et al., 2020; Gupta et al., 2023b). Such 
long time series thereby opens new opportunities to understand 
regional hydrological patterns to inform decision making, policy, and 
management practices for networked river systems.

Generating future scenarios that account for climate change is 
critical for water management but there are difficulties in projecting 
spatial patterns of hydrological variables across multiple sites using the 
general circulation models (GCMs) (Vallam and Qin, 2017), as 
projections are coarse and unsuitable for regional studies (Fowler 
et  al., 2007; Xu, 1999). While the recent generation of models in 
Coupled Model Intercomparison Project Phase 6 (CMIP6) offers 
improved resolutions (Liang-Liang et  al., 2022), GCMs may still 
remain inadequate for providing the detailed regional information 
required for climate change impact studies including hydrological 
studies at river basin scale (Banda et al., 2022). To overcome this 
challenge, statistical downscaling methods, including regression 
modeling, weather generators, and weather typing schemes, machine 
learning models have been employed to provide finer-resolution data 
for climate change impact assessments (Vrac and Naveau, 2007; Shen 
et al., 2018; Guo et al., 2019; Prathom and Champrasert, 2023; Gu 
et al., 2021). Alternatively, regional climate models (RCMs) which are 

nested in the GCMs can be employed for deriving climatic variables 
for a specific region using dynamic downscaling methods which yield 
spatially distributed fields of climatic variables while preserving 
certain spatial correlations and maintaining physically realistic 
relationships between climatic variables (Maurer and Hidalgo, 2008). 
However, these methods are computationally expensive and only 
available for limited regions (Salehnia et al., 2019; Sunyer et al., 2012; 
Tisseuil et al., 2010; Xu et al., 2019). Additionally, outputs from recent 
GCMs have significantly improved in spatial resolution and wider 
applicability, closing the gap with RCMs. This advancement is 
contributing to a decreased reliance on RCMs for policy-making 
purposes (Tapiador et al., 2020). Moreover, GCMs are limited by the 
large uncertanities, and large discrepancies in the simulation of 
hyrological changes (Wu et al., 2024). For example, output of these 
models poorly represents regional precipitation (Rocheta et al., 2014; 
Lehner et al., 2020; Zhou et al., 2020; Srivastava et al., 2020), and 
drought persistence (Moon et al., 2018).

Stochastic modelling provides valuable tools for understanding 
and managing uncertainty to support decision-making (Hui et al., 
2018; Ajami et al., 2008). According to Brekke et al. (2009) stochastic 
modeling can be useful for developing climate scenarios that include 
a wide range of potential hydroclimatic conditions. The expanded 
variability may allow more robust evaluation of planning alternatives. 
However, regime-switching complicates the modelling process 
because many traditional stochastic time series models (e.g., 
autoregressive-moving average) are inadequate in capturing regime-
shifting characteristics, leading to a misrepresentation of the risk 
associated with prolonged wet and dry periods (Bracken et al., 2014). 
As a result, this misrepresentation can adversely affect management 
and planning efforts. Bracken et  al. (2014) addressed this by 
developing a climate informed hidden Markov model (HMM) that 
used information from climate indices (e.g., Niño3 index) to improve 
the representation of temporal behavior. However, their method does 
not incorporate GCM outputs and therefore does not address the 
challenge of creating GCM informed projections. Moreover, 
investigating regime-switching behavior only through the context of 
global oscillations will result in incomplete understanding of weather 
regimes, as they are also influenced by regional phenomena (Gupta 
et al., 2023a).

Advanced stochastic techniques such as HMMs offer a flexible 
approach to capture the regime-switching behavior of hydroclimate 
patterns (Bracken et al., 2014; Ho et al., 2018). HMMs enable the 
conceptualization of climatic patterns as latent or hidden variables, 
considering their interconnected influence on hydroclimatic regimes 
(Ho et al., 2018). Moreover, HMMs provide more useful information 
to quantify spatiotemporal variabilities while considering climatic 
states and trends, in comparison to methods that would seek to cluster 
the time series or find lower dimensional patterns (e.g., wavelet 
analysis) (Ho et al., 2018). Thus, HMMs have been extensively used in 
hydroclimatic analysis including studies to quantify spatio-temporal 
variabilities and trends (Bracken et al., 2014, 2016; Ho et al., 2018; 
Holsclaw et al., 2017; Hughes and Guttorp, 1994; Prairie et al., 2008; 
Hernández et al., 2020; Zucchini and Guttorp, 1991), to downscale 
hydrological variables from GCMs (Jiang et  al., 2023), to model 
paleoreconstruction data (Nasri et  al., 2020; Gupta et  al., 2023b), 
weather generation (Paciorek, 2022) and other hydrologic applications 
(Guilpart et al. 2021; Sun et al. 2023). Covariates can be incorporated 
into HMMs by including them to the parameters of the state 
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dependent distributions, the transition probability matrix, or a 
combination of both (Zucchini et al., 2016). Such predictor variables 
offer one way to link the HMM, which is constructed based on past 
observations, to future projections.

To address data limitations, paleoreconstruction data offers a 
promising approach for supplementing relatively short observational 
records to better understand the long-term climate variability (Cook 
et  al., 1999). These paleoreconstructions have been employed to 
inform water resources planning and policy especially in the areas 
which are prone to high levels of spatiotemporal variability or in case 
of modeling supply systems that span multiple river basins (Carrier 
et al., 2013; Rice et al., 2009; Woodhouse and Lukas, 2006a, 2006b; 
Gupta et al., 2023b). Paleoreconstructions of the Palmer modified 
drought index (PMDI) and temperature across North America are 
examples of such records (Cook et  al., 2010; Wahl and Smerdon, 
2012a, 2012b). Recent studies use a gridded paleo-proxy called the 
Living Blended Drought Atlas (LBDA) (Ho et  al., 2018) and 
standardized precipitation index (SPI) (Gupta et  al., 2023a) to 
reconstruct weather regimes, and LBDA to reconstruct streamflow 
across the U. S (Ho et al., 2016, 2017). Paleoreconstructions have 
proven valuable for understading the drought statistics, as well as 
assesing the probability of co-occurance of wet and dry periods across 
a regional watershed of multiple interlinked watersheds (Ravindranath 
et  al., 2019; Nasri et  al., 2020). While most hydrological data 
reconstructions are focused on catchment and gauge-specific 
applications (Bracken et  al., 2016; Ravindranath et  al., 2019; 
Woodhouse et al., 2024), limited prior research addressed inter-site 
and inter-basin dependencies for better water supply management of 
interconnected networks of watersheds for regional water supply 
(Littell et al., 2023). For example, Bracken et al. (2016) reconstructed 
flows at 20 sites in the Upper Colorado River Basin demonstrating the 
ability to preserve inter-site correlations and dynamic representation 
of uncertainty in each reconstructed year. Catchment-specific 
reconstructions provide valuable insights only for local water 
management practices, yet many catchments are still lacking spatio-
temporal coverage of reconstruction of hydrologic variables (Ho et al., 
2017; Littell et  al., 2023). A variety of methods (e.g., hierarchical 
clustering method, Bayesian hierarchical non-homogenous HMM) 
have been used to quantify the spatiotemporal structure of 
paleoreconstruction data (Chen et  al., 2019; Bracken et  al., 2016; 
Carrier et al., 2013; Ho et al., 2016; Rao et al., 2018). However, the high 
dimensionality of paleoreconstruction data, coupled with its large 
scale, makes it complex to analyze and manage large datasets. 
Additionally, given the potential for hydrological change driven by a 
changing climate, an understanding of future patterns is also needed.

Previous applications demonstrate that HMM can simulate 
regional hydrological patterns in space and time (Guo et al., 2018; 
Bracken et  al., 2014; Najibi et  al., 2021). However, these models 
without covariates are trained on historic data and do not have the 
capacity to make projections or create scenarios to explore the future. 
This gap motivates the following research questions: (1) how to 
generate an ensemble of future regional climate informed scenarios 
across the Western U.S. consistent with historic spatio-temporal 
patterns and future temperature changes? (2) how to cope with the 
high dimensionality of paleoreconstruction data and thereby enable a 
computationally efficient model for large regions? In answering these 
questions, we expand upon prior work (e.g., Steinschneider et al., 
2019; Ho et al., 2018) by constructing a HMM with covariates that can 

both characterize historical spatiotemporal patterns and make 
projections of PMDI informed by temperature projections. 
Temperature is selected as the covariates because it is both available in 
the paleoreconstruction record (Wahl and Smerdon, 2012a, 2012b) 
and a well vetted output of GCM projections (Woldemeskel 
et al., 2016).

While both temperature and precipitation influence PMDI, 
variations in precipitation exhibit significant diversity across 
different climate models and geographical regions (Bradford et al., 
2020). For example, Srivastava et al. (2020) found that most CMIP6 
models tend to overestimate both the frequency and variability of 
wet period durations in the Western U.S. Similarly, Kunkel et al. 
(2020) showed that the Western U.S. exhibits mixed trends of 
annual precipitation events for the observed period. This highlights 
the complex nature of precipitation patterns in the Western U.S., 
where annual precipitation trends can vary significantly depending 
on the period of record and spatial location. In contrast significant 
temperature change is detected in observations (Udall and 
Overpeck, 2017; Griffin and Anchukaitis, 2014; Marvel et al., 2023), 
is consistently projected, and is established as a significant driver 
of aridification in the Western U.S. (Overpeck and Udall, 2020; 
Williams et al., 2020). Thus, incorporating the effects of temperature 
change in future hydrological scenarios is critical to capture the 
dominant impact of climate change on hydrology in the region. 
We also apply principal component analysis (PCA) to address the 
challenges posed by the high dimensionality of paleoreconstruction 
data by effectively capturing its temporal and spatial dependencies, 
thereby mitigating the computational complexity of HMM. Further, 
our approach improves upon traditional time series models which 
are based on short-term memory and stationarity that cause a weak 
persistence and lower probability of long wet and dry spells due to 
a weak autocorrelation (Bracken et al., 2014). We address these 
research questions in the context of the Western U.S. The Western 
U.S. region is an ideal test case because of its uncertain  
climate variability which affects water resources planning 
and management.

2 Materials and methods

2.1 Study area

This study focuses on the Western U.S. watersheds, particularly 
the Colorado River and interconnected watersheds linked by 
interbasin transfers and shared demand nodes, such as Rio Grande 
River Basin, Central Valley Water Project, Southern California, Los 
Angeles Aqueduct source watersheds, Central Utah and Strawberry 
water project, Arkansas River, South Platte River, Little Snake River, 
Imperial and Coachella Valleys, and parts of Mexico (e.g., Baja 
California and Sonora). The interconnected nature of these watersheds 
motivates this investigation of regional hydroclimatic patterns, as 
droughts occur at larger spatiotemporal scales for the western part of 
U.S., typically spreading over hundreds to thousands of square 
kilometers. Droughts in the western and most of the central 
U.S. commonly originate from northwestern direction (Konapala and 
Mishra, 2017). Hence, the study area is defined as 30–49° N, 97.1–
124.9° W (Figure 1). Spatially gridded PMDI and temperature data 
are extracted based on the study area boundary.
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Figure 1 shows the study area along with the 11 U.S. Geological 
Survey (USGS) HUC-2 (2-digit hydrologic unit code) 
hydrologic regions.

2.2 Data

Paleo PMDI data and paleo temperature anomalies used in this 
study are obtained from the National Oceanic and Atmospheric 
Administration (NOAA) database (Cook et  al., 2010; Wahl and 
Smerdon, 2012a, 2012b). Temperature projections are taken from the 
bias corrected CMIP6 climate projections with the shared socioecomic 
pathways (SSP) 245 scenario, which is an update to representative 
concentration pathway (RCP) 4.5 scenario, with an additional 
radiative forcing of 4.5 W/m2 by the year 2100 (Xu et al., 2021). This 
scenario is the medium pathway of future greenhouse gas emissions 
and assumes that climate protection measures are being taken 
(Böttinger and Kasang, 2024). This scenario was selected to 
demonstrate the technique but any temperature projections from any 

scenario could be applied. Resampling is performed with bilinear 
technique for the reconstructed temperature anomalies and the 
temperature projections to match the 0.5 × 0.5 paleo PMDI data grid 
over the study area. The choice of study period is guided by a trade-off 
between data availability in terms of record length and spatial 
coverage. Annually resolved paleoreconstruction records and 
temperature projections are used to test hydroclimatic variability over 
time scales related to water resources management and planning. The 
overview of data used in this study is given in Table 1.

2.2.1 Living blended drought atlas
The PMDI is a modification of the Palmer drought severity index 

(PDSI), which uses readily available temperature and precipitation 
data to calculate relative dryness of a region and the severity of wet 
and dry events (Palmer, 1965). It can reflect the mechanism of drought 
and can be used to monitor long-term evolution of droughts (Yu et al., 
2019). The difference between PMDI and PDSI is in the transition 
periods between dry and wet conditions. For the PDSI, a dry/wet 
index is calculated when the probability that a dry/wet spell is 100%, 

FIGURE 1

Map of the study area with the HUC-2 hydrologic regions (blue polygons). The study area is defined as 30–49° N, 97.1–124.9° W.

TABLE 1 Overview of data.

Data type Data period Source

Paleo PMDI data 1500–1980 Cook et al. (2010); Gille et al. (2017)

Paleo temperature data 1500–1980 Wahl and Smerdon (2012a, 2012b)

Temperature projections (Bias-corrected CMIP6-SSP245) 2020–2100 Xu et al. (2021)
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and transition index is assigned when the probability is less than 
100%. The PMDI incorporates a weighted average of the wet and dry 
index by using the probability as the weighting factor. Both the PMDI 
and PDSI will have the same value during an established drought or 
wet spell (e.g., when the probability equals to 100%). However, they 
will have different values during transition periods since PMDI has a 
more gradual transition from one spell to another. PMDI is the 
operational version of the PDSI and the best suited index for 
operational applications (Heddinghaus and Sabol, 1991). The values 
of PMDI generally range from -6 to +6, where negative values 
represent dry spells, and positive values are wet spells.

This product is well validated, and versions of the North American 
Drought Atlas (NADA) have been used extensively in the study of 
North American drought variability (Cook et al., 1999). The NADA is 
composed of annually resolved summer (June–August) 
paleoreconstructions of PDSI from a network of tree-ring chronologies 
estimated on a 286-point 2.5 × 2.5 PDSI grid over most of North 
America of PDSI from a network of tree-ring chronologies estimated 
on a 286-point 2.5 × 2.5 PDSI grid over most of North America (Cook 
et al., 2007). Here we use the most up to date version, the Living 
Blended Drought Atlas version 2 (LBDAv2), which recalibrates PDSI 
based on LBDAv1 data updated until 2017 (Cook et  al., 2010), is 
utilized in multiple studies (Burgdorf et al., 2019; Son et al., 2021) to 
incorporate 21st century droughts. LBDA is derived from moisture-
limited trees, which are significantly influenced by climatic forcings 
that drive soil moisture availability (Ho et al., 2016). This type of tree 
ring series provides annually resolved records that cover a wide 
spectrum of hydrological variability (Nasri et al., 2020). In this study, 
the observational and paleo PMDI records from LBDAv2 between 
1500 and 1980 are used for the analysis since the availability of 
observational record is short relative to the time scale of 
hydrological variability.

2.2.2 Paleo temperature data
Paleo temperature data, like paleo PMDI data, play a significant 

role in understanding the climate prior to the beginning of the 
observational records by quantitatively extending the record back in 
time. A tree ring-based paleoreconstruction of Western North 
America annual surface temperature anomalies with a 5 × 5-degree 
grid cell coverage is used in this study for the period of 1500 and 1980. 
The anomalies are calculated relative to the baseline period of 1904 to 
1980 (Wahl and Smerdon, 2012a, 2012b). The spatially explicit 
paleoreconstructions are calculated based on a truncated empirical 
orthogonal function method (Wahl and Smerdon, 2012a, 2012b), and 
have been used in multiple studies (Lehner et al., 2017; PAGES 2k 
Consortium et al., 2013). The principal components (PCs) of the paleo 
temperature anomalies are used as covariate in the HMM to enable 
the model to generate plausible future scenarios by using GCM 
temperature output PCs.

2.2.3 Temperature projections
This study uses the latest CMIP6 projections developed under the 

Intergovernmental Panel on Climate Change Fifth Assessment Report 
(IPCC-AR6) to integrate new climate processes for reliable future 
climate projections and climate impact studies (Nie et  al., 2020; 
Srivastava et  al., 2020; Grose et  al., 2020). Despite significant 
advancements in GCMs over recent decades, they still exhibit notable 
biases in the model simulations and the resolution of GCMs is still too 

coarse for regional impact studies (Li and Li, 2023). Therefore, several 
studies have focused on applying the GCM bias correction methods 
to improve the accuracy of climate projections (Yildiz et al., 2024; Qiu 
et al., 2022; Wang and Tian, 2022). In this study, a bias-corrected 
1.25 × 1.25 grid spacing CMIP6 surface temperature data with the 
SSP 245 scenario is used (Xu et al., 2021). The bias-corrected dataset 
integrates the non-linear trend derived from the ensemble mean of 18 
CMIP6 models while incorporates the European Centre for Medium-
Range Weather Forecasts Reanalysis 5 (ERA5) based mean climate 
and interannual variance to correct biases in GCMs. More information 
about the dataset description can be found in Xu et al. (2021). Annual 
mean surface temperature anomalies are calculated to be compatible 
with the historical temperature anomalies in the paleo record. For 
consistency with the paleo temperature anomaly data, anomalies are 
calculated using a baseline period of 1904 to 1980.

2.3 Methods

In this study we  develop a HMM of PMDI in the Western 
U.S. with temperature PCs as a covariate. First, we resample paleo 
temperature anomalies and bias-corrected CMIP6 temperature data 
to match the paleo PMDI data grid size. To reduce the computational 
demands, we apply PCA to paleo PMDI and temperature data prior 
to HMM model fitting. Figure 2 illustrates the sequence of methods 
applied. More detailed information is provided in the 
respective sections.

2.3.1 Principal component analysis (PCA)
PCA is a multivariate technique that reduces a data set containing 

many variables to a data set having fewer new variables. These new 
variables are linear combinations of the original variables, and they 
have high variance while being uncorrelated with each other. The PCA 
method can compactly represent variability in atmospheric and other 
geophysical fields, which exhibit high correlations amongst variables 
(Wilks, 2019) and has been repeatedly applied in climate and 
hydrologic sciences to describe dominant patterns (Balling and 
Goodrich, 2007; Bethere et al., 2017; Lins, 1997). Researchers have 
used PCA to examine spatial variability of wet and dry periods (Eder 
et al., 1987; Raziei et al., 2008; Ogunrinde et al., 2020; Huang et al., 
2022) while others have applied PCA for dimension reduction 
(Malmgren and Winter, 1999; Mortensen et al., 2018).

In this study, PCA is used to reduce the dimensionality of large 
paleo PMDI and paleo temperature records, increasing interpretability 
while minimizing information loss. The number of PCs is determined 
by calculating cumulative explained variance ratio, which is a function 
of the number of components. A scree plot is the common approach 
to depict this ratio and select number of PCs (Cattell, 1966). It displays 
the amount of variance captured by each PC in descending order, 
helping to identify the point where additional components offer 
diminishing returns in explained variance. To ensure that a sufficient 
proportion of the variance was captured, we chose to retain enough 
PCs to meet a minimum of 80% of variance explanation. This decision 
ensured that we  captured sufficient variance while balancing the 
number of components included.

Figure 3 illustrates the methodological approach used in the 
study and illustrates how PCA reduces the dimensionality of the 
spatio-temporal reconstruction data. PCA decomposes 
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spatio-temporal variability (Figure 3A) into temporal components 
(PC scores, Figure  3C) and their corresponding spatial 
components (loadings, Figure  3B). Note that while this 
illustration is generated using actual data, it is presented in a 
conceptual manner and does not show the specific PCs selected. 
The paleo PMDI data span from 1500 to 1980 with a matrix grid 
of 1823 × 481 (e.g., 1823 grid-cells and 481 years). Similarly, 
paleo temperature data covers the same period, arranged in a 
matrix grid of 1,637 grid cells by 481 years after resampling. The 
use of PCs in the HMM ensures that the primary variance in the 
data is retained while reducing its dimensionality, enabling more 
efficient analysis and interpretation.

To apply PCA, we took the set of PMDI time series, x, at locations 
1 through M = 1823. We  compute the eigenvectors of the data’s 
covariance matrix by singular value decomposition. The s-th PC (XS) 
is then obtained using Equation 1:

 =

′= = ∑ s= , ,,
1

1 S 
M

T
s s m s m

m
X e x e x

  (1)

where es is the s-th eigenvector of the covariance matrix, x is the 
original data, and M is the number of variables (here locations). 
We repeated this process with the set of temperature time series y at 
locations 1 through M = 1,637. Then we retained the number of PMDI 
PCs, X, and temperature PCs, Y, sufficient to capture 80% of the 
variability for use in the HMM.

Autocorrelation, common in hydrological data, can lead PCA to 
detect of spurious spatial patterns (Planque and Arneberg, 2018; 
Vanhatalo and Kulahci, 2016). To assess whether autocorrelation 
impacts PCA results in this case, we conducted a comparative analysis 
of PCA on the PMDI with and without a pre-whitening procedure 
following Zamprogno et  al. (2020). Minimal differences in the 
loadings and variance explained of the top 10 principal components 
confirm the acceptability of PCA on the original data in this case (see 
Supplementary material 1).

2.3.2 Hidden Markov model (HMM) with 
covariates

Hidden Markov models (HMMs) are statistical models that 
generate a variable sequence from a distribution based on the state of 

FIGURE 2

Flow diagram of methodology to fit, test and apply the HMM with covariates to PMDI. Red boxes represent steps involved in calculating future 
temperature PCs used to generate projections but not to fit and test the model.
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an underlying and unobserved Markov process (Zucchini et al., 2016). 
In the classical homogeneous HMMs, a system changes between 
unobserved or hidden states characterized by transition probabilities 
and a Markov chain. Each state corresponds to a probability 
distribution where observed time series are drawn (Bracken 
et al., 2014).

The time-homogeneity of the classical homogenous HMM can 
be limiting in practice if observations are non-stationary or have 
seasonal dependence. One approach to relaxing this assumption is 
making transition probabilities to be dependent on covariate time 
series, which is called a nonhomogeneous HMM (Hughes and 
Guttorp, 1994; Robertson et  al., 2003; Bracken et  al., 2016; 
Holsclaw et  al., 2017; Steinschneider et  al., 2019). Temporal 
inhomogeneity can also be introduced to the emission component 
of the model by allowing the parameters of the emission 
distributions to vary with time and location as a function of 
covariates (Holsclaw et al., 2017).

HMMs with covariates allow simulation of space–time realizations 
of a regional hydrologic process conditional on a sequence of 
atmospheric data. Analogously, we here create space–time realizations 
of PMDI conditional on temperature, which is physically linked to 
PMDI through atmospheric water demand. Furthermore, this enables 
the use of GCM temperature projections from climate scenarios to 
project the impacts of such climate changes on regional hydrological 

processes. Here, we adopt a Gaussian HMM with covariate Y (e.g., 
temperature PCs), which uses the temporal historical data X (e.g., 
PMDI PCs).

Once the model is fit, it can be applied to create an ensemble of 
space–time realizations of PMDI conditional on projected temperature 
changes by linking transition probabilities between states and 
emission distribution parameters to GCM generated temperature. An 
ensemble of state sequences is generated based on the transition 
probabilities by running the fitted HMM multiple times. Then, a 
unique mean and standard deviation are calculated for each location 
for a given state based on the projected temperature at that location 
and time (Figure 3).

Figure 4 shows the modelled dependencies between the PMDI 
PCs, X, hidden states C, and covariates Y in a graphical form, omitting, 
for simplicity, details such as relationships between different 
parameters of the model. Here, the temporal inhomogeneity is 
introduced in the emission component of the model by allowing the 
parameters of emission distributions ( )t ,s t , ,X |C k, ,t k t kf µ σ=  to 
vary with time t and principal components as a function of covariate 
Y (Holsclaw et al., 2016). In the function, k represents the state while 
μ and σ denote the emission parameters, which are mean and standard 
deviation, respectively (Equations 2 and 3).

The value for X for the s-th principal component s = 1, …, S at 
year t = 1, …., T, conditioned on the hidden state variable C = k, is 

FIGURE 3

Conceptual illustration of the role of PCA in reducing dimensionality. (A) Spatio-temporal pattern of paleo PMDI data, (B) PC loadings for paleo PMDI 
data, and (C) Temporal variability in PCs. The gray rectangle area represents missing data.
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modelled via independently Gaussian distributed variables with mean 
and standard deviation:

 ( ) ( )t ,s t t ,s , , ,P X |C k, X | ,t k s k sµ σ= … = 
 2

 
µ δ

=
=∑, , , ,

1

n

t k s i k i t
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Where:

 • ( )t ,s t , , ,X | ,k s k sµ σ  represents Gaussian distribution with 
mean μ and standard deviation σ

 • µ  is the function of the time-varying covariates tY  (temperature 
PCs) as well as the state (k) and X (s)

 • δ ,i k  is the coefficient for covariate i at state (k)
 • n is the number of covariate variables (here the selected number 

of temperature PCs)
 • σ is function of the state (k) and X (s)

This approach enables the model to account for temporal 
variations in the emission process, improving its flexibility and 
accuracy in capturing the dynamics of wet and dry events via PMDI.

The HMM model with covariates is fitted for a specified 
number of states using the Expectation–Maximization (EM) 
algorithm (also called the Baum-Welch algorithm). Once the 
model is fit, the Viterbi algorithm is then employed to identify 
the most likely sequence of states. Then Bayesian Information 
Criterion (BIC) and Akaike’s Information Criterion (AIC) are 
used to select the appropriate number of states. BIC seeks to 
maximize model consistency while AIC seeks to maximize model 
efficiency (Celeux and Durand, 2008). There are theoretical 
questions about the use of BIC and AIC in this context. While 
BIC tends to underestimate the number of hidden states, AIC 
demonstrates a tendency to overfit the number of hidden states 
in an HMM (Celeux and Durand, 2008; Buckby et al., 2020). The 
appropriate number of hidden states in an HMM can 
be determined by the minimum BIC or AIC value (Bacci et al., 
2014). However, both AIC and BIC can be used to determine a 

range of plausible model sizes by model averaging (Dziak et al., 
2020). Here, we select a mid-point of hidden states of models to 
balance the goals of efficiency and consistency. If the two metrics 
disagree, rounding down to the nearest integer can be applied for 
computational efficiency.

To assess whether the fitted model describes the data well, a 
comprehensive comparison between model simulations and the 
observed data for the paleo PMDI data is conducted using both 
visually (e.g., time series plots, spatial maps, residual plots, and 
histograms) and statistically by quantifying the goodness-of-fit, 
such as the root mean square error (RMSE). Furthermore, 
pseudo-residuals (also known as quantile residuals) are calculated 
as an additional check on model performance based on the 
information provided following the procedure detailed by 
Zucchini et al. (2016). This cannot be done by analyzing only 
standard residuals because the observations are explained by 
different distributions depending on the active hidden state. 
Following Zucchini et  al. (2016), we  conclude that the 
observations are modeled well if pseudo-residuals are close to 
standard normal distribution. We visually assessed the residuals 
and pseudo-residuals using histograms and statistically using the 
Shapiro–Wilk normality test (Shapiro et al., 1968).

Following set up and testing, the HMM with covariates is 
applied to generate an ensemble of spatially explicit PMDI historic 
simulations and projections. To generate an ensemble, the model is 
iteratively run, with each run resulting in a sequence of states. 
Additionally, the emission parameters are identified for each state 
and year (as temperature, the covariate, is time-varying). The 
emission parameters define the Gaussian distribution for each state 
and year. For each time step in each sequence the distribution is 
sampled for the PMDI PCs. These simulated PMDI PCs are then 
multiplied by their respective loadings to obtain the spatially 
explicit simulated PMDI. Importantly, as HMM with covariates is 
a stochastic model, the results will vary with each run, which 
reflects the inherent variability and uncertainty in the system. The 
framework extends to future projections by using temperature 
projections for the covariate.

3 Results

The results of HMM with covariates after PCA, including model 
development, selection, pseudo-residuals assessment and application 
are given in this section.

3.1 PCA

The scree plot and the cumulative variance plot criterion are used 
to choose the appropriate number of PCs (Supplementary material 3). 
The scree plot suggests selecting 4 PCs, as the variance explained 
began to plateau at that point. However, we  chose to retain 6 
components because they collectively explained a minimum of 80% 
of the variance. Consequently, the first six PCs are selected both for 
paleo PMDI and paleo temperature data, as they capture a significant 
portion of the variance before the curve plateaus. Specifically, the 6 
PCs account for 81.4% of the variance in the paleo PMDI data and 
84.6% of the variance in the paleo temperature data.

FIGURE 4

Structure of HMM. Y represents the covariate (additional variable, 
here temperature), X represents the variable occurrences (here 
PMDI), and C represents the number of hidden states (adapted from 
Zucchini et al., 2016).
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3.2 Hidden Markov model with covariates

Nine HMMs with covariates are fitted to the data with a range of 
states from two to ten. The minimum BIC is calculated at state two 
and the minimum AIC is found at state six. The HMM model with 
four hidden states for the entire study area is selected as the optimal 

model, representing a balance between efficiency and consistency, as 
it is the mid-point between the minimum AIC and BIC values 
(Table 2).

For the selected four-state model, Figure 5 shows the paleo PMDI 
and paleo temperature anomaly time series, averaged across the study 
area, together with most likely hidden states over the Western 
U.S. during training period. Positive PMDI represents wet conditions 

TABLE 2 HMM with covariates model selection.

HMM state AIC BIC

State = 2 26878.03 27291.44

State = 3 26870.90 27505.63

State = 4 26886.10 27750.50

State = 5 26887.71 27990.14

State = 6 26868.10 28216.91

State = 7 26940.06 28543.60

State = 8 26926.28 28792.89

State = 9 26997.75 29135.79

State = 10 27020.27 29438.10

Bold indicates the optimal model state.

FIGURE 5

(A) Annual mean paleo PMDI time series over the Western U.S., (B) Annual mean paleo temperature anomaly time series over the Western U.S., and 
(C) Most likely states over the Western U.S.
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while negative PMDI represents dry conditions. Figure 5 illustrates 
the connection between observed PMDI, observed temperature 
anomalies, and the corresponding states identified by the model. 
Figure 5 further illustrates the value of using the paleo record in this 
analysis as evidenced a larger range of PMDI than observed over the 
instrumental record. For example, during the decades 1548–1558 and 
1817–1826, PMDI values consistently fell below -1 across several 
locations in the northern and central Great Plains, which indicates 
sustained and regionally extensive drought conditions. These 
prolonged drought conditions emphasize the severity and persistence 
of naturally occurring hydroclimatic extremes, which are not captured 
in the shorter instrumental record.

Figure 6 shows the comparison of observed mean paleo PMDI 
and ensembles of simulated mean PMDI over the study area. The 
observed mean paleo PMDI falls within the range of the simulated 
ensembles, indicating that the simulations capture the overall 
variability and trends. The performance of the ensembles is evaluated 
using the RMSE. The RMSE values of the ensemble models are 
predominantly concentrated in the range of 1.5 to 1.6. Although the 
model is stochastic and does not aim to reproduce the specific 
observed sequence, approximately 65 out of the 100 ensembles fall 
within this range, indicating a high consistency in model performance. 
Furthermore, the Shapiro–Wilk test is applied to the pseudo-residuals 
and p-values for pseudo-residuals are found to be greater than the 
chosen alpha level of 0.05, which confirms the normality of the 
pseudo-residuals.

A traditional HMM approach without a covariate is also applied 
to simulate ensembles of mean PMDI over the study area. The 
historical record is divided into two parts: the first 70% (1500–1835) 
is used to develop both traditional HMM and HMM with covariates 
generators, while the remaining 30% (1836–1980) is used as a 
validation period to assess models’ ability to produce synthetic PMDI 
data. The model results show that the HMM with covariates has a very 
low mean bias (0.003) for the recent observed period. However, the 
traditional HMM bias, while still low, shows a higher mean bias (0.09), 
indicating that including temperature as a covariate reduces the bias. 
While both models demonstrate high consistency in their simulations, 

the HMM with covariates is selected in this study since it can 
incorporate external covariates, such as temperature PCs, into the 
model. The HMM’s capacity to incorporate covariates enables the 
generation of future scenarios that are directly informed by projections 
of those covariates (e.g., CMIP6 surface temperature from GCMs). 
Details of the traditional HMM approach can be  found in the 
Supplementary material 2.

The model provides insight into hydroclimatic regimes (e.g., 
recurrent spatial patterns) or states via independently Gaussian 
distributed variables with mean and standard deviation where both 
mean and standard deviation are unique to each PC for a given state. 
Figure 7 illustrates the simulated PMDI reconstruction patterns and 
state transition probabilities when there is no temperature impact on 
PMDI (e.g., temperature anomaly is zero). Figure 7 shows the spatial 
patterns of PMDI associated with the four states, and the likelihood 
of transition from each state to all other states. The wettest state is 
identified as state 4 with the highest percentage of wet area 
(W = 99.5%) and the driest state is determined as state 1 with the 
highest percentage of dry area (D = 73%). These states represent data-
driven patterns derived from the model, captured PMDI variability 
influenced by global climatic cycles (e.g., El Niño/Southern 
Oscillation, Pacific Decadal Oscillation) and regional 
climate dynamics.

The transition probabilities help to identify how states can 
be expected to shift to either a wet or dry state in the next year. For 
example, the probability of state 3 occurring the year after state 2 
is 0.57. However, state 1 shows the highest persistence with a 
probability of 0.74 to remain in the same state from year to year. 
This indicates that the study area is more likely to experience 
persistent region wide dry conditions. On the other hand, state 4 
has a transition probability of 0.63 for remaining in the same state 
and 0.22 probability of transitioning to the moderately wet state 
3 in the next year. This indicates that once the study area is in the 
wettest state, it is more likely to stay wet rather than shifting to a 
dry state.

Given the model developed for the historic training period, one 
can generate plausible sequences of hidden states for the forecast 

FIGURE 6

Observed mean paleo PMDI and 100 ensembles of simulated mean PMDI over time.
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period. Figure 8 illustrates one stochastic scenario of system states 
(e.g., scenario 1) at each time step during the forecast period. For 
example, the first scenario shows no single state dominating during 
the early period (2020–2040). As we moved into the mid and late 21st 
century, State-3 is more dominant in this scenario. Moreover, 
ensemble-based analysis reveals that the persistence of drought events 
is anticipated to intensify significantly in the future period. While 
historical droughts lasted an average of 11.5 years, future droughts are 
expected to persist for an average of 33.18 years, indicating prolonged 
drought events under the SSP 245 scenario.

Future PMDI scenarios, informed by a specific temperature 
scenario, are created from 2020 to 2100 for the Western U.S. using the 
model. Figure  9 shows the spatial pattern of annual temperature 
reconstruction anomalies and simulated median PMDI 
reconstructions across ensembles in the study area for one historic and 
one projected year. The annual temperature anomaly significantly rises 
by the end of the century all over the Western U.S. under the SSP 245 
scenario. Corresponding to the temperature increase, the median 
PMDI reconstructions show a shift from relatively neutral conditions 
in 1500 to widespread drought conditions in 2100. Analysis of the 
ensemble results further reveals that the spatial extent of drought is 
expected to expand dramatically, with the proportion of affected grid 
cells increasing from 8.84% during the historical period to 51.1% 

during the future period under SSP 245 scenario. While Figure 9 
illustrates just one PMDI scenario from the ensemble, it exemplifies 
the positive correlation between rising temperatures and dry 
conditions in the Western U.S.

Quantile ranges for an ensemble of 100 projected sequences over 
time for the case study area are shown in Figure 10. The figure shows 
changes in PMDI variability of each 100 scenarios over time. 
According to Figure 10, the PMDI variability over the Western U.S. is 
likely to increase over time under the SSP 245 scenario due to increase 
in temperature variability. The standard deviation of temperature 
shows a significant increase from the historical period, ranging from 
1.1574 to 1.1989, to the future periods, with values between 1.661 and 
1.803 for 2020–2060 and 1.631 to 1.804 for 2060–2100. This increase 
in temperature variability directly contributes to the rising PMDI 
variability. The increasing range and decreasing mean of PMDI 
suggests a significant influence of temperature changes, specifically as 
we move into the mid to late 21st century. This variability points to a 
higher likelihood of more extreme drought events and greater 
uncertainty in wet and dry conditions. The broader range of PMDI 
values during this period indicates that the impacts of climate change, 
particularly rising temperatures, are likely causing more frequent and 
severe droughts, but also some extreme wet years. For example, only 
8.7% of drought events [PMDI<= − 2; National Centers for 

FIGURE 7

Annual mean PMDI reconstructions in each hidden state when temperature anomaly is zero. Blue represents a positive anomaly (e.g., wet) while red 
represents a negative anomaly (e.g., dry) of PMDI. “D” (dry) is the percentage of the area where mean PMDI reconstructions are less than zero and “W” 
(wet) is the percentage of the area where mean PMDI reconstructions are greater than zero. Transition probabilities are shown as a heatmap, arrows 
represent transition directions and match the colors in the heatmap. The gray rectangle area on the map represents missing data.
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Environmental Information (NCEI), 2024] were identified between 
1500 and 1980. However, projections for the period from 2020 to 2100 
indicate a sharp rise, with drought occurrences expected to increase 
to 50%. This highlights a significant increase in the frequency of 
drought conditions in the future under SSP 245 scenario. Furthermore, 
the mean PMDI shows a tendency to decrease over time, indicating 
regional aridification as we move towards the end of the century. This 
trend is explained by increasing air temperatures, which enhances 
evapotranspiration rates and reduces soil moisture, leading to lower 
PMDI values.

4 Discussion

This study used a HMM with covariates to create future PMDI 
scenarios over the Western U.S., incorporating temperature projections 
as the covariates. The methodology incorporates the integration of HMM 
with covariates and PCA to efficiently handle high dimensional 
paleoreconstruction data, enabling the generation of robust future climate 
informed scenarios. The approach successfully captures the 
spatiotemporal variability and regime-shifting behavior of climatic 
patterns, providing critical insights for spatial correlation of wet and dry 
conditions across the regions of the Western U.S. Key findings from the 
study highlight several important aspects of climate dynamics in the 
Western U.S.

The HMM with covariates effectively models the regime-shifting 
behavior in climatic patterns by identifying wet and dry states. 
Transition probabilities between these states reveal the likelihood of 
shifts, aiding in the understanding of the persistence and variability of 

drought conditions. For example, Figure 7 provide a detailed view of 
how wet and dry states are distributed, highlighting the persistence 
and variability of climatic patterns across the Western U.S. The maps 
reveal that certain climatic conditions, whether wet or dry, can persist 
over several years, which is critical for understanding long-term water 
availability and water planning. The insights gained from the model 
results are valuable for water resource managers and policymakers, 
enabling better anticipation of periods of water surplus or shortage 
and informing decisions on water storage, allocation, and conservation 
measures to ensure a resilient water supply system.

One of the key advantages of this study is that the developed model 
has the ability to make temperature informed PMDI projections. Using 
climate-informed variables (e.g., temperature) as covariates can help 
capture the variations in a hydrological variable (e.g., PMDI) that are 
influenced by the covariates through physical processes. Thus, utilizing a 
climate informed covariate increases the model skill in capturing 
persistence and nonstationary (Ho et al., 2018; Vinnarasi and Dhanya, 
2022). In this study, incorporating temperature PCs as a covariate 
significantly enhances the model’s projections. The decision to use only 
temperature data as a covariate is supported by the consistent role of 
temperature in driving drought conditions in our study area; further, 
precipitation projections from GCMs still exhibit significant biases in 
climatology and variability, and therefore adding precipitation as a 
co-variate could add error (Kunkel et al., 2020; Srivastava et al., 2020). 
Additionally, PMDI already incorporates key climate variables such as 
precipitation, temperature, soil moisture, and evapotranspiration to assess 
long-term drought and moisture conditions. Temperature also has well-
documented paleo data; it serves as a reliable input for historical period. 
Conversely, variables like precipitation, soil moisture and 

FIGURE 8

One stochastic scenario of system states in the Western U.S. (Scenario-1).
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FIGURE 9

Spatial comparison of (A) Annual paleo temperature anomalies in 1500, (B) Annual temperature anomalies in 2100, (C) Simulated median PMDI 
reconstructions across ensembles for 1500, and (D) Simulated median PMDI reconstructions across ensembles for 2100 in the Western U.S. The gray 
rectangle area represents missing data.

FIGURE 10

Quantile range for ensemble of 100 sequences of scenarios of PMDI spatially average across the study period the Western U.S. Darker areas represent 
higher densities of data points, while lighter areas indicate less frequent occurrences.
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evapotranspiration lack corresponding paleo records, making them 
unavailable for the historical period we analyzed. As shown in Figure 10, 
the developed model can capture nonstationary by allowing the 
parameters of the emission distributions to vary with time as a function 
of a covariate. The wide range of PMDI variability over time shows that 
the severity of wet and dry events over the Western U.S. is likely to 
increase by time under the SSP  245 warming scenario applied. 
Additionally, the findings highlight the critical impact of rising 
temperatures on regional aridification, with decreasing tendency of mean 
PMDI over time towards the end of the century under the SSP 245 
scenario. These findings enhance our understanding of how uncertainties 
in air temperature impact PMDI variability, providing valuable insights 
into the future climate dynamics of the region. Furthermore, the 
heightened variability underscores the challenges for water resource 
management, necessitating adaptive strategies to manage 
extreme conditions.

Having relatively short instrumental records is a key limitation to 
assess spatial patterns in wet and dry periods in the U.S. for long time 
scales. Paleoreconstruction data offer a long-term perspective on climatic 
variability by supplementing relatively short observation data (Ho et al., 
2018). Annually resolved paleoclimate records provide a framework for 
exploring policy and management alternatives to mitigate or adapt the 
future changes [U.S. Geological Survey (USGS), 2022]. This study 
effectively utilized long-term paleoreconstructions to overcome the 
limitations posed by relatively short observational records. As depicted 
in Figures  5A,B, this study leveraged PMDI and temperature 
paleoreconstructions to train the HMM, enabling the model to simulate 
a wide range of spatio-temporal climate informed scenarios (Figure 10), 
thereby enhancing its reliability and applicability. Utilizing long-term 
paleoclimate records enables us to better understand the long-term 
climate variability over time scales relevant to water resources 
management and planning to mitigate or adapt to future changes by 
creating ensemble of scenarios.

Given the high dimensionality of the paleoreconstruction data, PCA 
is applied to reduce the dimensionality of data and thereby enable 
computationally efficient HMM. Precisely, the computation time is 
7 min for the model to generate an ensemble of 100 sequences of 
scenarios. All experiments are run on a 64-bit computer with Intel(R) 
Core (TM) i7-8665U CPU @ 1.90GHz 2.11 GHz processor and 32 GB 
of RAM running Windows 10 Enterprise. The developed model shows 
a strong performance in simulating paleo PMDI data, as seen in Figure 6 
by the alignment of observed and simulated mean PMDI, and the 
normality of pseudo-residuals. Another advantage of developing the 
HMM with PCA output in comparison to other dimensional reduction 
techniques such as clustering, is its grid-based representation, which 
provides insight into wet and dry events by representing a specific PMDI 
value at a given time and state. As shown in Figure 9, the ability to have 
grid-based representation is of interest for local and regional resource 
managers since it generates realistic and spatially variable scenarios.

Another advantage of our approach is its ability to estimate 
uncertainty in natural variability via HMM framework, which is more 
computationally efficient compared to running a single-model initial 
condition large ensemble (SMILE). While SMILEs involve running 
multiple ensemble members initialized from slightly different conditions 
to capture variability, this method is computationally expensive, 
specifically for large-scale climate projections (Lehner et al., 2020). In 
contrast, our approach can compare insights by modelling regime-
switching behavior through hidden states that represent different climate 

regimes (e.g., wet and dry periods). Additionally, the model can capture 
the inherent natural variability without requiring multiple runs of climate 
models. This efficiency could be  particularly beneficial when 
computational resources are constrained.

Although the recent generation of models in CMIP6 offers improved 
resolutions (Liang-Liang et al., 2022), GCMs may still be inadequate for 
providing the detailed regional information required for climate change 
impact studies, particularly at the river basin scale (Banda et al., 2022). 
The HMM simplifies the temporal and spatial structures to 
be  parameterized despite its large number of parameters and 
computational complexities (Mehrotra and Sharma, 2005). As seen in 
Figures 9D, 10, the study presented here can avoid these issues, creating 
0.5 × 0.5-degree grid cell coverage ensemble of future PMDI scenarios 
from year to year at each grid location by linking the model with 
covariates (e.g., bias-corrected 1.25 × 1.25 grid spacing CMIP6 surface 
temperature data) and using computationally efficient model as 
mentioned above paragraph.

According to GCM outputs and detailed regional studies, streamflow 
is sensitive to changes in temperature and precipitation but the regional 
impacts of global warming on future water supplies are uncertain 
(Frederick and Gleick, 1999; Lehner et al., 2019). For example, McCabe 
and Wolock (2007) showed that 1°C to 2°C increases in temperature 
could result in substantial water supply shortages in the Upper Colorado 
River Basin. They also reported that future warming could increase the 
probability of failure to meet the water allocation requirements of the 
Colorado River Compact. Creation of ensembles of regional climate 
scenarios is necessary for the quantification of climate uncertainty in the 
influence of global warming to address the potential impacts of climate 
change and climate variability on future infrastructure planning and water 
policy (Groves et al., 2008). One of the significant contributions of the 
paper is that the developed model generates an ensemble of plausible 
future regional PMDI scenarios for any projected temperature sequence, 
as presented in Figure 10. These ensembles can be helpful for water 
resources managers, infrastructure planners, and government 
policymakers tasked with infrastructure planning and building of more 
resilient communities. Moreover, streamflow ensembles that preserve 
long-term spatio-temporal variability can be generated by using these 
ensembles. Prior research has demonstrated several feasible ways to do 
this including stepwise multiple linear regression, PCA and canonical 
correlation analysis (Barnett et al., 2010; Day and Sandifer, 2015). Thereby, 
these ensembles can play a pivotal role to address creating inter-site and 
inter-basin streamflow reconstructions (Ho et al., 2016) for better water 
supply management of interconnected networks of watersheds.

An important limitation of this study is that paleo PMDI and paleo 
temperature data are based on tree-ring chronologies, and the 
uncertainty increases with the age of the chronology due to lower tree-
ring sample availability. Therefore, the accuracy of the fitted HMM and 
subsequent state and emissions distributions are affected by the 
uncertainty of the reconstructed input data. Furthermore, both paleo 
PMDI and paleo temperature records do not include climate variables 
like net radiation or wind speed, which may also play a crucial role in 
influencing future drought occurrences and intensities (Brunner and 
Gilleland, 2024). However, the advantages of using paleo PMDI and 
paleo temperature are specifically the ability to train a model on a wider 
range of hydrological conditions and spatial patterns motivate use of this 
data despite the limitations.

In future research, the methodology developed here could also 
be  applied using other hydroclimatic metrics, depending on the 
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application of interest. This approach can be used for any region or 
watershed to better understand the spatio-temporal patterns of 
drought events. An ensemble of plausible future regional PMDI 
scenarios can be used to inform watershed or regional planning and 
decision making. Furthermore, these ensembles can be  used to 
generate streamflow ensembles, which, in turn, will be a valuable input 
to study the impact of climate change on regional hydrology and water 
management. Additionally, future work could focus on computing 
PMDI from climate projections to assess whether the statistics align 
with those from the non-stationary generator. This comparison would 
demonstrate the consistency of the analysis with a large ensemble of 
PMDI values, making it a clearly chosen option.
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