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Introduction: This study analyzes the impact of climate change on streamflow 
and sediment yield in the Carapelle basin, a Mediterranean watershed located in 
the Apulia Region of Italy.

Methods: Three climate model projections (CMCC, MPI, EC-EARTH) under 
the CMIP6 SSP2-4.5 scenario were bias-corrected and evaluated using 
statistical measures to ensure enhanced fit with observed data. The Soil and 
Water Assessment Tool (SWAT) model was implemented to simulate hydrology 
and sediment yield. The model was calibrated and validated using measured 
streamflow and sediment load data from 2004–2011, demonstrating satisfactory 
performance for both parameters. Baseline conditions (2000–2020) were 
compared with future projections (2030–2050).

Results: Climate projections for 2030-2050 indicated temperature increases 
up to 1.3°C and average annual rainfall decreases up to 38% compared to 
baseline. These changes resulted in reduced water yield and sediment load 
across all models. The CMCC model projected the highest reduction in mean 
annual flow (67%), with smaller reductions from MPI (35%) and EC-EARTH (7%). 
Correspondingly, sediment load reductions were 52.8% (CMCC), 41.7% (MPI), 
and 18.1% (EC-EARTH). Despite these overall reductions, spatial analysis revealed 
that soil erosion remained critical (sediment yield >10 t ha−1) in certain areas, 
particularly on steep slopes with wheat cultivation.

Discussion: Integrating climate considerations into water management 
strategies is essential to sustaining Mediterranean river basins under future 
climate conditions. Adaptation measures such as BMPs and NBSs should be 
implemented to reduce soil erosion and to mitigate climate change impacts.
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1 Introduction

Soil erosion presents a formidable environmental challenge to arable lands globally (Maeda 
et al., 2010; Panagos et al., 2015; Borrelli et al., 2021). While global soil erosion averages around 
10.2 t ha−1  yr.−1 (Yang et  al., 2003), soil formation lags significantly behind at less than 
0.6 t ha−1 yr.−1 (Montgomery, 2007). This disparity drives widespread soil degradation (Borrelli 
et al., 2020; De Girolamo et al., 2022; Fortesa et al., 2021), threatening soil health, agricultural 
productivity, and food security (Ricci et al., 2020; Li and Fang, 2016; Challinor et al., 2014).

In the Mediterranean, climate change (CC) is expected to reshape hydrological patterns 
and exacerbate erosion trends (Serpa et al., 2015; Panagos et al., 2021). Numerous studies have 
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investigated the potential impacts of future climate change on the 
hydrological cycle (Blöschl et al., 2017; Lespinas et al., 2014; Bertola 
et al., 2021; Leone et al., 2024). These studies have reported changes in 
runoff and evapotranspiration (Piras et  al., 2016), extended dry 
seasons (De Girolamo et al., 2017), increased variability between dry 
and wet season discharge (Villani et al., 2024; Fonseca and Santos, 
2019), and an uneven spatiotemporal decrease in total water yield 
(Brouziyne et  al., 2020). Additionally, high-intensity storms are 
predicted to become more frequent (Fornaroli et al., 2020). These 
shifts in rainfall regimes could lead to a general decrease in soil 
erosion (Elaloui et al., 2023; Zema et al., 2022). However, the potential 
for increased sediment transport during extreme rainfall events 
remains high (Nadal-Romero et al., 2022). To plan effective adaptation 
and mitigation strategies, understanding both historical and future 
soil erosion trends is essential (Xiong and Leng, 2024). General 
Circulation Models (GCMs) are vital in CC studies, projecting future 
climate scenarios based on Intergovernmental Panel on Climate 
Change’s (IPCC) special report on emission scenarios (Leone et al., 
2024; IPCC, 2014, 2021; Johnson and Sharma, 2011).

The CMIP6, the sixth phase of the Coupled Model 
Intercomparison Project, developed models for climate projections to 
understand past, present and future climate changes. CMIP6 models 
offer high spatial resolution and enhanced physical and 
biogeochemical processes, promise more precise climate simulations 
(Eyring et al., 2019; Lun et al., 2021). However, GCM outputs require 
downscaling and bias correction for regional climate and hydrological 
applications (Hoang et al., 2016; Kiem et al., 2008; Mandle et al., 2017). 
While CC impact studies using CMIP6 GCMs have predominantly 
focused on streamflow changes and associated risks (Gu et al., 2023; 
Yin et al., 2021), sediment dynamics, crucial to river systems (Darby 
et  al., 2016; Ma et  al., 2019), remain underexplored. Changes in 
precipitation (PCP) patterns, both in intensity and spatial distribution, 
can lead to shifts in river morphology and hydro-sedimentary 
response of the watersheds (Abed-Elmdoust et al., 2016). However, 
the assessment of these alterations is complex as several factors 
influence flow and sediment distribution and watershed resilience 
(Sarker et  al., 2019). For instance, the placement of hydrological 
monitoring stations is increasingly important to capture climate-
induced variability (Singhal et  al., 2024). The construction and 
regulation of dams also play a significant role in modulating climate 
change impacts on river basins, affecting both natural flow regimes 
and sediment continuity (Gao et  al., 2018; Gao et  al., 2022; Ma 
et al., 2024).

Contemporary research employs advanced statistical analyses and 
hydrologic modelling to assess CC impacts on river discharge (Sun 
et al., 2022). By integrating climate model outputs with hydrologic 
models, researchers can predict long-term water resource effects 
(Groppelli et al., 2011). The Soil and Water Assessment Tool (SWAT) 
(Arnold et  al., 1998), an open-source, semi-distributed model, is 
instrumental in these studies, effectively evaluating climate impacts 
on hydrological processes (De Girolamo et al., 2022; Leone et al., 
2023). SWAT’s versatility allows detailed simulations of sediment 
transport, streamflow, and water quality (Abdelwahab et al., 2018; 
Ricci et  al., 2018; Wu et  al., 2020), essential for sustainable water 
management in a changing climate (Tariq et al., 2024). This study aims 
to elucidate the responses of streamflow and sediment loads to future 
climate change in the Carapelle River basin (Apulia, Italy), an area 
where agricultural practices are responsible of a high rate of soil 

erosion (Ricci et  al., 2022; Abdelwahab et  al., 2016). The specific 
objectives are: (i) utilizing the SWAT hydrological model with CMIP6 
GCMs to simulate CC-induced hydrological changes in the Carapelle 
River, and (ii) assessing the impact of these changes on soil erosion 
rates at basin and sub-basin levels. This study aims to provide crucial 
insights for researchers and policymakers to understand regional 
climate dynamics and develop effective adaptive strategies for water 
resource management.

2 Materials and methods

2.1 Study area

The Carapelle basin (Figure 1), situated in northern Apulia (SE 
Italy), encompasses a drainage area of 506 km2 with a main channel 
extending 52.16 km. The topography is characterized by a mean 
elevation of 466 m above sea level (a.s.l.), ranging from 120 to 
1,089 m a.s.l., with an average basin slope of 8.2% and a main channel 
slope of 1.8%. Originating in the Campanian Apennine region, the 
river traverses the Daunia Hills before transitioning to a braided 
morphology in the alluvial plain (Abdelwahab et  al., 2016). The 
hydrological regime exhibits significant short-term variability, with 
minimal flows during summer months (June–September) and peak 
discharges in winter and early spring.

The areas of the Carapelle catchment belong to the irrigated area 
of the Capitanata Reclamation Consortium (literally Consorzio di 
Bonifica della Capitanata). The territory has a high agricultural 
vocation (arable land >75%; olive groves about 7%), especially in the 
areas of Ortanova, Ordona, and Carapelle municipalities, forests (5%) 
is a minor land use (Figure 1). Therefore, the Carapelle River basin 
supports significant agricultural water demands and, in the last years 
has undergone intensive agricultural transformation primarily 
dependent on groundwater irrigation (Autorità di Bacino, 2015; 
Consorzio di Bonifica Della Capitanata, 2022). However, unrestricted 
groundwater extraction over the past two decades has led to declining 
water tables (Consorzio di Bonifica Della Capitanata, 2022). To 
address these water management challenges, a major water 
infrastructure project has been proposed: the Palazzo d’Ascoli 
reservoir, with a planned capacity of 67 million m3, of which 40 
million m3 would be allocated for agricultural irrigation across 30,000 
hectares, with the remainder serving industrial needs. The reservoir 
will have several implications on the river ecosystem and an accurate 
evaluation of the ecological flow will be required. Currently, there is 
no explicit information on environmental flow requirements 
(Consorzio di Bonifica Della Capitanata, 2022).

Dominant erosion processes include sheet wash and concentrated 
water erosion, while gully erosion is negligible. The area is prone to 
landslides, particularly in clay-flysch geological units susceptible to 
rainfall-induced slope movements (Wasowski et  al., 2010). Bank 
erosion is prevalent, especially in upstream reaches. The basin 
experiences a Mediterranean climate, characterized by wet autumns 
and winters contrasting with dry springs and summers (Milella et al., 
2012). Annual precipitation ranges from 450 to 800 mm, with March 
and November being the wettest months and August the driest. A 
monitoring station near Ordona (41°17′50.347”N, 15°36′2.583″E) is 
equipped with dual gauging systems: an electromechanical and 
ultrasound stage meter for streamflow measurements, and an infrared 
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optical probe (Hach-Lange Solitax) for suspended sediment 
concentration (SSC) measurements, both recording at 30-min 
intervals. Daily sediment loads were calculated for the 2007–2011 
study period, with brief interruptions for maintenance. Detailed 
station specifications are available in Gentile et al. (2010).

2.2 Work methodology

The methodology applied in this study is composed of three main 
stages: hydrological modelling; downscaling and bias correction (BC) 
of data from CMIP6 climate models; and analysis of the CC impacts 
on flow regime and sediment (Figure 2). In the first stage the SWAT 
model was set up for the study area, calibrated and validated. 
Subsequently, in the second stage, meteorological data (precipitation, 
minimum and maximum temperatures) were extracted from the three 
selected climate projections downscaled and, bias-corrected. The 
calibrated SWAT model was then run using daily observed climatic 
data from 2000 to 2020, and daily climatic modelled data from 2030 
to 2050, which constituted the baseline and the near future (NF) 
periods, respectively. Finally, in the third stage, the modelled series of 
streamflow and sediment were analyzed to assess the CC impact on 
hydrology and sediment.

2.3 Global circulation models—climate 
projections

The CMIP6 (O’Neill et al., 2016) data archive is distributed through 
the Earth System Grid Federation (ESGF) though many national 
centers have either a full or partial copy of the data. A quality-controlled 
subset of CMIP6 data are made available through the Climate Data 
Store (CDS) for the users of the Copernicus Climate Change Service 
(C3S). This subset consists of 51 core variables from 9 of the most 

popular CMIP6 experiments, which can be used to assess plausible 
future changes in these variables under various socio-economic 
pathways. The CDS subset has undergone a rigorous quality control 
procedure to ensure a high standard of dependability, making it more 
reliable than the main CMIP6 ESGF archive, which comes with limited 
quality assurance and may contain metadata errors or omissions. For 
this reason, CDS1 offers access to over large number of CMIP6 General 
Circulation Models (GCMs) with various variables. From this extensive 
collection, three models as detailed in Table 1, were selected. Then, 
historical and future climate simulations for the period 1985 to 2065, 
focusing on 3 parameters: minimum temperature (Tas_min), 
maximum temperature (Tas_max), and precipitation (pr) for the 
specified basin, were extracted. The analysis carried out considered one 
prospective scenario: SSP2-4.5, a business-as-usual pathway. In this 
scenario, the number 2 represents a medium pathway for human 
development without climate policy, while “4.5” indicates the projected 
radiative forcing (W/m2) by the year 2,100 (El-Rawy et al., 2023).

2.4 Bias correction

Bias Correction (BC) procedures are used to minimize the 
discrepancies between modelled and measured climatic data, making 
simulated climate data more accurate for hydrological models. The 
bias in data can be  influenced by various factors such as mean, 
standard deviation, temporal distribution, frequencies, and extreme 
occurrences. Several BC methods are available, differing in 
applicability and limitations, and are widely discussed in climate 
impact studies (Ehret et al., 2012; Teutschbein and Seibert, 2012; Chen 

1 https://cds.climate.copernicus.eu/cdsapp#!/dataset/

projections-cmip6?tab=form

FIGURE 1

Study area: Carapelle basin (Apulia Region).
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et al., 2013; Rajczak et al., 2016; Rohith and Jayakumar, 2017; Turco 
et al., 2017; Yin et al., 2020). These methods are classified into two 
main categories: 1-simple parametric transformations (e.g., linear 
scaling, power transformation, and linear regression) (Fang et al., 
2015; Tschöke et al., 2017; Gudmundsson et al., 2012), which correct 
bias using various transformation functions; and 2-distribution-
derived transformations (quantile scaling QS, Chen et  al., 2013, 
quantile mapping QM, Maraun et al., 2010, and distribution mapping 
DM, Teutschbein and Seibert, 2012), which correct bias based on 
probability distributions fitted to observed data and simulations. 
Distribution-derived methods generally perform better than simple 
transformations (Chen et al., 2013; Fang et al., 2015). QS and QM use 
empirical distributions, while DM uses parametric distributions, 
making it more suitable for extrapolation and outperforming in 
general (Nanjegowda and Parambath, 2022). CMhyd tool (Rathjens 
et al., 2016) is used in this work to perform the bias correction. It is a 
tool for extracting and bias-correcting data from global and regional 
climate models, written in Python and uses various packages. It 

provides climate data representative of specific gauge locations in a 
basin. CMhyd identify biases in historical climate data to adjust future 
simulations, assuming the correction remains valid under future 
conditions. However, the effectiveness of these corrections for future 
conditions remains uncertain. Due to its higher performance as 
previously mentioned, the DM technique was adopted in this work for 
BC process.

2.5 Distribution mapping of precipitation 
and temperature

DM (Teutschbein and Seibert, 2012) aligns climate values 
simulated by Regional Climate Models (RCMs) with observed 
values through a transfer function that adjusts key climate 
variables’ distributions. Known as ‘probability mapping’, ‘quantile-
quantile mapping’, or ‘statistical downscaling’, this method is 
widely recognized in climate science (Sennikovs and Bethers, 2009; 

FIGURE 2

Flowchart of the applied methodology.

TABLE 1 Climate model projections: GCMs, resolution, historical and NF period.

CMIP6 models Country Resolution Historical Near future 
(NF)

Climate variable

CMCC-ESM2 Italy 0.9424° × 1.25° 2000–2014 2030–2050 PCP-TMax-Tmin

EC-EARTH EC-EARTH consortium 0.703° × 0.703° 2000–2014 2030–2050 PCP-TMax-Tmin

MPI-ESM1–2-LR Germany 1.864° × 1.875° 2000–2014 2030–2050 PCP-TMax-Tmin
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Block et al., 2009; Ines and Hansen, 2006; Johnson and Sharma, 
2011; Boé et al., 2007; Sun et al., 2011). For modelling precipitation 
distributions, the Gamma distribution, characterized by shape (α) 
and scale (β) parameters, is effective. The shape parameter (α) 
influences the distribution’s profile, and the scale parameter (β) 
affects the spread, impacting the probability of extreme events. 
Temperature data is typically modeled using the Gaussian 
distribution, defined by location (μ) and scale (σ) parameters, to 
capture symmetric and continuous data patterns. A detailed 
description of the method can be  found in Teutschbein and 
Seibert (2012).

2.6 Model hydrology and sediment yield

In this study, the SWAT model, a semi-distributed continuous 
hydrological model developed by the United States Department of 
Agriculture (USDA) (Arnold et al., 1998; Arnold et al., 2012), was 
used to assess streamflow and sediment transport. The revised 
(Abbaspour et al., 2015) version of SWAT 2012 (Winchell et al., 2013) 
was implemented and run at daily time-step from 2004 to 2011. The 
first 3 years (2004–2006) were used as warm-up period. SWAT divide 
the basin first in sub-basins and then into hydrological response units 
(HRUs), which are the minimum territorial unit of the model, 
characterized by unique combination of soil characteristics, land use 
and slope. The study area was divided into 115 sub-basins, using a 
threshold of 200 ha and, into 451 HRUs, using percentage thresholds 
of 25% for slope, 25% for land use and, 5% for soil characteristics. The 
maintaining of the proportions between the main soil types, slope 
classes, and land uses was verified (Ricci et al., 2020; Ricci et al., 2022). 
For each HRU, the SWAT model simulates the surface runoff using 
the modified Soil Conservation Service-Curve Number method 
(SCS-CN) (USDA-SCS, 1972) and the sediment yield using the 
Modified Universal Soil Loss Equation (MUSLE) (Williams, 1975). 
The Manning’s equation and a simplified version of Bagnold’s stream 
power relationship were used to computes the rate and the velocity of 
flow and, sediment degradation or deposition, respectively (Bagnold, 
1977; Neitsch et  al., 2011). The Hargreaves method (Hargreaves, 
1975), which requires temperature and solar radiation as input, was 
used to estimate potential evapotranspiration. SWAT requires several 
measurements and input data for its implementation, calibration and 
validation, which can limit its applicability (Abdelwahab et al., 2018). 
The input data used in this study to configure the model is detailed in 
Table 2. Farming operations data were retrieved for winter wheat and 
olive groves and the management files (.mgt) was modified 
accordingly. Winter wheat was planted in November and harvested in 
July. Ploughing (25–40 cm depth), which in the study area is generally 
perpendicular to contour lines even in mountain areas (>15%) was 
performed in August. Harrowing was carried out in October. Two 
fertilizing operation were conducted in December (fertilizer grade: 
25–15-00; amount 180–220 kg ha−1) and February (urea; amount 
100–140 kg ha-1). A 4-year crop rotation (wheat, wheat, wheat, 
clover) was considered. For olive groves, three shallow tillage 
operations (ploughing and harrowing) were performed every 2 
months starting in April and two fertilizer applications were adopted, 
in December (manure) and in spring (fertilizer grade: 26–00-00; 
amount 90–110 kg ha−1). The crop was yield in November 
(Abdelwahab et al., 2016; Ricci et al., 2022).

2.7 Calibration and validation

Following Arnold et al. (2012, 2015), the SWAT model was first 
calibrated for streamflow and then for sediment load. Two sub-datasets 
were prepared for observed daily streamflow and sediment load (2007 
to 2011). The first subset (January 2007 to April 2009) was used for the 
calibration, and the second (from January 2010 to December 2011) 
was used for the validation. Data from May to December 2009 were 
not available due to a malfunctioning of the station (Ricci et al., 2020). 
The Sequential Uncertainty Fitting version 2 (SUFI2) method, 
available in the SWAT-CUP tool (Abbaspour et al., 2015), was utilized 
to determine the sensitive parameters for both the calibrated variable. 
A further description of the sensitivity analysis, calibration, and 
validation are available in Ricci et al. (2018). Subsequently, SWAT-CUP 
was used manually adjust the model parameters and refine the match 
between simulated and observed data (Jeong et al., 2010; Ricci et al., 
2020) and to identify the optimal set of parameters through an 
automated process, targeting a Nash-Sutcliffe Efficiency (NSE) greater 
than 0.5 as the objective function. Table  3 lists the calibrated 
parameters for both streamflow and sediment load. The USLE 
P-factor, which represents conservative management practices, was set 
to 1.0 because no conservation practices were implemented in the 
basin. To evaluate the model’s performances at daily scale, coefficient 

TABLE 2 List of SWAT input data, source, and resolution.

Description Source and data resolution

Digital elevation model 

(DEM)

Shuttle Radar Topography Mission (SRTM); 

resolution of 20 × 20 m

Data source: http://www.sinanet.isprambiente.it

Land use data Land Use Map (UDS) of Apulia and Land Agricultural 

Use Map (CUAS) of Campania; resolution of 100 m

Data source: http://sit.puglia.it; http://sit.regione.

campania.it

Soil database data Agro-ecological Characterization of the Apulia 

Region ACLA2; resolution 250 × 250 m; 9 soil profiles

Data source: Regione Puglia, 2001

Weather data 8 Gauging station

Daily data: precipitation, solar radiation, wind speed, 

relative humidity, min and max temperature

Data source: http://www.protezionecivile.puglia.it; 

http://www.agrometeopuglia.it/

Point sources data 4 Point sources

Punctual sampling: daily data of nitrogen and 

phosphorous (2012–2018)

Data source: www.arpa.puglia.it

Management practices Tillage operations; fertilizers (type, amount, timing)

Four Field surveys (one for season) and 10 farmers’ 

interviews (five in mountain area, five in lowland)

Data source: agronomist operating in the area

Measured streamflow 

and sediment data

Four years of continuous measured daily streamflow 

and sediment load (2007–2008; 2010–2011).

Measured nutrient data Discrete samplings (2010–2011)

Data source: www.arpa.puglia.it
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of determination (R2) and NSE > 0.5 and Percent Bias (PBIAS) ≤ 25% 
for runoff, and ≤ 55% for sediment were considered (Moriasi et al., 
2007; Molina-Navarro et al., 2017).

3 Results

3.1 Bias correction

There were substantial differences in the ability of GCMs to 
reproduce temperature and precipitation data under current climate 
conditions. To evaluate the efficacy of BC procedure, a range of 
statistical parameters were employed, for both daily Min and Max 

temperature and daily precipitation time series, including monthly 
means (μ), and 90th percentiles. It is important to note that this 
assessment was limited to the historical period (2000–2014), as direct 
validation of BC methods for future conditions is inherently 
unfeasible. For precipitation specifically, the analysis incorporated 
additional metrics: the probability of wet days (Prwet), and the average 
precipitation intensity on wet days (iwet). These characteristics of bias- 
corrected Climate Model simulated variables were compared to 
observational data on a month-by-month basis throughout the year. 
The un-corrected CMCC model simulations (Figure 3) showed an 
underestimation of the mean monthly PCP values through most of 
the months while it overestimated it during February and from August 
to October. The CMCC model had constant tendency to predict more 
wet days while it often simulated many low-intensity rain events. MPI 
and EC-EARTH models showed similar results, with higher mean 
monthly values shown by EC-EARTH, compared to MPI model. In 
general, the EC-EARTH showed higher mean monthly precipitation 
values in the 1st half of the year compared the 2 other models while 
in the 2nd half the CMCC showed the highest values. The 
precipitation-BC was able to improve the raw GCM simulations to 
some extent. With all models, there was a very slight a bias present in 
the mean of daily precipitation as in the case of MPI in the summer 
months (under-estimation) and EC-EARTH (slight overestimate 
during summer months) (Figure 3).

There were slight differences in the daily precipitation series’ 
probability of wet days and the precipitation intensity between the 
3 models. However, the major dissimilarities were identified in the 
90th percentiles which showed larger variability ranges and still had 
biases of a similar magnitude to the uncorrected precipitation. 
Regarding the temperature there were substantial differences in the 
ability of the 3 GCMs un-corrected simulation to reproduce 
temperature under current climate conditions. While the 
EC-EARTH and MPI models showed a tendency to overestimate 
the mean monthly maximum temperature (Tmax) and minimum 
temperature (Tmin) all over the year (except December), the CMCC 
model overestimated both minimum and maximum temperatures 
in the 1st half of the year from January to July while it showed an 
underestimation of the mean monthly temperature from August to 
November (Figure 3). In general, the highest values of Tmax were 
provided by CMCC model during the summer months (January-
August). After the BC (Figure 4) the GCMs showed a very close 
match in the mean monthly temperatures with all biases perfectly 
corrected, while the 90th percentile showed a very slight variation 
between the 3 models and the observed data. Overall, the DM BC 
method was able to correct raw values of both temperature and 
precipitation for the 3 GCM models adopted in this study.

3.2 Future projections of precipitation and 
temperature

The analyzed CMIP6 GCMs project a consistent increase in mean 
monthly Tmax and Tmin for all months, with the strongest warming 
occurring in winter and the weakest in summer. The average annual 
rise of Tmax and Tmin projected for the NF period was 1.5°C and 
1.3°C, respectively, compared to the baseline scenario, indicating a 
pronounced warming projected by CMCC model especially during 
Autumn and winter months. The trendline Analysis Mann-Kendall 

TABLE 3 SWAT model parameters used for the calibration and their final 
values.

Parameters Description Calibrated 
value

Streamflow

CN2.mgt Curve Number 60–88

GWQMN.gw
Threshold depth of water in shallow 

aquifer
1281.62

GW_DELAY.gw Groundwater delay time 92.76

ALPHA_BF.gw Baseflow alpha factor 0.59

GW_REVAP.gw Groundwater “revap” coefficient 0.028

REVAPMN.gw

Threshold depth of water in the 

shallow aquifer for “revap” to occur 172.61

RCHRG_DP.gw Deep aquifer percolation fraction 0.38

SURLAG.bsn Surface runoff lag time [days] 4.00

SOL_AWC.sol

Available water capacity of the soil 

layer 0.08–0.26

SOL_K.sol Saturated hydraulic conductivity 1.95–13.15

CH_N1.sub
Manning’s “n” value for the tributary 

channels
0.08

CH_K1.sub

Effective hydraulic conductivity in 

tributary channel 1.00

CH_K2.rte
Effective hyd. Cond. In the main 

channel
56.68

OV_N.hru Manning’s “n” value for overland flow 2.99

Sediment load

CH_N2.rte Manning’s “n” value for main channel 0.05–0.14

ADJ_PKR.bsn

Peak rate adjustment factor for 

sediment routing in the subbasin 

(tributary channels) 3.00

PRF_BSN.bsn

Peak rate adjustment factor for 

sediment routing in the main channel 2.9

SPEXP.bsn

Exponent parameter for calculating 

sediment reentrained in channel 

sediment routing 2.00

SPCON.bsn

Maximum amount of sediment 

reentrained during channel sediment 

routing

0.001
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test at a significance level 5%, showed a significant positive trend for 
both Tmax (p < 0.0001 Kendall’s Tau = 0.622) and Tmin (p < 0.0001 
Kendall’s Tau = 0.669) projected by the CMCC model on annual scale. 
The MPI model projected a consistent increase in mean monthly 
Tmax and Tmin for all months. Generally, the average annual Tmax 
projected for the NF were 1.3°C and 1.1°C by MPI and EC-EARTH 
respectively, while for Tmin both Models showed a rise by almost 1°C 
for the forementioned period. The Mann-Kendall trendline Analysis 
test showed a significant positive trend for both Tmax (p < 0.0001 
Kendall’s Tau = 0.435) and Tmin (p < 0.0001 Kendall’s Tau = 0.525) 
projected by the MPI model on annual scale. However, The 
EC-EARTH showed a very weak significant positive trend line only 

for the Tmin (p = 0.000 Kendall’s Tau = 0.346) on annual scale while 
for Tmax there was not a significant trend. Changes in mean monthly 
precipitation show consistent reduction in the future.

Under CMCC model projections, the mean monthly precipitation 
decreases by 9%(August) to 41.2% (April) with an average reduction 
of 24% for all months except July that was the only month with a 
precipitation increase by 34.1%. The minimum mean monthly value 
was projected in June (11 mm), while July (76.2 mm) unexpectedly 
showed the highest projected value for the period 2030–2050 even 
higher than the winter months. The accumulated annual precipitation 
varied significantly during the NF with the highest value expected 
(741.8 mm) in 2050 and the lowest (183.4 mm) in 2043, with an 

FIGURE 3

GCMs precipitation series before (PCP0008) and after (PCP008_ovl_dm_hist) bias correction in relation to the observed series (p12_ovl) measured by 
different statistical indices.
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FIGURE 4

GCMs monthly Tmax and Tmin series before (PCP0008) and after (PCP008_ovl_dm_hist) bias correction in relation to the observed series (t12_ovl_
max, t12_ovl_min) measured by different statistical indices.
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overall average for the entire NF period of 371.8 mm, which is 38% 
less than the baseline.

The MPI model showed a decline in monthly precipitation from 
4% (October) to 23.8% (April) in all months except February and May, 
which witnessed an increase by 6.9 and 6.3%, respectively. The 
minimum mean monthly value was projected in August (5.7 mm), 
while December (57 mm) showed the highest projected value for the 
period 2030–2050. Generally, the MPI projection showed higher 
values of precipitation than baseline during winter and Autumn 
(average of 48 mm). The accumulated annual precipitation varied 
significantly in NF with the highest value expected (1,008 mm) in 
2048 and the lowest (183.4 mm) in 2039, with an overall average for 
the entire NF period of 466.2 mm which is 23% less than the baseline.

The EC-EARTH model showed a general decline by 5% in 
October to 16.7% in March. The minimum mean monthly value was 
projected in August (11.4 mm), while November (75 mm) showed the 
highest projected. The accumulated annual precipitation varied 
significantly during the NF period with the highest value expected 
(799 mm) in 2048 and the lowest (248.8 mm) in 2038, with an overall 
average for the entire NF period of 539 mm which is 10% less than the 
base scenario average Annual value. Among the analyzed projections, 
EC-EARTH showed the highest precipitation values either as average 
monthly or accumulated annual for the NF period predictions. 
Though a trend analysis Mann-Kendall test, it was found that neither 
CMCC nor EC-EARTH models showed any significant trend for 
precipitation on annual basis. While the MPI model showed a 
significant negative trend on annual scale.

3.3 Model streamflow and sediment load 
calibration and validation

The SWAT model exhibited satisfactory performance for the two 
simulated variables, streamflow and sediment load at the outlet, in 
both the calibration and validation periods (Figures  5, 6). The 
streamflow was underestimated in the calibration period (PBIAS 
+5.3%) while overestimated in the validation period (PBIAS -17.2%). 
Despite the overall performance, SWAT tended to overestimate 
slightly the normal flow and the low-flow (Figure 5) whereas several 
peaks were underestimated, particularly during the calibration period 
(Figure 6). In the dry year (2011), SWAT generally overestimated 
low-flow, while peak flows were relatively well simulated (Figure 6). 
For instance, the modeled highest peak flow, which was recorded in 
the wettest month of the simulation period (November 2010), was 6% 
lower than observed (simulated 79 m3s−1; observed 94 m3s−1). The 
average yearly rainfall was 662 mm, ranging from 542 mm (2007) to 
888 mm (2010). The average yearly actual evapotranspiration was 
470 mm (71% of the rainfall). This value is comparable to those 
reported by Romanazzi et al. (2015). The average yearly surface runoff 
and total water yield (Surface runoff + baseflow + lateral flow) were 
86 mm (17% of the rainfall) and 180 mm (27% of the rainfall), 
respectively.

The sediment load was overestimated in the calibration period 
(PBIAS -2.8%) and underestimated in the validation period (PBIAS 
+5.1%). The simulated sediment loads generally matched the observed 
data, except some peaks that were underestimated (Figure 6). The 
highest sediment peak, which was recorded in November 2010, was 

underestimated by the model (49.5%; simulated 1.52 t ha−1; observed 
3.07 t ha−1). Soil erosion in the area mainly occurs in winter 
(December to April) due to frequent rainfall events. The average 
annual specific sediment load was 5.95 t ha−1  yr.−1, ranging from 
1.46 t ha−1 yr.−1 (2007) to 8.71 t ha−1 yr.−1 (2010).

3.4 Modelling hydrology under climate 
change scenarios

The streamflow simulated by the SWAT model by using daily 
observed climatic data (2000–2020, baseline) and model projections 
(CMCC, EC-EARTH, and MPI, respectively) (2030–2050, NF) were 
compared. The climatic models adopted in this study predicted a 
reduction in the average yearly rainfall compared to the baseline. 
Specifically, at the basin scale, rainfall was 678.5 mm for the baseline, 
386.5 mm for CMCC (−43%), 602.0 mm for EC-EARTH (−11.3%) 
and 529.0 mm for MPI (−22%). A reduction of the actual 
evapotranspiration (477.8 mm yr.−1, baseline) was predicted in the 
future (305.2 mm yr.−1 for CMCC, 420.3 mm yr.−1 for EC-EARTH and 
396.2 mm yr.−1 for MPI). Similarly, a reduction of the total water yield 
(Surface runoff + baseflow + lateral flow) was simulated (from 
168.44 mm yr.−1, in the baseline, to 54.77 mm yr.−1, 156.23 mm yr.−1 
and 109.33 mmyr−1 for CMCC, EC-EARTH and MPI, respectively).

To analyze the variability of the flow regime components under 
climate change, some Indicators of Hydrological Alterations (IHAs) 
were assessed (Richter et al., 1996; Leone et al., 2024). The mean flow 
at the outlet, which was equal to 0.89 m3s−1 for CMCC, 2.48 m3s−1 for 
EC-EARTH and 1.74  m3s−1 for MPI, compared with the baseline 
(2.66 m3s−1) showed an important contraction. Similarly, a contraction 
of the magnitude of monthly flow for the wet season (from December 
to April) was predicted for the three climate model projections 
(Figure 7). CMCC model predicted the largest reduction of flow that 
was quantified for the wet months at 81%. The highest reduction 
(86.3%) was simulated in February (median flow was 2.67 m3s−1 for 
the baseline and 0.365 m3s-1 for CMCC). The average reduction of 
monthly flow was 21.5% for EC-EARTH and 47.0% for MPI. The 
highest reduction (51.2% EC-EARTH and 57.4% MPI) was predicted 
in March when the median value was 2.89 m3s−1for the baseline and 
1.41  m3s−1 and 1.23  m3s−1 for EC-EARTH and MPI, respectively. 
Similar behavior can be evidenced for the 10th and the 25th percentile. 
Considering the 90th percentile, both EC-EARTH and MPI showed 
higher values than the baseline. Specifically, EC-EARTH overtake the 
baseline in January (baseline =3.91 m3s-1, EC-EARTH = 4.02 m3s−1), 
February (baseline = 4.33  m3s−1, EC-EARTH = 4.47  m3s−1) and 
December (baseline = 4.16 m3s-1, EC-EARTH = 5.44 m3s−1), while 
MPI showed high values in April (baseline = 4.60 m3s−1, 
MPI = 4.76  m3s−1). These increases in monthly streamflow can 
be attributed to flood events.

Changes in the annual extreme streamflow of 1-, 30-, and 90-day 
duration were analyzed (Figures  8A,B). CMCC and MPI showed 
similar values of these indicators, with a general reduction compared 
to the baseline. The depletion of the median value of the daily 
streamflow was 43.7 and 38.8% for CMCC and MPI, respectively. 
Reductions in the 90-day maximum flow were predicted, especially by 
CMCC and MPI (4.46 m3s−1 for the baseline, 1.85 m3s−1 for CMCC, 
and 2.5 m3s−1 for MPI; Figure 8B). CMCC showed values lower than 
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MPI and EC-EARTH (10th, 25th, and 75th percentile in Figure 8). 
Reduction in 1-day maximum flow is predicted by the CMCC model 
(i.e., 10th and 25th percentiles were 33.7 m3s−1 and 39.8 m3s−1 for the 
baseline, and 0.64  m3s−1 and 7.57  m3s−1 for future, respectively) 
(Figure 8A). Contrarily, EC-EARTH showed the median values of the 
three IHAs higher than the baseline and a larger interannual variability 
(i.e., larger interquartile range) (Figures 8A,B). An increment of 35.7% 
was predicted for the median value of 1-day maximum flow (median 
value and the 75th percentile were 50.3 m3s−1 and 75.3 m3s−1 for the 
baseline, and 68.3 m3s−1 and 104.9 m3s−1 for EC-EARTH, respectively) 
(Figure 8B). EC-EARTH showed a higher occurrence of high values 
of 30- and 90- days maximum flow, with respect to the baseline 
(Figures  8A,B). These results could be  due to the increase of 
occurrence of large floods predicted by EC-EARTH.

3.5 Modelling sediment under climate 
change

Changes in the specific sediment load (t ha−1) at the basin scale 
and in the sediment yield (t ha−1) at the sub-basins scale were assessed 
by comparing the daily sediment simulated data by the SWAT model 
for the baseline and for the future by using the three climate model 
projections (CMCC, EC-EARTH, MPI). A reduction of the specific 
sediment load (Table  4) associated with the reduction of the 

streamflow was predicted. At the annual scale, the specific sediment 
load simulated for the baseline was 6.84 t ha−1 yr.−1, whereas CMCC 
predicted a reduction of 52.8% (3.23 t ha−1 yr.−1), EC-EARTH of 18.1% 
(5.60 t ha−1 yr.−1) and MPI of 41.7% (3.99 t ha−1 yr.−1). At the monthly 
scale, the specific sediment load for the baseline was generally higher 
than the future projection. However, in July, CMCC (0.35 t ha−1 yr.−1) 
and MPI (0.24 t ha−1  yr.−1) showed simulated values higher than 
baseline (0.07 t ha−1 yr.−1), EC-EARTH showed sediment yield higher 
than baseline in April (baseline = 0.19 t ha−1  yr.−1 and 
EC-EARTH = 0.30 t ha−1 yr.−1), in May (baseline = 0.08 t ha−1 yr.−1 and 
EC-EARTH = 0.29 t ha−1 yr.−1), in June (baseline = 0.10 t ha−1 yr.−1 and 
EC-EARTH = 0.12 t ha−1 yr.−1), November and December.

A visual comparison was carried out to analyze the spatial 
distribution of soil erosion risk areas at the sub-basin scale between 
the baseline (2000–2020) and NF (2030–2050) (Figure 9). To better 
draw the maps, the annual sediment yield values were divided into 
six classes, considering the ranges obtained for the baseline (0.01 
to 38.6 t ha−1). In the baseline 33 of the total 115 sub-basins, whose 
HRUs are characterized by the presence of wheat cultivation and 
slopes >15% (Figure 1), were under high erosion rate conditions 
(average > 10 t ha−1) (Figure 9). Specifically, sub-basins N. 59 and 
N. 60, whose dominant HRUs are wheat and the slope is close to 
20%, showed the highest sediment yield values, respectively 
30.6 t ha−1 and 38.64 t ha−1. Flat areas instead had an average rate 
of sediment yield <3 t ha−1.

FIGURE 5

Scatter plots for observed and simulate streamflow (A) and observed and simulated sediment (B). Flow duration curve (C) and sediment duration curve 
(D).
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The model projections analyzed here showed a general reduction 
of the annual sediment yield: CMCC ranged from 0.01 to 22.8 t ha−1 
(average reduction 53%), EC-EARTH from 0.01 to 30.4 t ha−1 (average 
reduction of 12%), and MPI from 0.01 to 25.3 t ha−1 (average reduction 
42.5%). For CMCC the number of sub-basins under high erosion rate 
conditions (average > 10 t ha−1) is decreased to 5, while for MPI to 10. 
Several sub-basins in steep slope areas (e.g., central and eastern parts 
of the basin) changed class from 10 to 30  t ha−1 to 5–10 t ha−1 

(Figure 9). Sub-basins N. 59 and N. 60 in Figure 9 showed a decrease 
of about 41% (18.3 t ha−1 and 22.4 t ha−1, respectively) for CMCC, and 
34% (20.1 t ha−1; 5.3 t ha−1) for MPI. EC-EARTH showed a distribution 
of the high-risk erosion areas similar to the baseline: only 10 
sub-basins changed class from 10–30 t ha−1 to 5–10 t ha−1 (Figure 9). 
Indeed, the number of sub-basins under high erosion rate conditions 
(average > 10 t ha−1) remained high (23). Sub-basins N. 59 and N. 60 
showed a decrease of about 21% (N. 59 24.27 t ha−1; N.60 30.43 t ha−1).

FIGURE 6

Daily observed and simulated streamflow and sediment load for the calibration (top-left) and validation period (top-right) and statistical indices: the 
coefficient of determination (R2), the Nash and Sutcliffe Efficiency (NSE), and the Percent Bias (PBIAS %).

FIGURE 7

Box and whiskers: Monthly mean flow for the wet season. The lower and the upper whiskers represent the 10th and the 90th, respectively. The minor 
quartile is the 25th percentile and the major is the 75th percentile. The black line in the center is the median.
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4 Discussion

4.1 Modelling hydrology and sediment load

The present work confirmed that the SWAT model can simulate 
the complex hydro-sedimentary response in the Mediterranean 
environment (Borrelli et al., 2021; Ricci et al., 2022) and the climate 
change impacts on hydro-sedimentary response. The statistical 
performances for the streamflow and the sediment load simulations 
were satisfactory for the calibration period (2007–2009). For the 
validation period (2010–2011), the statistical indices showed lower 
values, especially for the streamflow, which was overestimated. This can 
be attributed to errors in predicting low flow after the biggest flood 
event, recorded in November 2010 (Figure 2), which caused an increase 

in the CN values due to the high antecedent soil water conditions (Ricci 
et al., 2020; Dash et al., 2023). Another source of uncertainty, which 
can lead to discrepancies between observed and simulated data, can 
be  represented by the not-optimal location of the weather station, 
associated with the convective character of rainfall events (Mtibaa and 
Asano, 2022; Ricci et  al., 2022). In the validation period, SWAT 
underestimated the sediment load, especially the main observed peak 
(November 2010). This can be related to the MUSLE equation, which 
computes average soil loss values and does not consider some 
processes, such as streambank erosion, which are very common during 
peak flows in the Mediterranean environment (Panda et al., 2021). 
Ricci et al. (2020) pointed out that particular attention must be reserved 
when defining the sub-basins and HRUs in the Mediterranean areas to 
improve the model performances. This work confirmed the importance 
of the sub-basin delineation (Chen et al., 2021).

The identified limitations in SWAT’s performance during the 
baseline period may have important implications for interpreting future 
scenario predictions. Several key uncertainties should be considered. 
The model’s tendency to underestimate peak sediment loads during 
extreme events suggests that future projections may similarly fail to 
capture the full extent of sediment transport during intense rainfall. 
Additionally, the simulated overestimation of streamflow following a 
major flood, due to the high antecedent soil water content, suggests that 
post-event flow conditions could be overestimated in future scenarios. 
Another limitation is SWAT’s inability to effectively model streambank 
erosion processes, which are common in the study area peak flows. 
Hence, as a result, total sediment yield may be underestimated.

4.2 CC impact on flow and sediment 
regime

The model projections selected in the present study (MPI, 
EC-EARTH, CMCC) showed differences in rainfall prediction 
(coefficient of variation = 0.22), whereas they showed a good 
agreement in temperature increase. These results confirmed previous 
studies that recognized Global Circulation Models as the largest 

FIGURE 8

Box and whiskers (A) 1-day maximum flow, (B) 30-, 90-days maximum flow. The lower and the upper whiskers represent the 10th and the 90th 
percentile, respectively. The minor quartile is the 25th percentile and the major is the 75th percentile. The black line in the center is the median.

TABLE 4 Monthly annual average specific simulated sediment load at the 
basin outlet for the baseline (2000–2020) and for the NF (2030–2050) 
climate changes scenarios (CMCC; EC-EARTH and MPI).

Months Baseline CMCC EC-EARTH MPI

Specific sediment load (t ha−1)

January 2.00 0.92 0.97 1.16

February 0.91 0.19 0.53 0.72

March 0.73 0.15 0.31 0.31

April 0.19 0.02 0.30 0.05

May 0.08 0.03 0.29 0.06

June 0.10 0.03 0.12 0.08

July 0.07 0.35 0.05 0.24

August 0.06 0.00 0.01 0.01

September 0.14 0.01 0.03 0.02

October 0.36 0.04 0.15 0.15

November 0.68 0.23 1.09 0.14

December 1.52 1.26 1.75 1.05

Total 6.84 3.23 5.60 3.99
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sources of uncertainty when analyzing the impact of CC on water 
resources (Vetter et al., 2017; Hattermann et al., 2018). Hence, the 
results of the SWAT model simulations showed differences in the 
magnitude of annual (Coefficient of variation = 0.47) and monthly 
streamflow (Coefficient of variation up to 0.67 in June and December) 
among the model projections. While uncertainty affects the results, the 
climate projections indicated that CC will have important implications 
on water resources with alterations in flow and sediment regimes. 
Specifically, reductions in streamflow were predicted by the model 
projections (up to 67% on a yearly basis) with a shift toward drier 
conditions. Among the model projections, CMCC forecasted the worst 
impact on water resources (−67%) whereas the EC-EARTH (−7%) 
showed a minor deviation compared to the baseline. The highest 
deviation from the baseline of the maximum streamflow for different 
durations (90-day max; 30-day max) was detected for the CMCC 
model and the lowest was found for the EC-EARTH. Concerning the 
maximum streamflow for one-day duration (1-day max), EC- EARTH 
showed an increase of the high values (+16% on average) compared to 

the baseline, contrarily CMCC showed a reduction of the highest 
values (−35%). MPI model projection also showed a negative rate of 
change in the mean annual 1-day max (−28%) and it generally showed 
an intermediate behavior compared to the CMCC and EC- EARTH 
for all the IHAs.

Concerning the sediment regime, overall the three model 
projections showed a reduction in annual sediment load (52.8% for 
CMCC, 18.1% for EC-EARTH, and 41.7% for MPI). A monthly 
redistribution of sediment transport can be highlighted. An average 
reduction of 60% was predicted by the models in January, March, and 
October. In July a remarkable increase in sediment load under CMCC 
(0.35 t ha−1 yr.−1) and MPI (0.24 t ha−1 yr.−1) compared to baseline 
(0.07 t ha−1  yr.−1) was simulated. The EC-EARTH predicted an 
increase in sediment load in April, May, and November, with respect 
to the baseline. Specific sediment loads ranged from 0.3 t ha−1 yr.−1 to 
1.09 t ha−1  yr.−1 for EC-EARTH and from 0.08 t ha−1  yr.−1 to 
0.68 t ha−1 yr.−1 for the baseline. Slopes and wheat cultivations were the 
main factors influencing the sediment yield production at the 

FIGURE 9

Annual spatial distribution of the specific sediment yield (t ha−1) for the baseline scenario (2000–2020) and the NF (2030–2050) climate changes 
scenarios (CMCC; EC-EARTH and MPI). Numbers refers to the SWAT sub-basins.
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sub-basin level. Model projections showed a general reduction of the 
annual sediment yield and different spatial distributions of high-risk 
erosion areas. The sub-basins under a high erosion rate decreased. 
This change involved mainly the sub-basins located in the central and 
eastern parts of the basin, where the average slope ranges from 15 to 
18%. EC-EARTH showed a minor reduction (12%) and a distribution 
of the high-risk erosion areas similar to the baseline. Some persistent 
hotspots can be highlighted. Sub-basins with slopes >18% (e.g., 49, 59, 
60, 66, 108) maintained high erosion rates (>10 t ha-1) under all 
climate models.

These results confirmed previous studies analyzing CC impacts in 
basins under the Mediterranean climate. Indeed, a reduction in mean 
annual values of maximum streamflow for different duration was 
predicted for the Celone River basin (Italy; De Girolamo et al., 2022), 
for Ben Guerir River basin (Brouziyne et al., 2021) and the Merguellil 
basin (Tunisia; Abouabdillah et  al., 2010) for the NF. A SWAT+ 
model-based study on the Sulcis watershed (Sardinia, Italy) (Pulighe 
et al., 2021) predicted notable reductions in water yield, surface runoff, 
groundwater recharge, and baseflow by the late 21st century under 
both RCP4.5 and RCP8.5 scenarios, primarily driven by increased 
temperatures and decreased precipitation, leading to enhanced 
evapotranspiration losses. Blöschl et al. (2019), who analyzed changing 
climate in Europe, found a negative rate of change in the mean annual 
flood discharge (highest peak discharge recorded per year) per decade 
in Candelaro River (Apulia, Italy), from 12 to 24%. On the other hand, 
the increment of the maximum streamflow for 1 day, evidenced 
especially by the EC-EARTH model, can be related to an increase in 
PCP intensity, as already stated by other authors (Noto et al., 2023; 
Ghanghas et  al., 2024). This can lead to heightened soil erosion 
(Borrelli et al., 2020).

4.3 Environmental implications of CC and 
adaptation measures

The findings of this study underscore that climate-driven changes 
are not merely prospective but are actively manifesting, necessitating 
immediate integration of these considerations into water resources 
management and territorial-environmental planning frameworks. The 
reduced water availability is only one of the implications of the CC on 
water resources. This study showed that hydrological and sediment 
regime alterations are expected in the future. As a result of the reduced 
magnitude of the annual flow, 1-day maximum flow, 30-, and 90-days 
maximum flow, river morphology and physical habitat conditions 
could change with several implications on the integrity of river 
ecology (Arthington, 2012; Todaro et al., 2022). For instance, species 
diversity, abundance and richness could be reduced, and non-native 
species could become dominant (Poff and Ward, 1989). Changes in 
nutrient cycles and transport could occur as pointed out by Ramião 
et al. (2024). The authors detected a decline in nutrient exports in a 
humid Portuguese Mediterranean catchment due to reduced runoff 
and soil erosion from decreased rainfall, reinforcing the link between 
climate change, sediment transport, and nutrient cycling. However, 
the potential for extreme hydrological variability remains. Indeed, 
studies on Mediterranean flood risk (Tramblay et al., 2023), found 
increasing trends in extreme precipitation-driven flash floods despite 
declining annual rainfall. The Carapelle River basin, as reported in the 
General Reclamation plan of the Capitanata areas (Consorzio di 

Bonifica Della Capitanata, 2022), is already experiencing significant 
water scarcity with declining groundwater levels from intensive 
agricultural extraction and insufficient surface water supplies (https://
www.bonificacapitanata.it/schemi-idrici/ accessed on 7/2/2025). 
While plans exist for building the Palazzo d’Ascoli reservoir (67 
million m3 capacity) to supplement water resources, climate change is 
expected to exacerbate the competition for water resources in 
the future.

Hence, water resources management options and mitigation 
measures (i.e., wastewater reuse, precision agriculture) are needed 
urgently to address the challenge of maintaining the river ecosystem 
and meeting the growing demand for freshwater resources. This study 
can provide to water manager’s specific details about the areas within 
the basing at risk of erosion also in the CC context. Management 
strategies, such as Best Management Practices (BMPs) or Nature 
Based Solutions (NBSs), should be promoted to achieve the goals of 
the EU Soil Strategy of the European Green Deal and of the Nature 
Restauration Law, which aim to address land degradation and have all 
EU ecosystems in healthy conditions by 2050 (Panagos et al., 2022; 
EU, 2024). No-tillage, contour farming, and cover crops are 
agricultural practices, already implemented in European countries, 
which contribute to maintaining a minimum soil cover and reduce the 
number and the depth of the tillage thus reducing sheet and rill 
erosion (Panagos et al., 2016; Ricci et al., 2020; Fendrich et al., 2023). 
In the proximity of the stream network and steep slope areas, riparian 
buffers, buffer strips, or land use changes in permanent crops, such as 
pasture or forest, are recognized as effective measures (Englund et al., 
2021; Cole et al., 2020; Ricci et al., 2020). Related to this, it is important 
to highlight that BMPs and NBSs are multifunctional by definition, 
hence their implementation can lead to several other positive 
outcomes for the Agro-environmental ecosystem such as improved 
water quality, increased nutrients in the soil (Ricci et al., 2022; Netti 
et al., 2024) or increase the net greenhouse gas removal (Ran et al., 
2018; Montanarella and Panagos, 2021). However, social, attitudinal, 
and other contextual factors, including the small size of farms, and the 
significant investments from the private and public sectors required 
for their implementation led to the failure of adopting BMPs or NBSs 
(Panagos et al., 2016; Brown et al., 2021; Ricci et al., 2020). To enhance 
the adoption of BMPs and NBSs, the most recent EU Common 
Agricultural Policy (CAP) 2023–2027 adopted the concept of 
eco-schemes, or a program of funding addressed to each farmer who 
voluntarily implements climate-sensitive and nature-sensitive 
practices (Panagos et al., 2022).

5 Conclusion

This study investigates the impact of climate change on 
streamflow and sediment yield in the Carapelle basin, located in the 
Apulia Region of Italy. Three climate model projections (CMCC, 
EC-EARTH, and MPI) were analyzed after undergoing bias 
correction, which improved the fit between observed and corrected 
data. Utilizing the SWAT model with data of the three different 
climate model projections the impacts of climate changes on 
hydrology and sediment yield are highlighted. Future projections 
(2030–2050) indicate a temperature increase (1–1.3°C) and a 
reduction in average annual rainfall (10–38%) compared to the 
baseline (2000–2020). As a result, the SWAT model predicted 
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reductions in water yield and sediment load at the basin scale. The 
CMCC model forecasted the most significant reduction in mean 
annual flow (67%), followed by MPI (35%) and EC-EARTH (7%). 
Sediment load reductions were predicted at 52.8% for CMCC, 41.7% 
for MPI, and 18.1% for EC-EARTH. The decrease in annual rainfall 
is expected to lead to a reduction in water yield and sediment load 
across the basin, with considerable spatial variability indicating that 
some areas will be more affected than others. Despite the overall 
reduction in sediment load, certain sub-basins, especially those with 
steep slopes and wheat cultivation, will continue to experience 
critical erosion rates. To mitigate these effects, it is important to 
implement effective water resources management strategies and 
conservation agricultural practices. Best Management Practices 
(BMPs) and Nature-Based Solutions (NBSs) are identified as crucial 
for reducing soil erosion and improving agro-environmental health. 
Encouraging the adoption of BMPs and NBSs through policy 
incentives can significantly contribute to the resilience of the 
agricultural sector in the face of climate change. This research, by 
integrating multiple climate models and focusing on spatial 
variability, provides a novel, comprehensive assessment of the 
combined impacts of climate change on hydrology and sediment 
transport within a Mediterranean basin. The work underscores the 
importance to carry out specific studies on sediment dynamics to 
provide valuable information to water resource managers and policy 
makers. In conclusion, the study underscores the urgent need for 
proactive management and conservation efforts to address the 
anticipated challenges posed by climate change. By leveraging 
innovative practices and policies, it is possible to ensure the 
sustainable management of water and soil resources in the 
Mediterranean region, thereby supporting the resilience and 
productivity of its agricultural landscapes.
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