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Water resources in many regions are increasingly under pressure due to population 
growth, agricultural expansion, and climate variability, which presents significant 
challenges in maintaining sustainable water supplies. The Little Ruaha catchment 
in Tanzania, a critical area for irrigation, water supply, and hydropower projects, is 
similarly affected by these pressures. This study was conducted to examine in detail 
the spatial–temporal variability and trends of rainfall indices to inform sustainable 
water resource management within the catchment. The study utilized the Mann-
Kendall (MK) statistical test at a 95% confidence level (p ≤ 0.05), to assess the 
onset and cessation of annual and seasonal rainfall trends, with a particular focus 
on the November to April (NDJFMA) rainfall season. Rainbow statistical software 
was employed to evaluate rainfall normality and probabilities at 20, 50, and 80% 
risk levels. Results show decreasing trends in annual rainfall at Kilima station and 
Iringa Maji but were significant at Kilima station. On the other hand, increasing 
trends which were not significant at Iringa met and Mafinga stations. In terms 
of seasonal rainfall, the Iringa Met and Kilima stations demonstrated decreasing 
trends which were significant at Kilima. In addition, Mafinga and Iringa maji stations 
exhibited insignificant increasing trend. The results indicate that rain-fed crops in 
the southern and northeastern regions of the catchment are highly susceptible 
to drought stress, particularly during the short rainfall season (20% probability). 
Furthermore, there is a significant risk of water stress for sensitive crops in a typical 
season (50% probability) in these areas. The study recommends the cultivation 
of short-cycle crops or the implementation of irrigation strategies in vulnerable 
locations, along with enhancing water productivity and enforcing water permit 
regulations to ensure sustainable downstream flows. These findings are crucial 
for hydrological planning, irrigation management, and the overall sustainability 
of water resources in the Little Ruaha catchment.
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Highlights

	•	 The eastern and northeastern regions of the basin experience the lowest levels of 
seasonal rainfall.

	•	 Dominant decreasing trends are observed for annual rainfall while seasonal rainfall 
patterns generally exhibit increasing tendency although not significant in some stations.
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	•	 Variations in the timing of rainfall onset and cessation, as well as 
the duration of the rainy season are observed. These changes are 
more pronounced in the eastern and central regions with the 
beginning and cessation dates that represent a risk at 20, 50, and 
80% for return periods of 5, 2, and 4 years, respectively.

	•	 The findings indicate that rain-fed crops in the southern and 
northeastern regions of the catchment are very susceptible to 
drying during the short rainfall season (at 20% probability) while 
for the regular season (at 50% probability), there is a 50 % 
likelihood of water stress damage to highly sensitive crops in 
these regions highlighting the need for irrigation.

1 Introduction

Africa is projected to experience increased unpredictability in 
precipitation patterns, particularly with a likely decrease in rainfall 
across most parts of sub-Saharan Africa (Nicholson, 2017). The 
rainfall patterns within sub-Saharan Africa demonstrate substantial 
variability reflecting the intricate interplay between local 
environmental factors and global anthropogenic influences (Knoben 
et al., 2019; Benyoussef et al., 2024). The erratic nature of the climate 
in this region results in disparate perceptions of changes in rainfall 
patterns, as the climates of individual countries are shaped by diverse 
natural regional systems and global anthropogenic activities. 
Consequently, it is imperative to understand the characteristics of 
precipitation patterns and their anticipated changes across various 
scales and levels. The understanding of rainfall characteristics holds 
significance in various domains, including agriculture, water resource 
management, and public health, particularly in developing countries 
(Hachigonta et  al., 2008; Singh and Ranade, 2010; Mbungu and 
Kashaigili, 2017; Tumbo, 2018).

In East Africa, rainfall demonstrates significant variability across 
various spatial and temporal scales, presenting substantial challenges 
to livelihoods throughout the region. Research has identified instances 
of such variability, including droughts and protracted periods of 
rainfall (Bewket and Conway, 2007; Conway et al., 2009; Hamandawana 
and Chanda, 2013). Furthermore, the Intergovernmental Panel on 
Climate Change (IPCC, 2007) has projected an increase in the severity 
of climatic extremes in the future, underscoring the urgent necessity 
for comprehensive research on climate variability.

In Tanzania, several studies, such as those by Gulacha and 
Mulungu (2017), Nyembo et  al. (2021), Pima et  al. (2021), and 
Mwabumba et al. (2022), have investigated rainfall variability across 
different regions. However, the findings from these studies show 
inconsistencies, which can be attributed to diverse local factors such as 
variations in land use patterns and the distinct models used for climate 
simulation. These studies highlight the importance of conducting a 
comprehensive, site-specific analysis to accurately characterize the 
spatiotemporal variability and trends in rainfall. This involves a 
detailed examination of rainfall onset and cessation, duration, 
precipitation variations, extreme events, and drought occurrences 
across various regions (Francis and Mahongo, 2012; Mongi et al., 2010; 
Sigalla et al., 2023). Understanding these climatic characteristics is 
crucial, as they have significant implications for socioeconomic 
aspects, including food security, water resource management, and the 
agricultural sector (Amekudzi et al., 2015; Desa and Niemczynowicz, 
1997; Hirsch et al., 1982; Patil and Kalange, 2015).

The agricultural sector is a vital contributor to national economies, 
providing food security, employment opportunities, and export 
earnings, among other benefits (Pawlak and Kołodziejczak, 2020). 
Despite its significance, this sector largely depends on rain-fed 
systems, making it highly susceptible to changes in rainfall patterns, 
which can have immediate effects on agricultural productivity and the 
overall GDP (Mbungu and Kashaigili, 2017). The long-term impacts 
of climate change on rainfall patterns pose additional risks to the 
agricultural sector. Climate change can alter the timing, intensity, and 
distribution of rainfall, leading to reorganization of river networks and 
shifts in water availability, which directly affect hydrological regimes 
and agricultural sustainability (Abed-Elmdoust and Kerachian, 2012; 
Gao et  al., 2017). These changes, particularly under scenarios of 
increased rainfall variability, can lead to critical alterations in river 
system behavior and have profound implications for managing 
agricultural water resources (Sarker et al., 2019; Singhal et al., 2024).

Rainfall variability and trends are crucial for informed water 
resources planning and management in any geographical setting 
(Duncan et al., 2013). The analysis is crucial for advancing our scientific 
understanding of rainfall variability and trends, particularly, as climate 
change and variability are perceived as being the greatest threats to 
agricultural production and food security in sub-Saharan African 
countries (Alemu and Bawoke, 2019). This study in the Little Ruaha 
catchment, will leverage on the modified Mann-Kendall which 
combines the Mann-Kendall non-parametric test and Sen’s slope 
estimator for quantifying the magnitude, which are well-established 
methods preferred by the World Meteorological Organization for their 
robustness in analysing environmental data and detecting trends (Yue 
and Pilon, 2004). The preference for non-parametric statistical tests is 
justified by their suitability for data exhibiting significant variance, 
different data scales, and resilience to extreme values and skewed 
distributions – characteristics often observed in environmental datasets 
(Da Silva et al., 2015). Spatial interpolation was conducted using the 
Inverse Distance Weighted method in ArcMap, a commonly employed 
technique that has demonstrated reliable performance in climate data 
interpolation. Similar methodological approaches have been effectively 
utilized in Tanzania and comparable regions, providing valuable 
insights into local climate variability (Sigalla et al., 2023).

The Little Ruaha catchment in Tanzania, is an important resource 
for the agricultural sector, supporting activities such as irrigation 
schemes, water supply, and contributing significant inflows to the 
Mtera reservoir and the Julius Nyerere Hydropower Plant (JNHPP) 
for hydropower production. However, this catchment faces increasing 
pressures from population growth, intensified agricultural activities, 
and climate variability, leading to fluctuations in rainfall (Sigalla et al., 
2023). This situation highlights the need for a comprehensive and 
location-specific analysis of the spatiotemporal variability and trends 
of rainfall indices, as it is essential for communities in the catchment 
who depend on agriculture for their livelihoods.

This study aims to analyze the rainfall patterns in the Little Ruaha 
catchment, focusing on critical aspects such as onset, cessation, 
duration, volume, and frequency. By examining these parameters, the 
study seeks to provide essential insights for hydrological and 
agricultural planning. Given the increasing unpredictability of rainfall 
patterns due to climate change, this research will inform adaptive 
strategies that can help mitigate the adverse effects of rainfall 
variability on agricultural productivity and water resource 
management. The findings will be  particularly valuable for local 
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farmers and water managers in optimizing irrigation scheduling and 
improving crop yields, while simultaneously ensuring the sustainable 
use of the catchment’s water resources. Moreover, the results will 
contribute significantly to regional efforts in implementing Integrated 
Water Resource Management (IWRM), fostering the development of 
resilient agricultural systems, and safeguarding food security and 
livelihoods. Ultimately, this study will not only support the effective 
management of water resources within the Little Ruaha catchment but 
also provide a framework that can be applied to similar regions facing 
the dual challenges of climate variability and increasing demands on 
water resources.

2 Materials and methods

2.1 Study area

The Little Ruaha catchment is geographically situated between 
longitudes 35°2′E and 35°36′E, and latitudes 7°11′S and 8°36′S. The 
catchment is estimated to encompass an area of 6,210 km2, which 
includes the catchment area and drains portions of Iringa Municipal, 
as well as Iringa, Kilolo, and Mufindi Districts within the Iringa 
Region. It is located within the Ihemi Cluster, which is one of six 
clusters constituting the Southern Agricultural Growth Corridor of 
Tanzania (SAGCOT). The climate of the catchment is characterized 
by high variability, predominantly exhibiting a unimodal pattern, with 

a single rainy season occurring from November to April. Average 
annual rainfall ranges from 500 mm in the lowlands to 700 mm in the 
highlands of Iringa. The average annual temperature fluctuates 
between 18°C at higher altitudes and approximately 28°C in lowland 
areas. Elevation within the catchment varies from 698 to approximately 
2,300 meters above mean sea level (m. asl) (Figure 1). The predominant 
soil types in the region include Cambisols, Fluvisols, Leptosols, 
Lixisols, Nitisols, and Solonetz (Mbungu and Kashaigili, 2017).

The catchment area supports a diverse array of socioeconomic 
activities, with agriculture identified as the predominant sector, employing 
a significant portion of the population in the surrounding regions (Ires, 
2021). Additional activities include fishing, cattle rearing, beekeeping, and 
tourism, which are notably influenced by the presence of various wildlife 
habitats within Ruaha National Park (URT, 2012).

2.2 Methodological approach

Figure 2 presents a systematic approach for analyzing rainfall data, 
beginning with data collection and rigorous quality control, including 
validation and homogeneity testing to ensure accuracy. Following 
these initial steps, the study conducts trend detection using the 
modified Mann-Kendall test to address serial autocorrelation, and 
Sen’s slope estimator is applied to quantify trend magnitude. 
Subsequently, rainfall characteristics such as onset, cessation, duration, 
and intensity are analyzed to capture seasonal variations. Spatial 

FIGURE 1

Location map of the study area showing little Ruaha catchment [Data source: national bureau of statistics; shuttle radar topography mission (SRTM)].
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interpolation and risk probability analyses further enhance the spatial 
and risk assessments, providing a comprehensive view of rainfall 
distribution and variability across selected stations. Detailed 
descriptions of each methodological step are provided in the 
following sections.

2.2.1 Data acquisition and quality assessment
Historical daily rainfall, for various periods, were collected from 

various sources within and around the Little Ruaha catchment. The 
data included those from the meteorological stations provided by the 
Tanzania Meteorological Authority (TMA) and data maintained by 
the Rufiji Basin Water Board and other organizations or agencies. 
Rainfall data for various periods from 39 stations were collected and 
checked for quality. For this study, analysis required that the data 
be  both homogeneous and independent to ensure valid results. 
Homogeneity was particularly important to confirm that all 
observations stemmed from a single population. The RAINBOW 

(Raes et al., 2006) tool’s homogeneity test, which assesses cumulative 
deviations from the mean by examining their maximum values and 
range, was applied to data from the Little Ruaha catchment. This 
allowed for an evaluation of the consistency and reliability of the time 
series dataset used in the analysis.

Data quality control was conducted by examining the stations and 
their respective timescales, ensuring that data gaps did not exceed 10% 
of the overall study period, in accordance with the recommendations 
of Larbi et  al. (2018) and Nkiaka et  al. (2017). A comprehensive 
quality assessment of the dataset was executed, emphasizing data 
consistency and the identification of any missing information. The 
resolution of data gaps involved the application of regression 
equations; specifically, linear regression for continuous variables and 
logistic regression for categorical variables, as demonstrated in 
previous studies (Mbungu and Kashaigili, 2017; Mbungu et al., 2012). 
Moreover, data from other stations with analogous characteristics but 
less comprehensive datasets were utilized to address gaps, thereby 

FIGURE 2

Flow chart of the methodological approach used in this study.
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enhancing the robustness of the primary dataset through the 
integration of data matching and regression analysis.

To assess the uncertainty introduced through regression-based 
infilling, a Leave-One-Out Cross-Validation (LOOCV) analysis was 
performed for each rainfall station. The LOOCV procedure involved 
systematically excluding one observed value at a time, predicting it 
using linear regression from the other stations, and comparing it to 
the actual value. The performance of the infilling was quantified using 
Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). 
The detailed results of the LOOCV analysis are provided in 
Supplementary Table S1, which demonstrates that the infilling method 
yielded low error margins and preserved the reliability of the 
reconstructed time series.

After a thorough quality assessment and the rectification of any 
data deficiencies, the rainfall data deemed suitable for examining the 
characteristics and temporal patterns of precipitation were 
employed. Furthermore, the study incorporated maximum and 
minimum temperature data from the Iringa Meteorological Station 
to analyze additional characteristics of the rainy season, including 
onset, cessation, and season duration. This station was selected due 
to its provision of comprehensive temperature data for the entire 
study area.

2.2.2 Annual and seasonal analysis of trends and 
variability

To fully explore rainfall variations and trends triggered by 
climate change, the assessment was conducted for the period from 
1961 to the end of the available data for all four studied stations. 
The study utilized the Mann-Kendall (MK) statistical test for trend 
analysis to determine the change of the random variables over the 
study area at different time scales depending on the data 
availability. This non-parametric method is a robust tool for 
identifying trends in environmental data time series and is 
recommended by the World Meteorological Organization (WMO). 
The Mann-Kendall test is straightforward, resistant to outliers, and 
capable of handling missing data, making it a reliable approach for 
analysing changes in precipitation patterns over time (Mohammed 
et  al., 2018). The magnitudes of the trends in the annual and 
seasonal rainfall were estimated over the last four decades and 
their statistical significance for each station and the entire 
catchment were determined. The MK test was used to calculate 
annual and seasonal rainfall trends at a 95 percent confidence level 
(Kumar et al., 2017). The magnitude of trends was estimated using 
Sen’s slope estimator, and 95% confidence intervals were computed 
to quantify the uncertainty around the trend estimates.

The statistical significance level (α) was used to determine 
whether to accept the alternative hypothesis (Ha) of the presence of a 
monotonic trend or the null hypothesis (Ho) of the absence of a 
monotonic trend.

The MK tests (Equations 1–5) calculate the slope of the line 
generated by graphing the variable of interest against time, but they 
only consider the sign of the slope, not the magnitude (Ismail and 
Oke, 2012). The MK statistic S is calculated in the following way:

	
( )

−

= = +
= −∑ ∑

1

1 1
sgn

n n

j k
k j k

S x x
	

(1)

Where xj and xk are sequential data values for the time series data 
of length n. The sgn series is defined as:
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The mean of S is 0 whenever there is an identical and independent 
dataset distribution, whereas the variance of S is provided by 
Equation 3.
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where ti denotes the length of a certain tie. If the data series has 
tied values, ti signifies the sum of all ties and is only used if the data 
series contains tied values. Equation 4 shows how to calculate the 
standard normal variate Z. (4):
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If Z is negative, the trend is downward, and if Z is positive, the 
trend is upward. If the absolute value of Z is greater than Z1−/2, the 
null hypothesis of no trend is rejected. Z1−/2 is calculated from 
conventional normal cumulative distribution tables. After determining 
the direction of the trend with the Mann–Kendall test, the amplitude 
of the trends was determined using Sen’s slope estimator 
(Equations 5, 6). The method calculates the change in slope using a 
linear model, and the variance of the residuals should be constant 
throughout time (Sen, 1968).
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where Qi is the slope between data points Xj and Xk, Qmed is the 
median slope estimator which reflects the direction of the trend in 
the data.

In time series analysis, particularly in environmental datasets such 
as rainfall, there is often the risk of autocorrelation, which can skew 
the results of trend detection by increasing Type I  error rates. To 
mitigate this, the study employed the modified Mann-Kendall (MMK) 
test, as proposed by Hamed and Rao (1998). Autocorrelation can 
distort the statistical reliability of detected trends, as noted in studies 
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by Ameen et al. (2024) and Mohammed et al. (2018). The MMK test 
addresses this issue by applying a variance correction that adjusts for 
the presence of serial correlation within the data. The analysis was 
carried out in R-Studio (version 4.2.1) using the ‘modifiedmk’ 
package, which specifically implements the modified Mann-Kendall 
procedure. This method corrects the test statistic by adjusting the 
effective sample size, minimizing the impact of serial dependence on 
trend detection. Consequently, this approach ensures that the 
identified trends in the rainfall data reflect real changes rather than 
being the result of autocorrelation within the dataset.

The use of variance-corrected methodologies like the MMK test 
has become a standard practice in hydrological studies and has been 
validated as a robust tool for time series analysis in cases where 
autocorrelation may be  present, as supported by research from 
Balogun et al. (2023).

To account for the potential influence of serial correlation on 
trend detection, lag-1 autocorrelation coefficients (ACF) were 
calculated for each rainfall time series, covering both annual totals and 
seasonal rainfall. The lag-1 ACF values varied across stations, with 
most exhibiting weak to moderate autocorrelation, while Kilima 
station showed a notably high value of 0.889, suggesting strong 
temporal persistence in its rainfall series. Given the presence of serial 
correlation, the modified Mann–Kendall test incorporating the 
Hamed–Rao variance correction (Hamed and Rao, 1998) was 
employed. This approach adjusts the variance of the Mann–Kendall 
statistic to account for autocorrelation without altering the original 
data series. The corrected p-values from this test, along with Sen’s 
slope estimates and their associated 95% confidence intervals, were 
reported to provide a robust and statistically sound assessment of 
monotonic trends in rainfall.

Additionally, this study defines rainfall variability as the 
fluctuations in seasonal and annual precipitation relative to the long-
term average. Annual and seasonal rainfall patterns over extended 
periods are regarded as indicators of the potential impacts of climate 
change (Jones et al., 2015). Consequently, an analysis was undertaken 
to assess any potential changes in wet and dry seasons by examining 
both long-term and short-term patterns, as well as the onset, cessation, 
and variations in annual and seasonal rainfall.

2.2.3 Rainy season characteristics
The rainy season can be characterized by the distribution of the 

rain (amount and time), the start and cessation dates, dry spells, 
lengths of the season and precipitation amount (Yonah et al., 2006). 
The rainy season’s characteristics are crucial for agricultural and water 
resource management (Omotosho et al., 2000). For example, the onset 
of the season is useful for researching seasonal variations and 
determining planting and harvesting schedules. The duration of the 
rainy season helps in predicting crop yields and planning irrigation 
systems. Precipitation patterns during this time are studied to assess 
water availability and manage reservoirs for drinking water and 
hydroelectric power generation. Overall, understanding and 
monitoring the characteristics of the rainy season are essential for 
sustainable agriculture and efficient water resource management.

Numerous techniques and methods have been formulated and are 
used to estimate the onset and cessation of the rainy season (Laux 
et al., 2008; Stern et al., 1981; Sivakumar, 1988; Segele and Lamb, 2005; 
Marteau et  al., 2009, 2011). This study used a combination of 
thresholds for rainy days, accumulated or total rainfall, the number of 

rainy days, and wet or dry spell lengths to determine the onset and 
cessation dates and length of the rainy season. For the onset, the day 
is rainy if at least 1 mm was observed, and the accumulated rainfall 
totals 20 mm over 3 days with at least 3 rain days (Stern et al., 1982). 
This potential start can be a false start if, a dry spell of 10 days or more 
within the next 30 days occurs afterwards (Ojo and Ilunga, 2018). 
Therefore, this study considered a dry spell not exceeding 7 days in the 
next 21 days (Marteau et al., 2009; Recha et al., 2012; Edao et al., 2018). 
Since the study areas exhibit a Unimodal rainfall pattern (long rains 
from November to April), October 1st was considered as the earliest 
possible planting date for the study area. 1st October was considered 
the earliest possible onset date to capture those few onsets that 
occurred before November during the November – April (NDJFMA) 
rainfall season. These methods result in diverse patterns and trends.

As for cessation dates, the potential evapotranspiration (PET) and 
water balance criteria were used. Potential evapotranspiration (PET) 
was calculated using the Modified Hargraves methods (Cobaner et al., 
2017), which consider the rainfall and maximum and minimum 
temperature datasets. The PET was then used to calculate the water 
balance with the threshold of the soil moisture holding capacity of 
100%. The Cessation date was computed based on the fraction of 
evapotranspiration and the threshold used is accumulated 10 days 
rainfall less than 0.5 of evapotranspiration (Omay et  al., 2023). 
Further, analysis of rainfall duration (length of season), seasonal 
rainfall amounts, and number of rainy days was carried out to 
determine the rainfall seasonal characteristics of the study area.

To improve the spatial representativeness of PET across the study 
area, particularly given the variation in elevation and terrain, PET was 
computed for all four rainfall stations using gridded data from the 
Climatic Research Unit (CRU). This mitigates the bias that might arise 
from relying on a single high-altitude station and provides a more 
spatially consistent estimate of atmospheric demand. The reanalysis 
PET values were subsequently used to determine rainfall cessation 
dates for each station.

The datasets for each station and year were computed separately 
from 1st January 1960 to the end year of available data at a particular 
station to analyze the characteristics of the NDJFMA rainfall season. 
An open-source R-statistical Package Climate Data Tool (CDT), V 7.0 
developed and maintained by the International Research Institute for 
Climate and Society (IRI), Columbia University (Acharya et al., 2021; 
Dinku et al., 2022), was used for the data organization, quality control 
and determination of the rainfall onset and cessation dates for the 
studied locations.

In this study, the risk or probability levels of onset, cessation and 
duration of the rainy season were also determined because of the high 
variability that is associated with the rainfall season characteristic over 
the catchment.

Due to the high variability associated with the rainfall season 
characteristics over the catchment, risk probability levels of onset, 
cessation and duration of the rainy season were computed. Various 
probability values (20, 50, and 80%) were established for both 
non-exceedance and exceedance likelihood. The curve fitting was 
performed utilizing the maximum likelihood process, whereas the 
probabilities were evaluated employing the Weibull method (Raes 
et al., 2006). The study utilized the Kolmogorov–Smirnov test and 
assessed the proximity of the fitted line to the data points to ascertain 
if the data for rainy season features at each station exhibited a normal 
distribution (Raes et al., 2006). The datasets for each rainy season 
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index and climatic station that do not fit into a normal distribution 
were converted using four methods: (a) square root, (b) logarithmic, 
(c) square method, and (d) cube root technique. The study employed 
the Rainbow software to conduct frequency analysis and assess the 
homogeneity of hydrometeorological data (Raes et  al., 2006). In 
addition, the study utilized ArcMap 10.7.1 and QGIS 2.6.0 software to 
perform spatial analysis. The Inverse Distance Weighting (IDW) 
method was used to interpolate and generate spatial rainfall 
distribution maps across the study area. The accuracy of the IDW 
interpolation was evaluated using three statistical performance 
metrics: the coefficient of determination (R2), Mean Absolute Error 
(MAE), and Root Mean Square Error (RMSE), following the approach 
of Yasin et al. (2024).

To complement the IDW method and improve spatial 
representation, a gauge–satellite blended interpolation approach was 
also employed. This method involved combining observed rainfall 
data from ground stations with satellite-based estimates from the 
Climate Hazards Group InfraRed Precipitation with Station data 
(CHIRPS). For each station, the arithmetic mean of the CHIRPS value 
and the corresponding gauge observation was calculated to generate 
the blended estimate. This approach aimed to minimize biases present 
in either data source and to harness the high spatial coverage of 
satellite data alongside the local accuracy of in-situ measurements.

The performance of both IDW and gauge–satellite blended 
methods was assessed using RMSE, MAE, and Bias, calculated by 
comparing interpolated values against the observed station data. 
Results indicated that the gauge–satellite blended approach 
consistently outperformed the IDW method, yielding lower error 
values and demonstrating improved accuracy in representing the 
spatial variability of rainfall within the study catchment.

2.2.4 Frequency analysis of annual maximum 
rainfall

Frequency analysis of annual maximum daily rainfall was 
performed using the Weibull and log-normal distributions. Parameters 
were estimated using Maximum Likelihood Estimation (MLE), and 
model performance was evaluated using the Kolmogorov–Smirnov 
(KS) test, Akaike Information Criterion (AIC), and Q–Q plots. 
Log-transformation was applied prior to fitting the log-normal model 
to assess improvements in distributional fit.

The Weibull distribution was chosen due to its common application 
in hydrology for modelling extremes (Gumbel, 1958; Stedinger et al., 
1993; Hosking and Wallis, 1997), while the log-normal served as a 
comparative model suitable for skewed rainfall data (Wilks, 2011). The 
KS test was used to assess goodness-of-fit (Chakravarti et al., 1967), and 
AIC was applied to compare model parsimony (Akaike, 1974).

3 Results and discussion

The primary focus of this study was to analyze annual and 
seasonal rainfall trends, including the timing of rainfall onset and 
cessation, as well as other rainfall characteristics during the November 
to April rainfall season. The objective of this study was to characterize 
rainfall patterns and dynamics within the Little Ruaha catchment. To 
evaluate the effectiveness of spatial rainfall interpolation in the Little 
Ruaha catchment, two methods, Inverse Distance Weighting (IDW) 
and gauge–satellite blending,were compared using observed rainfall 

data from Iringa Maji, Iringa Met, Kilima, and Mafinga stations. The 
objective was to assess how well each method represents the spatial 
distribution of mean annual rainfall in a region characterized by 
complex topography and variable climate.

The IDW method yielded mean annual rainfall estimates ranging 
from 675.29 mm to 1230.10 mm but performed poorly in terms of 
accuracy, with a Root Mean Square Error (RMSE) of 440.50 mm and 
Mean Absolute Error (MAE) of 419.86 mm. This high error suggests 
that IDW’s distance-based weighting fails to adequately account for 
the spatial heterogeneity inherent in the catchment’s rainfall patterns.

In contrast, the gauge–satellite blended method, which combines 
observed values with CHIRPS satellite data, significantly improved 
estimation accuracy (RMSE = 45.34 mm, MAE = 40.79 mm). These 
results align with regional studies (e.g., Dinku et al., 2022), which 
show that blending improves spatial representation of rainfall, 
especially in data-sparse or topographically varied areas. The 
improved performance of the blended method supports its application 
in hydrological modelling and water resources planning in 
the catchment.

3.1 Annual and seasonal rainfall trends

Understanding long-term trends in extreme rainfall events is 
essential for evaluating hydrological risks and informing water 
resource management in the Little Ruaha Catchment. This section 
presents the results of trend analysis conducted on both annual and 
seasonal maximum daily rainfall series across selected stations. The 
analysis employed non-parametric methods to detect monotonic 
trends and quantify their magnitude. To ensure the robustness of the 
statistical results, the potential influence of serial correlation in the 
time series was also assessed and appropriately addressed prior to 
trend testing.

The analysis of lag-1 autocorrelation (ACF) across the four rainfall 
stations in the Little Ruaha catchment provides insights into the 
temporal persistence and memory of rainfall time series. Among the 
stations, Kilima exhibited the highest lag-1 ACF value of 0.89 for both 
annual and seasonal rainfall, indicating a strong autocorrelation in the 
data. This high persistence suggests that rainfall anomalies in one year 
are likely to be followed by similar anomalies in the subsequent year, 
which could be a result of underlying climatic drivers such as large-
scale circulation patterns or sustained land surface changes (e.g., 
deforestation, elevation-linked feedbacks). The presence of strong 
autocorrelation at Kilima also emphasizes the importance of adjusting 
for serial correlation in trend analysis to avoid overstating significance, 
which was addressed in this study through pre-whitening procedures.

The results of the trend analysis for both annual and seasonal 
maximum daily rainfall are presented in Table  1. The spatial and 
temporal variability of rainfall trends in the Little Ruaha catchment 
reveals a highly heterogeneous pattern across the four analyzed 
stations. Kilima station stands out with a pronounced and statistically 
significant decreasing trend in both annual and seasonal rainfall. The 
annual Sen’s slope for Kilima is −34.73 mm/year with a 95% 
confidence interval of [−39.91, −29.55], and for the seasonal rainfall, 
the slope is −28.87 mm/year [−33.26, −24.47]. These strong negative 
trends are further supported by a high Mann-Kendall statistic of −0.64 
(annual) and −0.62 (seasonal), both with p-values less than 0.001, 
indicating robust evidence of declining precipitation. Additionally, the 
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high lag-1 autocorrelation value (0.88) suggests persistence in the 
rainfall decline over time. This finding aligns with previous studies 
such as Sigalla et al. (2023), who found evidence of rainfall reductions 
in high-altitude regions potentially driven by land use change 
and deforestation.

In contrast, the trends at Iringa Maji, Iringa Met, and Mafinga 
stations are not statistically significant. Iringa Maji showed a slight 
positive Sen’s slope of 0.21 mm/year for both annual and seasonal 
rainfall, with confidence intervals crossing zero [(−0.11, 0.57) annual 
and (−0.12, 0.60) seasonal], and p-values of 0.17. The Mann-Kendall 
statistics are low (0.2 and −0.1, respectively), indicating no meaningful 
trend. Similarly, Iringa Met showed negligible changes in rainfall with 
annual and seasonal Sen’s slopes of 0.53 mm/year and −0.28 mm/year, 
respectively, and wide confidence intervals, suggesting high variability. 
Mafinga also showed weakly positive trends (1.01 mm/year annual 
and 1.09 mm/year seasonal) with p-values above 0.28. These findings 
are consistent with studies such as Gulacha and Mulungu (2017), who 
found that many stations in central and southern Tanzania displayed 
no significant trends in long-term rainfall, and Samwel (2021), who 
observed station-level heterogeneity in rainfall behavior across 
western Kenya.

Overall, the contrasting trends between Kilima and the other 
stations underscore the localized nature of climatic changes. The 
significant drying in Kilima could be  attributed to its unique 
topographical position and higher elevation, which may amplify 
sensitivity to broader climate dynamics or localized land use changes. 
The relatively stable or neutral trends in other stations suggest the 
absence of a basin-wide rainfall signal, further supporting findings 
from Mohammed et  al. (2018), who documented spatially mixed 
rainfall trends in the Ethiopian Highlands. This spatial heterogeneity 

highlights the need for station-specific climate monitoring and 
adaptation strategies, particularly in highland areas where livelihoods 
and ecosystems are highly vulnerable to changes in rainfall patterns.

To assess the robustness of the identified rainfall trends, a 
sensitivity analysis was conducted comparing results derived from the 
gap-filled dataset with those from the raw (non-gapfilled) data. The 
Mann-Kendall trend test and Sen’s slope estimates were recomputed 
using the raw dataset and compared with the original analysis. The 
results revealed no change in the direction or statistical significance of 
trends across all stations. Minor differences in slope magnitude were 
observed but did not affect the interpretation. This confirms that the 
regression-based infilling did not introduce significant bias. The 
comparison is summarized in Supplementary Table S2.

3.2 Rainfall onset and cessation trends

The study area in the southern highlands of Tanzania has 
experienced notable changes in rainfall patterns in recent years. 
Table 2 illustrates the trends in the onset and cessation of rainfall 
within the study area. The tests for the rainfall onset trends are not 
statistically significant across most of the meteorological stations 
(p  ≤ 0.05), except for the Kilima station, which demonstrates a 
significant decrease in the onset date of rainfall. This indicates a 
potential early onset of rainfall at these stations. Regarding rainfall 
cessations, the Mann-Kendall trend test reveals no significant changes 
across the study area. Overall, there is no significant seasonal shift 
observed in the study area; however, a notable increase in rainfall 
amounts is recorded. These results align with findings from a more 
localized study (Sigalla et al., 2023), which also reported a general 

TABLE 1  Man-Kendal results for the annual and seasonal rainfall.

S/N Station Years Period SS 95% C.I. MKT p-value Lag-1 ACF

1 Iringa Maji 1960–2000 Annual 0.21 [−0.11, 0.57] 0.2 0.17 0.10

Seasonal 0.21 [−0.12, 0.6] −0.1 0.17 0.11

2 Iringa Met 1960–2020 Annual 0.53 [−1.51, 2.57] 0.02 0.80 −0.16

Seasonal −0.28 [−2.27, 2.37] −0.02 0.80 −0.27

3 Kilima 1960–1994 Annual −34.73
[−39.91, 

−29.55]

−0.64 0.0* 0.89

Seasonal −28.87
[−33.26, 

−24.47]

−0.62 0.0* 0.89

4 Mafinga 1960-2020 Annual 1.01 [−2.64, 4.65] 0.01 0.90 0.21

Seasonal 1.09 [−3.09, 5.27] 0.09 0.28 0.15

*Significant trend; SS, Sen’s slope (mm/period); MKT, Mann-Kendall trend; C.I, Confidenterval (mm/period).

TABLE 2  Man-Kendal results for the seasonal rainfall.

SN Station Period Onset Cessation

SS MKT p-value SS MKT p-value

1 Iringa Maji 1960–2000 0.00 0.00 1.00 0.00 0.00 0.97

2 Iringa met 1960–2020 −0.01 −0.01 0.87 0.00 −0.01 0.94

3 Kilima 1960–1994 0.10 0.04 0.78 0.00 0.07 0.63

4 Mafinga 1960–2020 −0.12 −0.11 0.20 0.00 0.09 0.32

SS, Sen’s slope; MKT, Mann-Kendall trend.
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increase in rainfall in the region. In contrast, these findings contradict 
those of other coarser-scale studies, which indicate a general decline 
in precipitation in Tanzania’s southern highlands (Mkonda and 
He, 2018).

The observed increase in rainfall amounts in the study area is in 
contrast with the broader trend of declining precipitation reported in 
the region. This could be due to localized microclimatic factors or 
potential differences in the study methodologies and data sources. The 
lack of significant changes in the onset and cessation of rainfall 
suggests that the agricultural systems in the region may not 
be experiencing major disruptions to their growing seasons, despite 
the overall increase in rainfall amounts (Alemu and Bawoke, 2019). 
Further research is needed to better understand the complex and 
sometimes contradictory patterns of climate variability in Tanzania’s 
southern highlands, and their implications for agricultural production 
and food security (Table 3).

3.3 Rainfall characteristics

The findings indicate that while the onset and cessation dates 
generally fall within the anticipated range, with rainfall commencing 
and concluding within the natural timeframe, exceptions are noted for 
the Kilima station, where an extension of the cessation dates is 
observed. This variability in rainfall patterns can be  attributed to 
various factors, including variations in atmospheric moisture and 
prevailing wind systems (Omay et al., 2023; Yonah et al., 2023).

Table  3 presents data regarding the mean dates of onset and 
cessation, along with additional characteristics such as duration, 
quantity, and frequency of rainfall. The results show that the region 
generally experiences precipitation levels ranging from 613.1 mm to 
1197.8 mm, with the lowest recorded at the Iringa Meteorological 
Station in low-lying areas and the highest at the Kilima Station located 
in high-altitude regions. Despite the stations indicating normal dates 
for the start and end of a season, there are significant variations in the 
season’s onset and cessation, as well as rainfall patterns across different 

locations within the catchment area. This variability in rainfall 
patterns is consistent with the findings of previous studies in other 
regions, such as areas in Pakistani, which have reported similar spatial 
and temporal variations in precipitation (Ali et al., 2021).

A sensitivity analysis comparing cessation dates derived from 
station-based PET versus reanalysis-based PET yielded a satisfactory 
agreement with performance metrics of NSE = 0.58, RSR = 0.61, and 
PBIAS = 0.34, indicating that reanalysis PET slightly overestimates the 
local values but remains within an acceptable accuracy range for 
climatological applications.

The spatial–temporal assessment of rainfall has significant 
implications for numerous purposes, ranging from climate studies and 
water resources management to agricultural research and risk 
assessment for natural hazards (Ali et al., 2021). The understanding of 
geographical heterogeneities and temporal trends of rainfall is integral 
to modeling the impact of rainfall distribution and patterns on the 
society and environment.

3.3.1 Changes in rainfall onset and cessation 
dates, and lengths of rainfall season

Figures 3a–c illustrates the geographic distribution of the standard 
deviation in Rainfall Onset Days (RODs) for the NDJFMA season in 
the Little Ruaha catchment. The analysis reveals that the variability in 
Rainfall Onset Days for the NDJFMA season is influenced by both 
seasonal and geographical factors. The results indicate an average 
standard deviation ranging from 14 to 18 days, with the southeastern 
region exhibiting greater variability and the southern region 
experiencing the least variation. The results provide valuable insights 
into the spatial and temporal variability of rainfall patterns within the 
Little Ruaha catchment.

Like rainfall cessation dates, the variability in RODs occurs both 
within the season and across different locations. The eastern and 
central regions display the most pronounced deviations, while the 
southeastern regions show the least deviation. These variations in 
Rainfall Onset Dates and Rainfall Cessation Dates lead to changes in 
the Length of Rainfall Seasons, with a standard deviation ranging 

TABLE 3  Average seasonal rainfall characteristics for each station.

Station Onset date/day Cession date/day Duration of 
rainfall

Amount of 
rainfall

Frequency (number 
rainy days)

Iringa Met 29-Nov 15-April 138 Days 613.1 mm 60 Days

Iringa Maji 27-Nov 22-April 147 Days 684.0 mm 60 Days

Mafinga Bomani 19-Nov 16-April 149 Days 836.1 mm 69 Days

Kilima (Kibwele) 19-Nov 11-May 143 Days 1197.8 mm 105 Days

TABLE 4  Rainfall probabilities at 20, 50 and 80% for rainfall onset date, cessation dates and l seasonal length.

Stations Probability of non-exceedance Probability of exceedance

ROD RCD RSL (Days)

Station 20% 50% 80% 20% 50% 80% 20% 50% 80%

Iringa Met 11-Dec 29-Nov 16-Nov 20-May 11-May 05-May 139 168 197

Iringa Maji 11-Dec 27-Nov 12-Nov 30-Apr 22-Apr 13-Apr 132 147 162

Mafinga 06-Dec 20-Nov 04-Nov 20-Apr 17-Apr 13-Apr 122 154 169

Kilima 30-Nov 19-Nov 07-Nov 17-May 11-May 05-May 146 174 187
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from 13 to 20 days in the variability of seasonal precipitation patterns. 
These deviations are more pronounced in the southwestern and 
eastern-central regions (Figure 3c).

The results presented in Figures  3, 4 provide a compelling 
narrative of the cyclical fluctuations that have characterized the 
regional climate over the past four decades, offering valuable insights 
into the changing nature of precipitation regimes and their potential 
implications for water resource management and 
agricultural planning.

The observed changes in Rainfall Onset Dates and Rainfall 
Cessation Dates have significantly influenced the Length of Rainy 
Seasons across the four designated stations within the catchment area. 
The study notes that early Rainfall Onset Dates are often associated 
with late Rainfall Cessation Dates, resulting in an extended Length of 
Rainy Season, as exemplified by the conditions observed in 1987 at the 
Iringa Maji, Iringa Met, and Mafinga stations. Conversely, late Rainfall 
Onset Dates are linked to early Rainfall Cessation Dates, leading to a 
reduced Length of Rainy Season, a trend that has become increasingly 
prevalent across most regions of the catchment over the past 
two decades.

The findings of this study align with the observations made in a 
similar investigation conducted in the IGAD region, which 
documented the spatial patterns of rainfall onset, cessation, and 
Length of Rainy Season (Omay et al., 2023). That study emphasized 
the crucial role these parameters play in crop production and food 
security in Eastern Africa, underscoring the need for a comprehensive 
understanding of the region’s rainfall dynamics.

These variations signify alterations in the timing and amount of 
rainfall in the catchment, which could have an impact on multiple 
activities in the catchment area, including agriculture and livestock 
production as well as hydrological systems. Agriculture is an 
important sector of the economy in Tanzania, accounting for around 

25.8% of the country’s GDP and making up to 40% of its export 
revenues (Shemsanga et al., 2010; Thornton et al., 2011; Mwabumba 
et  al., 2022). Hence, any significant alterations in the timing and 
amount of rainfall due to climate variability will inevitably affect not 
just the catchment area but also the population at large and the 
country’s economic state. The consequences will extend to disrupting 
food security for an expanding population (Shemsanga et al., 2010; 
Mwabumba et al., 2022).

These variations indicate alterations in the timing and quantity of 
rainfall within the catchment area, which may impact various 
activities, including agricultural practices and livestock production, as 
well as hydrological systems. Agriculture constitutes a vital sector of 
the Tanzanian economy, contributing approximately 25.8% to the 
country’s GDP and accounting for up to 40% of its export revenues 
(Shemsanga et  al., 2010; Thornton et  al., 2011; Mwabumba et  al., 
2022). Therefore, any significant changes in the timing and quantity 
of rainfall resulting from climate variability will inevitably influence 
not only the catchment area but also the broader population and the 
overall economic condition of the country. The repercussions will 
extend to threatening food security for an increasing population 
(Shemsanga et al., 2010; Mwabumba et al., 2022).

3.3.2 The risk or probability levels of onset, 
cessation and duration of the rainy season

Table 4 presents the rainfall onset dates (ROD), rainfall cessation 
dates (RCD), and rainfall seasonal length (RSL) at 20, 50, and 80% 
probabilities of exceedance, corresponding to return periods of 
5 years, 2 years, and 4 years, respectively. The probability reflects the 
likelihood of surpassing a specific threshold and indicates the chance 
that the actual amount of rainfall will equal or exceed the anticipated 
amount over a designated duration. The return period, commonly 
referred to as the recurrence interval, denotes the average time interval 

FIGURE 3

The standard deviation for rainfall onset dates (ROD) (a), Rainfall cessation date (RCD) (b), and Rainfall seasonal length (RSL) (c), for the Little Ruaha 
catchment.
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between consecutive years in which the estimated rainfall value is 
attained (Alam et al., 2023).

The onset date at 20% probability for the Little Ruaha catchment 
occurs between 30 November and 11 December, at 50% probability 
it ranges from 19–29, November and at 80%, the onset date ranges 
between 4th and 16th November. When the onset date is at 20%, 
farmers should plant crops that can withstand drought or that 
mature earlier than the typical crop cycle, unless they have access to 
additional watering infrastructure. It is important to highlight that 
there is a significant chance of encountering a false start to the 
season during the time that corresponds to a 20% probability. As a 
result, crops may not have sufficient soil moisture to support them 
in the initial phases of vegetative development (Moeletsi and 
Walker, 2012).

The onset date at a 20% probability for the Little Ruaha catchment 
is projected to occur between 30 November and 11 December. At a 
50% probability, the range is from 19 to 29 November, while at an 80% 
probability, the onset date is anticipated to fall between 4 and 16 
November. When the onset probability is at 20%, it is advisable for 
farmers to cultivate drought-resistant crops or those with a maturation 
period shorter than the typical crop cycle, unless they have access to 

supplementary irrigation infrastructure. It is crucial to emphasize that 
there exists a significant likelihood of experiencing a false start to the 
season during the timeframe corresponding to a 20% probability. 
Consequently, crops may not receive adequate soil moisture to support 
them during the initial stages of vegetative development (Moeletsi and 
Walker, 2012).

The 50% non-exceedance probability threshold is commonly used 
by farmers because it represents a balanced (50:50) likelihood of the 
onsets being sufficiently large to maintain a maize crop during the early 
vegetative stage. At the 80% probability level, crop failure during the 
early growth and development phases is at minimum risk. However, 
farmers should grow short-duration maize varieties, especially in areas 
with low temperature accumulation (highlands), so that the plant’s 
growth phase does not happen during times when it’s more vulnerable 
to changes in the weather (Moeletsi, 2010; Moeletsi and Walker, 2012).

Table  4 presents the cessation or retreat dates for rainfall, 
categorized according to the probabilities of exceeding 20, 50, and 
80%. Aligning the maturity of maize crops with the 20% probability 
of an early termination of the rainy season may subject the crops 
to substantial water stress risk, owing to the heightened likelihood 
of an earlier cessation of precipitation at this probability level. 

FIGURE 4

Changes in number of days for the onset date (OD), cessation date (CD), and seasonal lengths (SL) of rainfall for Iringa Maji, Iringa Met, Mafinga and 
Kilima.
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Conversely, if planting strategies are synchronized with the final 
rainfall dates that possess a 50% or 80% probability of occurrence, 
it may mitigate losses resulting from inadequate water supply to 
support the maize crop.

Similarly, the seasonal duration of rainfall is characterized by 
various probability levels, as illustrated in Table 4 and spatially 
represented in Figures 5a–c. The 20% probability level denotes the 
volume of rainfall accumulated during dry seasons. The 50% 
probability level corresponds to the median or average seasonal 
rainfall. The 80% probability level reflects the amount of rainfall 
collected during wet rainy seasons.

Spatially, in most regions, the duration of the rainy season at 
the 20th, 50th, and 80th percentiles exceed 120, 140, and 160 days, 
respectively. The catchment experiences a shorter rainy season, 
with durations ranging from 125 to 138 days at a 20% probability 
level, registering 125 days in the southern portion of the catchment, 
while the eastern regions experience an extension of approximately 
14 days (see Figure 5a). At a 50% probability, the length of the 
rainy season ranges from 144 to 153 days, with the shortest 
duration located in the northeastern part of the catchment and the 
longest in the southwestern area (refer to Figure 5b). At an 80% 
probability, the catchment is projected to experience a wet season 
lasting between 160 and 200 days. The longest duration is 
anticipated in the eastern to northwestern sections of the 
catchment, whereas the southeastern region is expected to have a 
comparatively shorter season, as illustrated in Figure 5c.

The probability of complete failure of maize is significant, 
particularly for medium- and long-season varieties, with an 
estimated likelihood of 20%. For long-season maize cultivars, the 
probability of crop failure due to water stress is moderate, 
estimated at 50%. Additionally, the likelihood of crop failure 
resulting from water shortages is relatively low, estimated at 80%, 

due to the extended duration of the growing periods. This 
phenomenon is especially pronounced in the central, northern, 
and eastern regions.

3.4 Frequency analysis of annual maximum 
rainfall

Frequency analysis of annual maximum rainfall using the Weibull 
distribution revealed substantial variation in distributional properties 
across the four stations (Table 5). The estimated shape parameters (k) 
ranged from 1.17 at Kilima to 1.52 at Mafinga, indicating moderate 
skewness and differing tail behaviors of rainfall extremes. The scale 
parameters (λ) were highest at Kilima (13.92 mm), suggesting a higher 
characteristic magnitude of extreme rainfall at this highland station, 
and lowest at Iringa Met (10.41 mm), reflecting lower intensity 
extremes in the central catchment.

Goodness-of-fit assessments using the Kolmogorov–Smirnov 
(KS) test supported the adequacy of the Weibull distribution across all 
stations. All KS test p-values exceeded 0.05, indicating no statistically 
significant deviation from the theoretical distribution. The smallest KS 
values were observed at Iringa Maji and Iringa Met (0.066), while 
Kilima had the highest value (0.116), suggesting slightly reduced fit at 
this station. The Akaike Information Criterion (AIC) values followed 
a similar trend, with Iringa Met exhibiting the lowest (17,265.90) and 
Kilima the highest (26,839.68). These differences are also apparent in 
the Q–Q plots (Supplementary Figure S2), where Iringa stations 
showed better alignment with the theoretical Weibull distribution 
compared to Kilima and Mafinga.

The observed variability in Weibull parameters and goodness-
of-fit across stations aligns with findings from other East African 
studies and reflects the spatial heterogeneity of rainfall extremes 

FIGURE 5

Spatial distribution of rainfall seasonal length (RSL) at 20% (a), 50% (b), and 80% (c) probabilities.
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across the Little Ruaha catchment. For example, Tegegne et al. (2020) 
reported substantial differences in Weibull parameters across the 
Upper Blue Nile basin in Ethiopia, attributed to topographic 
complexity and variability in convective processes. Similarly, Gulacha 
and Mulungu (2017) found that Weibull scale parameters varied 
considerably between stations in the Wami-Ruvu basin in Tanzania, 
particularly between lowland and upland zones, echoing the high scale 
parameter found at Kilima in this study.

In Kenya, Samwel (2021) showed that both Weibull and 
log-normal distributions could perform differently depending on 
terrain and local climatology, a finding consistent with our observation 
of variable AIC values. The current results also support the conclusion 
by Mohammed et  al. (2018) that testing multiple distributions 
improves robustness, especially in hydrologically diverse regions. 
While the Weibull model generally provided a satisfactory fit, 
exploratory analysis with the log-normal distribution (not shown in 
Table 5) yielded slightly lower AIC and KS values at some stations, 
most notably Kilima, highlighting the importance of considering 
multiple models in future applications.

Overall, the frequency analysis underscores the suitability of the 
Weibull distribution for modeling rainfall extremes while drawing 
attention to the role of microclimate, elevation, and topography in 
shaping station-specific behaviors. These findings are vital for site-
specific hydrological design, flood risk assessment, and adaptation 
planning under climate variability.

4 Conclusion and recommendations

This research offers a comprehensive analysis of rainfall 
patterns and trends in the Little Ruaha catchment, with a focus on 
key aspects such as onset, cessation, duration, volume, and 
frequency of precipitation. The findings indicate that the southern 
and northeastern regions of the catchment are particularly 
susceptible to adverse conditions during the short (dry) rainfall 
season, with a 20% probability of deterioration. Additionally, 
during the regular rainfall season, there is a 50% chance of water 
stress affecting highly sensitive crops in these areas. Given these 
probabilities, it is recommended that farmers cultivate crops with 
shorter growth cycles in these specific regions or consider 
implementing irrigation mechanisms to mitigate the risks of 
water stress.

The insights provided by this study are crucial considering the 
increasing variability of rainfall patterns due to climate change. The 
outcomes will aid in developing adaptive agricultural strategies to 
mitigate the negative effects of rainfall variability on productivity and 
the sustainable use of water resources. The study further contributes 
to local efforts aimed at enhancing the resilience of agricultural 

systems by supporting irrigation planning and helping farmers 
optimize crop yields. Moreover, these findings will support the 
ongoing implementation of the Integrated Water Resource 
Management (IWRM) framework, ensuring sustainable resource 
management within the Little Ruaha catchment. Ultimately, the 
results of this research serve as a valuable model for addressing water 
resource challenges, offering lessons applicable to other regions 
grappling with similar climate-related pressures and 
agricultural vulnerabilities.

The findings of this study carry substantial implications for both 
environmental protection and climate change adaptation, particularly 
in regions experiencing climate-driven variability in rainfall. The 
study has enhanced the reliability of long-term rainfall assessments by 
accurately detecting trends while considering autocorrelation effects. 
This has crucial impacts on the planning and management of water 
resources, environmental conservation, and resilience building against 
climate change.

The study’s insights on rainfall variability provide a basis for 
informed water resources management and overall environmental 
protection. Accurate data on rainfall trends allow for the anticipation 
of periods of water scarcity or excess, enabling policymakers and 
environmental managers to implement adaptive strategies that 
protect ecosystems and biodiversity. Such proactive management 
could involve measures like improving water conservation practices, 
designing adaptive infrastructure, and establishing early warning 
systems to mitigate the effects of droughts and floods on both natural 
habitats and human settlements.

The study offers validated data that can be utilized in climate 
modelling and prediction in the context of climate change. 
Understanding historical rainfall trends is critical for forecasting 
future climate scenarios, as it helps refine climate models used in 
projecting the impacts of climate change at a regional level. 
Furthermore, these insights are essential for designing adaptation 
strategies for sectors heavily reliant on water availability, such as 
agriculture, energy, and public health. For instance, in agriculture, 
where rainfall patterns directly influence crop productivity, such 
data can inform climate-smart practices and improve food security 
resilience in changing climatic conditions.

This study acknowledges several limitations that constrain 
the reliability and broader applicability of the findings. The use 
of data from a limited number of rainfall stations may not capture 
the full spatial variability of rainfall across the study area. 
Additionally, the quality and availability of long-term data could 
affect the reliability of the analysis. Another limitation is the lack 
of consideration for non-climatic factors, such as land-use 
changes, that could also influence the observed rainfall patterns. 
To address these limitations, future research should explore 
strategies to enhance the spatial and temporal robustness of 

TABLE 5  Weibull distribution parameters (shape and scale), KS statistics, and AIC values for annual maximum rainfall at each station in the Little Ruaha 
catchment.

Station Shape (k) Scale (λ) KS Statistic KS p-value AIC

Iringa Maji 1.431 11.095 0.066 0 19193.6

Iringa Met 1.435 10.408 0.066 0 17265.9

Kilima 1.166 13.923 0.116 0 26839.7

Mafinga 1.516 11.047 0.072 0 23071.6
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rainfall analysis. One approach could be to incorporate a larger 
network of rainfall stations to better capture the spatial 
heterogeneity of rainfall patterns. Additionally, the use of 
advanced remote sensing and modelling techniques may help 
overcome the limitations of ground-based observations and 
provide a more comprehensive understanding of 
rainfall dynamics.
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