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The Upper Blue Nile Basin (UBNB) is a critical water resource, facing challenges 
from population growth, climate variability, and transboundary water management. 
For any type of water resources assessment, the availability and reliability of 
rainfall data is of fundamental importance. Global data sets, derived from satellite 
information and/or climate models and/or assimilated products have been applied 
in recent years more frequently, but their reliability for particular regions needs 
to be evaluated. This study therefore evaluates the performance of four rainfall 
datasets-CHIRPS, IMERG, ERA5, and ERA5-Land-against ground-based rainfall 
data from 75 stations across the UBNB from 2001 to 2019. Metrics including RMSE, 
MAE, ME, RE, R, and NSE were used to assess the datasets at daily and monthly 
scales. CHIRPS, ERA5, and IMERG demonstrated the best agreement with observed 
data at the daily scale, with mean RE values of 2.68, 3.14, and 4.56% respectively, 
compared to 66.06% for ERA5-Land. On the monthly scale, IMERG, CHIRPS, 
and ERA5 outperformed ERA5-Land, achieving NSE values of 0.83, 0.80, and 
0.76, respectively, while ERA5-Land averaged −0.84. The annual rainfall averages 
reveal that CHIRPS, ERA5, and IMERG align closely with station measurements, 
whereas ERA5-Land consistently overestimates rainfall, with several areas in the 
UBNB showing average annual values exceeding 5,000 mm. Scatter plot analysis 
at the dekadal scale further demonstrates that CHIRPS, IMERG, and ERA5 achieve 
higher correlation coefficients compared to ERA5-Land, which shows a significant 
overestimation of heavy rainfall events. Using the WASA-SED model to simulate 
the streamflow of the UBNB. CHIRPS and IMERG yielded NSE values of 0.81 and 
0.80 at daily scales during validation, confirming their suitability for hydrological 
modeling. Conversely, ERA5-Land exhibited poor performance due to substantial 
rainfall overestimation. IMERG particularly excelled with daily RE values as low 
as −0.94%, making it highly reliable for water resource management. This study 
highlights the potential of CHIRPS, IMERG, and ERA5 for hydrological applications 
in complex, data-scarce regions like the UBNB while emphasizing the need for 
improved rainfall representation in ERA5-Land. These findings support informed 
decision-making for sustainable water management and reinforce the applicability 
of evaluated accordingly adjusted satellite-derived rainfall data for streamflow 
prediction in data-scarce tropical regions.
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1 Introduction

The Upper Blue Nile Basin (UBNB) serves as a crucial water 
resource for approximately 20 million people in Ethiopia and 200 
million downstream residents in Sudan and Egypt (Abera et al., 2017). 
The basin faces multiple challenges, including population growth, 
agricultural expansion, and hydropower development, which place 
increasing pressure on its limited water resources (Rahman, 2013; 
Paisley and Henshaw, 2013; Oestigaard, 2012). Climate variability and 
change further exacerbate these challenges, with predictions indicating 
increased rainfall variability and more frequent droughts and floods 
(Coffel et al., 2019; Elkollaly et al., 2018; Zaroug et al., 2014; Roth et al., 
2018). These shifts in rainfall patterns may significantly impact water 
availability, agricultural productivity, and ecosystem health, 
necessitating sustainable water management strategies to address 
water scarcity, ecosystem degradation, and food security issues in this 
transboundary basin (Abtew et al., 2019).

Rainfall in the UBNB is essential for both downstream Nile 
water availability and local subsistence agriculture within the basin. 
Besides supporting agriculture, the basin’s water resources 
contribute to hydropower, fishing, and tourism, providing 
economic benefits for the local population (Mellander et al., 2013). 
Effective management of these resources is critical for sustaining 
livelihoods within the basin and maintaining consistent 
downstream water flow.

Rainfall information is a prerequisite for assessing water resources 
in that region, for a scientifically sound estimation of its future 
developments, and for hydrological water budget simulations in that 
region. Such information is derived from various sources, including 
ground-based measurements (Mohammed et al., 2022; Samy et al., 
2019; Mengistu et al., 2014), remote sensing products (Abebe et al., 
2020; Ayehu et  al., 2018; Bayissa et  al., 2017; Lakew et  al., 2020; 
Rientjes et al., 2013), and reanalysis datasets (Abebe et al., 2020; Lakew 
et al., 2017; Koukoula et al., 2020). Each data source has strengths and 
weaknesses. Ground-based data offers high precision but often limited 
spatial coverage and may also face data gaps, while remote sensing 
derived rainfall estimates provides extensive coverage but may lack 
accuracy, particularly in extreme weather events. Reanalysis datasets 
combine observational data with model outputs, offering a 
comprehensive view but potentially introducing biases and inadequate 
spatial patterns. Comparing and evaluating these diverse data sources 
is essential for selecting suitable datasets for regional hydrological 
modeling and water resource assessment, including improving the 
applicability of seasonal hydro-meteorological forecasts.

Recent data collection and analysis advancements promise 
improved rainfall estimation accuracy in the UBNB, enhancing 
hydrological modeling efforts. Satellite-based products are increasingly 
used to refine rainfall estimates, though selecting the most 
representative product remains crucial for reconciling discrepancies 
between ground-based and remote-sensing data. Addressing these 
gaps is vital for developing robust hydrological models that support 
seasonal forecasts, ultimately aiding effective water management and 
building resilience to drought.

Among satellite-based rainfall products, Climate Hazards Group 
InfraRed Precipitation with Station data (CHIRPS) has been identified 
as one of the most reliable for the UBNB (Ahmed et al., 2024; GADO 
et al., 2024; Abdelmoneim et al., 2020; Gebremicael et al., 2019; Ayehu 
et al., 2018; Dinku et al., 2018). Studies by Ayehu et al. (2018) and 
Dinku et  al. (2018) have shown that CHIRPS outperform other 
products like ARC2 and TAMSAT in terms of correlation and bias, 
making it suitable for hydrological modeling and drought assessment 
in the region. GADO et  al. (2024) evaluated four high-resolution 
satellite rainfall products—TRMM-3B42RT, PERSIANN-CCS, 
GSMaP-NRT, and CHIRPS-V2—against ground-based observations 
across the UBNB. Their findings revealed that CHIRPS-V2, 
PERSIANN-CCS, and TRMM-3B42RT demonstrated rather reliable 
agreement with ground measurements in estimating and detecting 
rainfall events. Notably, CHIRPS-V2 exhibited superior skill compared 
to the other products, while GSMaP-NRT showed the 
weakest performance.

Reanalysis datasets, such as ERA5 and ERA5-Land from the 
European Centre for Medium-Range Weather Forecasts (ECMWF), 
have also been evaluated in the UBNB recently. Ahmed et al. (2024) 
found that while CHIRPS performed better in high-altitude regions, 
ERA5 had limitations, particularly in complex terrains and during 
extreme rainfall events. These limitations highlight the need for 
selecting datasets that can accurately capture local rainfall patterns 
and support reliable hydrological modeling. Many studies in the upper 
Blue Nile region used satellite-derived rainfall products after applying 
bias correction, as they believe these products should not be used 
without such adjustments. Some of them advocate bias correction 
(Fenta et al., 2014).

Some research, such as Gebremichael et al. (2014), has evaluated 
the accuracy of satellite rainfall estimates in Lowland plains versus 
highland mountains of the UBNB. Their findings revealed that all the 
satellite products considered tend to overestimate the mean rainfall 
rate at the lowland plain site but underestimate it at the highland 
mountain site.

Opposed to comparison with observed rainfall, in some studies, 
hydrological models have been employed to evaluate the accuracy of 
satellite rainfall products. For example, Polanco et al. (2017) used the 
SWAT model to assess the CFSR dataset by comparing it with ground-
based data (Rainfall and Discharge), while Abdelmoneim et al. (2020) 
evaluated TRMM 3B42V7 and CHIRPS against ground observations 
across the Blue Nile Basin (BNB). They also applied TRMM 3B42V7 
and CHIRPS in the Hydro-BEAM model for streamflow simulations 
in the UBNB, finding that both TRMM 3B42V7 and CHIRPS showed 
strong agreement with rain gauge observations and good correlation 
with monthly observed discharge at most stations.

In addition to their use for hydrological modeling, remote 
sensing-based global rainfall data have been increasingly used for 
bias-corrected seasonal forecasts or future climate projections. For 
example, Lorenz et al. (2020) utilized ERA5-Land to generate seasonal 
forecast datasets for the Tekeze-Atbara and Blue Nile Basins in 
Ethiopia and Sudan. Rottler et al. (2024) conducted a similar approach 
for the semi-arid state of Ceará in the Northeast of Brazil. These 
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datasets are based on SEAS5, the latest seasonal forecast product from 
the ECMWF, which was Bias-Corrected and Spatially Disaggregated 
(BCSD) to align with the high-resolution ERA5-Land reanalysis, thus 
providing detailed land component data within ECMWF’s climate 
reanalysis framework.

This study focuses on comparing the latest rainfall products from 
reanalysis-based, remote sensing-based, and ground-based sources. 
Beyond direct data comparison, it assesses the performance of 
hydrological models driven by these different rainfall datasets. 
Comparing the respective model results yields a hydrological 
evaluation of the different rainfall data sets. By identifying the 
strengths and weaknesses of each dataset, this research aims to 
support decision-makers in the UBNB by fostering effective water 
management practices and enhancing resilience to climate variability 
and change.

2 Materials and methods

This study evaluates the performance of CHIRPS, IMERG, ERA5, 
and ERA5-Land satellite rainfall estimates at daily, dekadal (10-day), 
monthly, and annual scales by comparing them with data from 75 rain 
gauge stations across the UBNB from 2001 to 2019. Daily rain gauge 
observations, CHIRPS, IMERG, ERA5, and ERA5-Land data were 
aggregated to create dekadal, monthly, and annual datasets.

To compare gridded satellite rainfall estimates with ground 
observations, either grid-to-grid or point-to-grid comparison 
methods can be  used. However, converting point-based ground 
observations to a gridded interpolated dataset yields poor results for 
an uneven spatial distribution of gauge stations (Ayehu et al., 2018). 
Consequently, this study employed a point-to-grid comparison 
approach. For each validation station, the grid cell values of the 
satellite rainfall products containing the station were extracted, 
allowing for pairwise comparisons with the corresponding rain gauge 
values. The average annual rainfall distribution maps of CHIRPS, 
IMERG, ERA5, and ERA5-Land were also calculated and compared 
with each other.

Additionally, WASA-SED, a physically-based distributed hydro-
sedimentological model (Müller et al., 2010; Güntner and Bronstert, 
2004; Güntner et  al., 2004; Bronstert et  al., 2014), was applied to 
evaluate the hydrological plausibility of the different rain data sets, i.e. 
how adequate the CHIRPS, IMERG, ERA5, and ERA5-Land data are 
to simulate the streamflow in the UBNB.

2.1 Study area

The Blue Nile River is a principal tributary of the Nile River, 
originating in the Ethiopian highlands. It flows northwest into Sudan, 
where it converges with the White Nile at Khartoum, forming the 
main Nile River. As a critical source of water, the Blue Nile contributes 
about 60% of the Nile’s total flow (Conway, 2005). The drainage area 
of the Blue Nile Basin (BNB) is approximately 325,000 km2 at Khartum 
(Ragab and Valeriano, 2014). The river is essential for downstream 
countries’ agriculture, hydropower, and water resources. However, the 
region faces significant challenges from land degradation, soil erosion, 
and sedimentation, exacerbated by intensive rainfall and steep terrain, 
which impact water quality and reservoir storage (Easton et al., 2010).

The UBNB, also referred to as the Abay Basin in Ethiopia, is a vital 
watershed stretching to the Sudan border and covering approximately 
199,812 km2. Located in the Ethiopian Highlands, it spans between 
latitudes 7°45′–12°45′ N and longitudes 34°05′–39°45′ E, with 
elevations ranging from 500 meters near the Sudan border to over 
4,260 meters in the highlands (Figure 1).

The climate in the UBNB is marked by distinct wet and dry 
seasons. Figure  2 illustrates the average monthly rainfall over the 
UBNB and the mean monthly streamflow at the El Deim station 
(Mulat, 2015). The average annual streamflow of the UBNB is about 
50 billion cubic meters per year at the El Deim station. The main rainy 
season, locally called “Kiremt,” lasts from June to September, followed 
by a dry season from October to January and a shorter rainy season, 
“Belg,” from February to May. According to Kim et  al. (2008), 
approximately 70% of the annual precipitation in the UBNB occurs 
during Kiremt, with rainfall varying from 800 mm in lowland areas to 
over 2,000 mm in some highland regions. The annual mean rainfall 
ranges between 1,200 and 1,800 mm (Conway, 2000), showing an 
increasing trend from northeast to southwest within the basin (Kim 
et al., 2008). Temperature varies with altitude, generally ranging from 
15°C to 25°C, with cooler temperatures in the highlands (Mulat, 
2015). These climatic conditions result in highly variable river flows 
with significant seasonal fluctuations, influencing both surface water 
and groundwater recharge.

Several small hydropower plants, such as Ribb and Koga, operate 
in the Blue Nile Basin. The Finchaa Dam and Power Plant, with a 
reservoir capacity of 2.4 billion cubic meters, was the first reservoir 
dam constructed on the headwaters of the Blue Nile River (McCartney 
and Menker Girma, 2012). The largest dam in Africa, the Grand 
Ethiopian Renaissance Dam (GERD), has a maximum storage 
capacity of 74 billion cubic meters. Located on the Blue Nile River in 
Ethiopia, near the Sudanese border (Ferrari et al., 2013), GERD began 
operations in 2022. GERD holds strategic importance for Ethiopia’s 
energy production and regional influence and has been a focal point 
for significant diplomatic and environmental discussions among Nile-
dependent countries, particularly Egypt and Sudan.

This combination of physiographic, meteorological, hydrological 
and hydro-political characteristics makes the UBNB a crucial area for 
water resource studies and sustainable management efforts.

2.2 Hydro-meteorological information

A range of multiple and spatially distributed datasets such as 
topographic features, soil types, land use/land cove, climate, and 
hydrological data are needed for the WASA-SED model (Müller et al., 
2010). In the present study, the topographic, land use, soil, climate, 
and hydrological data of the UBNB were collected from different 
sources (Table 1). Rainfall data for this study were collected from 
ground-based weather stations (Ethiopian Meteorological Institute 
(EMI)) and remote sensing satellite estimates and global dataset 
(Tables 1, 2).

2.2.1 Rainfall station data
The 134 ground rain gauge datasets reviewed in this study were 

obtained from the Ethiopian Meteorological Institute (EMI), 
covering the UBNB for the evaluation period from 1996 to 2019. 
This period was chosen due to the availability of both local rain 
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gauge data and satellite rainfall records. Following an assessment of 
data completeness, 75 stations with the most consistent and 
complete data throughout the evaluation period were selected as 
reference stations, as shown in Figure 1. The selection of the 75 
stations was based on a rigorous quality control process. Stations 
with <80% data completeness from 1996 to 2019 were excluded. To 
ensure continuity in the dataset, missing values were filled using 
data from the closest station with a correlation coefficient above 
0.85. Furthermore, stations with unrealistic trends or 
inconsistencies in long-term records were removed to ensure 
data reliability.

2.2.2 CHIRPS, v2.0
The CHIRPS (Climate Hazards Group InfraRed Precipitation 

with Station data) dataset is a widely used product providing 
rainfall estimates at high spatial resolution (0.05 degrees or 
~5 km). Developed by the US Geological Survey (USGS) and the 
Climate Hazards Group at the University of California (Funk 
et al., 2014; Knapp et al., 2011). The preliminary product CHIRP 
combines CHPclim (Funk et al., 2015), the monthly precipitation 
climatology based on station normal, satellite means and 
elevation, and Cold Cloud Duration (CCD) data based on infrared 
satellite imagery. The final product CHIRPS blends station data 

FIGURE 1

Elevation map of the UBNB and geographical locations of the selected rainfall stations in UBNB.

FIGURE 2

Average monthly rainfall and the streamflow over the UBNB. (a) Rainfall. (b) Streamflow at the El Deim station.
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into CHIRPS by applying a modified inverse distance weighting. 
A detailed description of the procedure is given in Funk et al. 
(2015). CHIRPS covers land areas between 50°S and 50°N from 
1981 to the present, providing data at different temporal (daily, 
dekadal, and monthly) resolution with a 3-week latency (Funk 
et al., 2015). In the present study, the dataset used was downloaded 
from: https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_
daily/netcdf/p05/.

2.2.3 IMERG V07
Integrated Multi-satellitE Retrievals for GPM (IMERG) V07 

Final Run, a product of NASA’s Global Precipitation Measurement 
(GPM) mission, integrates precipitation estimates from multiple 
satellite sensors, including both microwave and infrared data, with 
rain gauge adjustments to improve accuracy. IMERG provides near-
real-time precipitation data at a 0.1-degree (~9–10 km) spatial 
resolution with a high temporal frequency (half-hourly), making it 
suitable for real-time flood monitoring and early warning systems. 
Covering global latitudes between 60°S and 60°N, IMERG data is 

available from 2000 onwards, with consistent calibration across 
time enabled by the GPM constellation of satellites. The dataset 
used was downloaded from: https://disc.gsfc.nasa.gov/datasets/
GPM_3IMERGDF_07/summary?keywords=IMERG.

2.2.4 ERA5
ERA5, a global atmospheric reanalysis dataset produced by the 

European Centre for Medium-Range Weather Forecasts (ECMWF), 
provides comprehensive historical weather data at a spatial resolution 
of approximately 31–50 km. This dataset combines observations from 
satellites, weather stations, aircraft, and buoys with model outputs 
using advanced data assimilation techniques. ERA5 offers hourly 
precipitation data along with a wide range of meteorological 
parameters, such as temperature, wind, and humidity, making it 
suitable for diverse climate and hydrological studies. Covering the 
period from 1950 to the present, ERA5 ensures consistent long-term 
records for analyzing weather trends, extreme events, and climate 
variability. The dataset used was downloaded from: https://cds.climate.
copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview.

TABLE 1 Data type, source, and resolution.

Data type Source Resolution

Digital elevation model (DEM) SRTM (Shuttle Radar Topography Mission) 30 m

Land use/land cover Copernicus Global Land Service- 2019 100 m

Soil map HWSD (Harmonized World Soil Database), FAO 

(2012)

1,000 m

Rainfall data

Ethiopian Meteorological Institute (EMI) Point

CHIRPS - US Geological Survey (USGS) ~5 km

IMERG -NASA ~10 km

ERA5 - ECMWF ~50 km

ERA5-Land - ECMWF ~10 km

Temperature, Humidity and Radiation ERA5-Land - ECMWF ~10 km

Streamflow data MWRI of the Republic of Sudan Point

TABLE 2 Comparison of ERA5, ERA5-Land, CHIRPS, and IMERG datasets.

Aspect ERA5 ERA5-Land CHIRPS IMERG V07

Source
European Centre for Medium-Range Weather Forecasts 

(ECMWF)

Climate Hazards Center, US 

Geological Survey (USGS)
NASA, JAXA (GPM Mission)

Parameter Type Multiple (precipitation, temperature, and Radiation, etc.) Precipitation only Precipitation only

Data Source

Reanalysis combining 

satellite, station, aircraft, and 

buoy data

Derived from ERA5; land 

surface-focused, same 

sources as ERA5

Satellite (infrared Cold Cloud 

Duration - CCD) + station data

Satellite data (microwave and infrared 

sensors) + station gauge data

Method

Numerical weather 

prediction (NWP) models 

using advanced data 

assimilation

Numerical Land surface 

model, downscaling ERA5 

data to higher resolution

Bias-correction of satellite 

estimates using station data

Combines observations from multiple 

satellites adjusted with gauge data

Spatial Resolution 0.5 degrees (~31–50 km) 0.1 degrees (~9–10 km) 0.05 degrees (~5 km) 0.1 degrees (~9–10 km)

Temporal Resolution Hourly Hourly daily, ten days, monthly Half-hourly, daily, monthly

Coverage Global (land-focused) Global (land-focused) 50°S to 50°N (primarily land areas) Global (60°S to 60°N)

Period 1950 to present (land) 1950 to present (land) 1981 to near-present
2000 to present (TRMM-based from 

2000–2014; GPM-based after 2014)

https://doi.org/10.3389/frwa.2025.1536881
https://www.frontiersin.org/journals/Water
https://www.frontiersin.org
https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p05/
https://data.chc.ucsb.edu/products/CHIRPS-2.0/global_daily/netcdf/p05/
https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_07/summary?keywords=IMERG
https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGDF_07/summary?keywords=IMERG
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview


Zargar et al. 10.3389/frwa.2025.1536881

Frontiers in Water 06 frontiersin.org

2.2.5 ERA5-land
ERA5-land, an extension of the ERA5 reanalysis dataset, offers 

high-resolution (~9–10 km) hourly precipitation data optimized for 
land areas. Produced by the European Centre for Medium-Range 
Weather Forecasts (ECMWF), ERA5-Land utilizes a land surface 
model to downscale ERA5’s broader spatial resolution. With global 
coverage from 1950 to the present, ERA5-Land provides a consistent 
reanalysis of historical and current weather data, offering an extensive 
temporal range for trend analysis and climate modeling. The dataset 
used was downloaded from: https://cds.climate.copernicus.eu/
datasets/reanalysis-era5-land?tab=overview.

2.2.6 River discharge data
As a benchmark of hydrologic validation, daily measured 

streamflow data in the period 2000–2012 at El Deim river gaging 
station (on the border of Sudan and Ethiopia) were obtained from 
reports published by the Ministry of water resources and irrigation 
(MWRI) of the Republic of Sudan (source: MWRI Database).

2.3 Appling hydro-sedimentological model 
WASA-SED

The WASA-SED model (Water Availability in Semi-arid Areas 
with Sediment Dynamics) is designed for meso-scale hydrological 
modeling in multiple spatial scales, covering domains of several 
hundred, thousands to several hundred thousands of square 
kilometers. It consists of process-oriented hydrological components 
adapted to semi-arid conditions (WASA, as detailed by Bronstert 
et al., 2014) and coupled with sediment dynamics components for 
simulating erosion, sediment transport, and deposition (Müller 
et al., 2010). Water management options have been added recently 
(Voit et al., 2023). This model is particularly suited for multi-scale, 
continuous, spatially distributed simulations, with a flexible daily 
or hourly time step, incorporating channel-flow routines, reservoir 
retention, and management functions.

The model’s spatial multi-scale spatial discretization approach 
structures the catchment into hierarchical levels that reflect essential 
landscape features, including terrain types, soils, vegetation, and 
reservoirs, all integrated with the channel system (Güntner and 
Bronstert, 2004). This landscape-adaptive scheme enables applications 

at various scales from small watersheds to catchments of over 
10,000 km2. WASA-SED partitions the study area into five hierarchical 
levels: (I) Sub-basins; (II) landscape units (LU) with hydrologically 
similar areas; (III) terrain components (TC) as simplified planar 
elements of LUs; (IV) soil-vegetation components (SVC) for specific 
soil-vegetation associations; and (V) soil profiles with multiple layers. 
This scale-dependent discretization improves model efficiency, allowing 
high-resolution representation of relevant features while enabling large-
scale simulations. This hierarchical concept of the spatial model 
structuring (only levels I, II, III) is briefly schematized in Figure 3.

The model simulates both vertical (e.g., evapotranspiration, 
infiltration) and lateral (e.g., overland flow) hydrological processes. 
SVCs are derived from GIS-based soil and vegetation data, while 
landscape and terrain structuring can be performed semi-automatically 
with the Landscape Unit Mapping Program (lumpR) tool (Francke 
et al., 2008; Pilz et al., 2017). lumpR integrates DEM data with land use 
and soil information to delineate landscape units and terrain 
components, maintaining information on hillslope properties relative 
to the river network. WASA-SED includes water routing through 
reservoir networks, providing detailed water balance calculations.

The hydrological component of the WASA-SED model at the 
hillslope scale has been extensively detailed by Güntner (2002) and 
Güntner and Bronstert (2004). Operating at daily or hourly time steps, 
the model simulates key processes for each soil-vegetation component 
within terrain components. These processes include interception 
losses, evaporation, and transpiration, calculated using the modified 
Penman-Monteith approach (Shuttleworth and Wallace, 1985). It also 
incorporates infiltration using the Green-Ampt method (Green and 
Ampt, 1911), runoff generation from infiltration-excess and 
saturation-excess mechanisms, and the lateral redistribution of runoff 
between soil-vegetation and terrain components. Additionally, the 
model tracks soil moisture and water fluxes through a multi-layer 
storage structure, subsurface flow, and groundwater recharge using a 
linear storage representation (Güntner, 2002). Runoff generated at the 
hillslope level is routed through associated channel stretches using the 
kinematic wave method, with interactions modeled for simplified and 
detailed reservoir systems.

The UBNB modeling framework was developed to assess the 
performance of rainfall station data, CHIRPS, IMERG, ERA5, and 
ERA5-Land rainfall datasets for streamflow simulation using the 
WASA-SED model. The initial step in the model development 

FIGURE 3

Spatial discretization scheme of the WASA-SED model: an example with three terrain components (TC) describing a catena and four landscape units 
(LU) describing a sub-catchment (from Müller et al. (2010)).
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involved watershed delineation, where sub-basins and reaches of the 
watershed were derived from a digital elevation model (DEM) with 
the LUMPR tool (Pilz et al., 2017). This delineation was based on the 
spatial distribution of hydrometric stations, dams, and tributaries in 
the basin, resulting in the identification of 103 sub-basins, with a 
minimum threshold area of 50,000 ha.

After delineation, landscape units (LUs), terrain components 
(TCs), soil-vegetation components (SVCs), and soil profiles with 
multiple layers were defined using lumpR, guided by physiographical 
data such as land use, soil type, and slope (Güntner, 2002). 
Consequently, 10,359 combinations of sub-basins, landscape units, 
and terrain components were established.

The model simulation period spanned from 1996 to 2011, with 
the first 6 years (1996–2001) used as a warm-up period to minimize 
the effects of initial conditions; hence, this period was excluded from 
the analysis. A 6-year warm-up period was chosen based on prior 
studies (e.g., Francke, 2009; Güntner, 2002) to ensure stable 
hydrological initial conditions, particularly for soil moisture and 
groundwater storage.

Separate WASA-SED models were prepared for each rainfall 
dataset—station data, CHIRPS, IMERG, ERA5, and ERA5-Land—
while keeping other inputs (topography, vegetation, soil, LUs, TCs, 
SVCs, and meteorological data) consistent across simulations. 
Daily temperature, humidity, solar radiation, and wind data from 
the ERA5-Land dataset were used in all simulations as 
input parameters.

Calibration focused on key hydrological parameters, as identified 
in prior studies (Francke, 2009; Güntner, 2002), using a heuristic, 
gradient-free optimization algorithm known as dynamically 
dimensioned search (Tolson and Shoemaker, 2007), implemented in 
the PPSO package (Francke, 2015). The objective function for 
optimization was based on root mean square error (RMSE), utilizing 
11 years of discharge data at the El Deim station. The period from 
2001 to 2006 was used for calibration, while 2007 to 2011 was reserved 
for validation.

2.4 Measures of agreement and 
performance

In this study, six widely used metrics were applied to quantitatively 
evaluate the agreement of CHIRPS, IMERG, ERA5, and ERA5-Land 
rainfall estimates with in-situ rainfall observations. These metrics were 
also utilized for assessing the performance of simulated discharge 
against observed streamflow data. These metrics are the root mean 
square error (RMSE), mean absolute error (MAE), mean error (ME), 
percentage relative error (RE), Pearson correlation coefficient (R), and 
Nash-Sutcliffe efficiency (NSE). Their formulas are provided 
as follows:
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where iP and iG  represent the i th values of the CHIRPS, IMERG, 
ERA5, and ERA5-Land estimates and rain gauge observation data, 
respectively; P and G  are their mean values; and n is the total number 
of time steps. The rainfall products are fully consistent with the rain 
gauge data if RMSE, MAE, ME, and RE are equal to 0, and R and NSE 
are equal to 1. Higher values of R and NSE, along with lower values of 
RMSE, MAE, ME, and RE, indicate greater accuracy of the satellite 
rainfall products. NSE values range from −∞ to 1. A negative NSE, 
specifically, implies that the residual variance (difference between 
observed and predicted values) is greater than the variance of the 
observed data around its mean.

3 Results and discussion

3.1 Comparison of CHIRPS, IMERG, ERA5, 
and ERA5-Land at different timescales

The descriptive statistics, as summarized in boxplots, were used 
to evaluate the daily and monthly rainfall performance of CHIRPS, 
IMERG, ERA5, and ERA5-Land against 75 in situ rainfall stations (see 
Table  3 and Figures  4, 5). The boxplots illustrate that CHIRPS, 
IMERG, and ERA5 products show relatively good agreement with the 
measured rain gauge data, as indicated in Figures 4, 5. However, the 
rainfall values of ERA5-Land are consistently higher than the 
measured rainfall values in most of the stations. The boxplots reveal 
that CHIRPS, IMERG, and ERA5 align closely with the median and 
interquartile ranges of observed values, indicating better accuracy. In 
contrast, ERA5-Land exhibits notably higher rainfall values than 
observed data at most stations, as evidenced by its elevated medians 
and broader interquartile ranges. This discrepancy suggests a tendency 
for ERA5-Land to overestimate rainfall, which may limit its 
applicability for precise rainfall analysis on a daily timescale within 
this region. The variability in ERA5-Land’s values could present 
challenges in hydrological modeling where daily accuracy is essential.

On a daily scale, CHIRPS exhibits correlation coefficient (R) 
values ranging from 0.65 to 0.31, with a mean of 0.45, while IMERG’s 
R values range from 0.66 to 0.32, with a mean of 0.49. In comparison, 
ERA5 shows R values ranging from 0.47 to 0.22, with a mean of 0.34, 
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and ERA5-Land demonstrates R values ranging from 0.58 to 0.22, 
with a mean of 0.42. Similarly, for the Nash-Sutcliffe Efficiency (NSE), 
CHIRPS shows values between −0.8 and 0.5, with a mean of −0.18, 
while IMERG ranges from −0.3 to 0.4, with a mean of 0.03. In 
comparison, ERA5 ranges from −1.4 to 0.0, with a mean of −0.51, and 
ERA5-Land exhibits NSE values from −2.3 to 0.3, with a mean −1.06, 
indicating significantly poorer performance. Overall, all products 
reveal relatively poor correlations and NSE with daily observed rain 
gauge data, as reflected in R and NSE values below 0.5 at most stations. 
These findings align with prior studies in the Eastern Nile Basin, such 
as those by Abdelmoneim et al. (2020) and Gebremicael et al. (2019), 
which highlighted similar limitations for CHIRPS in daily 
rainfall estimations.

Regarding mean error (ME), CHIRPS varies from −0.76 to 
0.82 mm with a mean of 0.01 mm, IMERG ranges from −1.09 to 
1.25 mm with a mean of 0.09 mm, ERA5 ranges from −1.26 to 1.4 mm 
with a mean of 0.00 mm, and ERA5-Land spans a much wider range, 
from −1.48 to 6.57 mm, with a mean of 2.20 mm. These values 
indicate that the mean error (ME) for ERA5 and CHIRPS is close to 
zero, reflecting good agreement with station data based on this metric. 
Conversely, ERA5-Land exhibits a pronounced tendency to 
overestimate rainfall, often with significantly larger deviations from 
observed data.

For mean absolute error (MAE), CHIRPS values range from 1.6 
to 5.8 mm, with a mean of 3.66 mm (compared to 3.37 mm reported 
by Abdelmoneim et  al., 2020), while IMERG ranges from 1.8 to 
5.7 mm, with a mean of 3.53 mm. ERA5 shows MAE values ranging 
from 2.9 to 6.5 mm, with a mean of 4.5 mm, and ERA5-Land spans a 
wider range, from 2.2 to 8.7 mm, with a mean of 4.94 mm.

In terms of root mean square error (RMSE), CHIRPS values range 
from 5.3 to 11.4 mm, with a mean of 8.32 mm (compared to 7.43 mm 
reported by Abdelmoneim et al., 2020). IMERG ranges from 4.8 to 
10.6 mm, with a mean of 7.59 mm, ERA5 ranges from 7.1 to 13.2 mm, 
with a mean of 9.47 mm, and ERA5-Land shows a broader range, 
from 5.0 to 15.5 mm, with a mean of 10.98 mm. This wider range in 
ERA5-Land highlights greater variability and lower accuracy in 
capturing daily rainfall patterns compared to CHIRPS and IMERG.

On a monthly scale, all statistical parameters, especially R and 
NSE, show improvement for all four datasets (see Figure  5). For 
example, CHIRPS displays correlation coefficient (R) values ranging 
from 0.89 to 0.98, with a mean of 0.93, while IMERG’s R values range 
from 0.73 to 0.96, with a mean of 0.92 and ERA5’s R values range from 
0.85 to 0.97, with a mean of 0.91. In contrast, ERA5-Land shows R 

values between 0.73 and 0.92, with a mean of 0.87, again suggesting 
that CHIRPS, ERA5 and IMERG maintain a stronger and more 
consistent relationship with observed monthly rainfall than 
ERA5-Land.

Similarly, for Nash-Sutcliffe Efficiency (NSE), CHIRPS shows values 
between 0.69 and 0.95 with a mean of 0.83, IMERG varies from 0.66 to 
0.93 with a mean of 0.80, and ERA5 varies from 0.5 to 0.94 with a mean 
of 0.76, while ERA5-Land’s NSE values range from −2.77 to 0.89, with a 
mean of −0.84, indicating poor monthly performance. The negative NSE 
values for ERA5-Land on a monthly scale imply that its precipitation 
estimates are significantly higher than measured values at most stations.

In terms of mean error (ME), CHIRPS values range from −25.1 
to 23 mm with a mean of 0.19 mm, IMERG ranges from −33.3 to 
38 mm with a mean of 2.85 mm, ERA5 ranges from −38.2 to 42.7 mm 
with a mean of −0.01 mm, while ERA5-Land spans from −45 to 
200 mm, averaging 66.80 mm, suggesting that ERA5-Land often 
overestimates monthly rainfall by a larger margin.

For mean absolute error (MAE), CHIRPS ranges from 9.9 to 
47 mm with a mean of 29.21 mm, IMERG ranges from 17 to 
56.2 mm with a mean of 33.47 mm, ERA5 ranges from 18.1 to 
51.5 mm with a mean of 37.42 mm, and ERA5-Land spans from 
22.3 to 179.9 mm with a mean of 85.59 mm. This indicates that 
ERA5-Land has higher monthly errors compared to CHIRPS 
and IMERG.

Finally, for root mean square error (RMSE), CHIRPS ranges from 
23.9 to 81.6 mm with a mean of 49.12 mm, IMERG ranges from 26.7 
to 87.2 mm with a mean of 53.00 mm, ERA5 ranges from 27.8 to 
87.9 mm with a mean of 59.5 mm, and ERA5-Land ranges from 36.2 
to 287.9 mm with a mean of 130.70 mm. This again reflects the higher 
errors in ERA5-Land’s monthly estimates.

For relative error (RE) on both daily and monthly scales, CHIRPS 
values range from −23.4 to 25.9%, with a mean of 2.68%, while IMERG 
ranges from −34.1 to 38.6%, with a mean of 4.56%. ERA5 shows RE 
values ranging from −33.2 to 41.5%, with a mean of 3.14%, whereas 
ERA5-Land exhibits a significantly wider range, from −32 to 235.1%, 
with a mean of 66.06%. This pronounced positive bias in ERA5-Land 
highlights a considerable overestimation of rainfall compared to the 
other datasets. The presence of negative RE values across all datasets 
indicates a slight underestimation of rainfall in specific stations. 
Similar findings for CHIRPS have been reported by Abdelmoneim 
et al. (2020), with a mean RE of −0.91% in the Eastern Nile Basin.

In conclusion, while CHIRPS, ERA5, and IMERG provide closer 
approximations to observed daily and monthly rainfall across 

TABLE 3 Mean values of statistical analysis of satellite rainfall estimates against rain gauge measurements in the UBNB.

Rainfall 
products

Timescale RMSE MAE ME RE R NSE

mm mm mm %

CHIRPS Daily 8.32 3.66 0.01 2.68 0.45 −0.18

IMERG Daily 7.59 3.53 0.09 4.56 0.49 0.03

ERA5 Daily 9.47 4.50 0.00 3.14 0.34 −0.51

ERA5-Land Daily 10.08 4.94 2.20 66.06 0.42 −1.06

CHIRPS Monthly 49.12 29.21 0.19 2.68 0.93 0.83

IMERG Monthly 53.00 33.47 2.85 4.56 0.92 0.80

ERA5 Monthly 59.50 37.42 −0.01 3.14 0.91 0.76

ERA5-Land Monthly 130.70 85.59 66.80 66.06 0.87 −0.84
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various metrics, ERA5-Land displays substantial positive bias and 
higher variability, particularly in terms of relative error and mean 
error. At the daily scale, CHIRPS, ERA5, and IMERG demonstrated 
the best agreement with observed data, achieving mean RE values of 
2.68, 3.14, and 4.56%, respectively, compared to 66.06% for ERA5-
Land. On the monthly scale, IMERG, CHIRPS, and ERA5 
outperformed ERA5-Land, with NSE values of 0.83, 0.80, and 0.76, 
respectively, while ERA5-Land averaged −0.84. These findings 

suggest that CHIRPS, ERA5, and IMERG are relatively more suitable 
datasets for daily and monthly rainfall analysis due to their 
consistency with in situ data.

In Figure  6, the annual rainfall averages over the period 
2001–2019 are compared for CHIRPS, IMERG, ERA5, ERA5-
Land, and observed station data. This figure shows that CHIRPS, 
ERA5 and IMERG align relatively well with station measurements, 
whereas ERA5-Land consistently reports higher annual values, 

FIGURE 4

Boxplots of the performance metrics for CHIRPS, IMERG, ERA5, and ERA5-Land daily rainfall products against observation data from 72 stations during 
the period 2001–2019. (a) RMSE values. (b) MAE values. (c) ME values. (d) RE values. (e) R values. (f) NSE values.
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confirming the observed overestimation. Additionally, the bar 
chart (Figure 7) presents the average annual rainfall variability 
across individual stations, highlighting that ERA5-Land’s higher 
precipitation estimates are particularly prominent at 
several locations.

The annual rainfall distribution over the UBNB provides a 
comparative analysis of CHIRPS, IMERG, ERA5, and ERA5-Land 
datasets against station data. The spatial maps (Figure 8) illustrate 

the average annual rainfall patterns from CHIRPS, ERA5, ERA5-
Land, and IMERG, revealing distinct regional rainfall gradients. 
CHIRPS and IMERG exhibit similar spatial rainfall patterns, with 
the highest precipitation concentrations occurring in the 
southwestern and central areas of the basin, closely aligning with 
observed station data. As shown in Figure 8d, several areas in the 
UBNB exhibit average annual rainfall exceeding 5,000 mm on the 
ERA5-Land map, which is inconsistent with ground observations 

FIGURE 5

Boxplots of the continuous statistical indices for CHIRPS, IMERG, ERA5, and ERA5-Land monthly rainfall products against monthly rain gauge 
measurements during the period 2001–2019. (a) RMSE values. (b) MAE values. (c) ME values. (d) RE values. (e) R values. (f) NSE values.
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and other satellite products. This excessive estimation suggests 
that the ERA5-Land rainfall distribution map is inaccurate and 
may not be  suitable for precise hydrological modeling in 
this region.

In addition, the scatter plots in Figure  9 illustrate the 
relationship between satellite rainfall products and rain gauge 
observations at the dekadal timescale over the UBNB for the 
period 2001–2019. The satellite rainfall estimates show a stronger 
agreement with rain gauge observations at lower rainfall amounts, 
with the agreement gradually decreasing at higher rainfall values. 
However, CHIRPS, IMERG and REA5 demonstrate relatively 
better agreement with rain gauge observations (with correlation 
coefficients of 0.97, 0.98, and 0.96 respectively) compared to 

ERA5-Land at the dekadal timescale. As seen in Figure 9, the 
ERA5-Land values for heavier rainfall events tend to be higher 
than the observed values, indicating an overestimation of rainfall 
by ERA5-Land at this timescale.

These findings underscore the reliability of CHIRPS, ERA5, and 
IMERG for rainfall analysis, demonstrating their strong consistency 
with in situ data and their suitability for hydrological applications in 
the UBNB. It is important to note that both CHIRPS and IMERG 
Final Run incorporate gauge correction, which may contribute to their 
superior performance compared to ERA5 and ERA5-Land. This 
suggests that rainfall products with in-situ gauge assimilation may 
provide more reliable estimates, especially in regions with complex 
topography like the UBNB.

FIGURE 6

Mean spatial annual rainfall distribution in the UBNB over the period (2001–2019).

FIGURE 7

Average annual rainfall in the UBNB (2001–2019).
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FIGURE 8

Spatial annual rainfall in the UBNB from different sources: (a) CHRIPS, (b) IMERG and (c) ERA5, (d) ERA5-Land.

FIGURE 9

Comparison between rain gauge observations and satellite rainfall estimate at dekadal temporal scale over the UBNB for the period of 2001–2019. Red 
line denotes 1:1 relationship.
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3.2 Hydrological evaluation of rainfall 
station data, CHIRPS, IMERG, ERA5, and 
ERA5-land for the UBNB

A graphical comparison of daily and monthly observed and 
simulated discharge at the El Diem station during the calibration and 
validation periods is shown in Figures  10, 11. Various statistical 
parameters are reported in Table 4.

The WASA-SED model’s performance using station data, CHIRPS, 
IMERG, ERA5, and ERA5-Land in the UBNB ranged from acceptable 
to poor. For example, Nash–Sutcliffe efficiency (NSE) values in daily 
timescale for the calibration period were 0.80, 0.72, 0.74, 0.66 and −5.8 
for rainfall station data, CHIRPS, IMERG, ERA5, and ERA5-Land, 
respectively. In validation, NSE values improved slightly for CHIRPS, 

IMERG and ERA5 at 0.81, 0.8, and 0.68 respectively, but ERA5-Land 
continued to perform poorly with an NSE of −3.8, mainly due to long 
periods of overestimation in daily streamflow simulations.

The correlation coefficient (R) values in daily timescale for the 
calibration period were 0.9 (station data), 0.87 (CHIRPS), 0.88 
(IMERG), 0.87 (ERA5), and 0.89 (ERA5-Land), indicating a good 
correlation with observed data. During validation, R values were 0.89 
(station data), 0.91 (CHIRPS), 0.9 (IMERG), 0.86 (ERA5), and 0.91 
(ERA5-Land), indicating a strong agreement between observed and 
simulated streamflow for both periods.

Relative error (RE) in the daily timescale during calibration 
showed underestimation for Station data (−10.32%), CHIRPS 
(−11.21%), IMERG (−0.94%), and overestimation for ERA5 (13.5%) 
and ERA5-Land (185.2%). In validation, RE values for Station data, 

FIGURE 10

Comparison of daily simulated and observed hydrographs at the El Deim station of the BNB. (a) Station data in both calibration and validation periods, 
(b) remote sensing satellite estimates for validation period.
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CHIRPS, IMERG, and ERA5 improved to −6.82, −9.02%, −7.61, and 
11.1%, respectively, while ERA5-Land continued to overestimate 
streamflow with an RE of 145.8%.

At the monthly scale, statistical parameters, particularly R and 
NSE, showed improvement across all datasets except ERA5-Land (see 
Table 4). For example, NSE values for monthly simulation were 0.94 
for station data, 0.9 for CHIRPS, 0.87 for IMERG, 0.9 for ERA5, 
and −6.03 for ERA5-Land during the calibration period, indicating 
improved model performance for station data, CHIRPS, IMERG and 
ERA5. In the validation period, NSE values remained consistent, with 
station data at 0.91, CHIRPS at 0.91, IMERG at 0.88, ERA5 at 0.86, 
and ERA5-Land continuing to underperform with an NSE of −3.97. 
This discrepancy highlights that while CHIRPS, IMERG and ERA5 
are effective for simulating streamflow on a monthly basis, 

ERA5-Land’s tendency to overestimate rainfall diminishes its utility 
for accurate hydrological simulation.

The correlation coefficient (R) values further emphasize this 
trend. During calibration, R values for monthly streamflow 
simulations were 0.98 (station data), 0.95 (CHIRPS), 0.94 (IMERG), 
0.96 (ERA5), and 0.93 (ERA5-Land). Validation results showed 
similar improvements, with R values of 0.96 for station data, 0.96 for 
CHIRPS, 0.94 for IMERG, 0.94 for ERA5, and 0.94 for ERA5-Land.

As illustrated in Figure  10, exceptionally high daily discharge 
peaks in El Deim station in the model results from the CHIRPS, 
IMERG, and ERA5 datasets. However, these pronounced peaks are 
not reflected on the monthly scale (Figure 11). This discrepancy is 
likely due to errors in the daily rainfall data over a limited number of 
days in specific sub-basins or differences in data quality between 

FIGURE 11

Monthly comparison of simulated and observed hydrographs in both calibration and validation periods at the El Deim station of the BNB. (a) Station 
data, (b) remote sensing satellite.
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highland and lowland regions in satellite rainfall products 
(Gebremichael et  al., 2014). These anomalies could amplify daily 
discharge estimates in the model, leading to isolated spikes that do not 
impact the monthly aggregated values in the same manner.

Given that the ERA5 grid is 10 times larger than CHIRPS, it is 
understandable that the hydrological model’s performance with ERA5 
data is somewhat less accurate compared to CHIRPS. Overall, the 
WASA-SED model demonstrated that CHIRPS, IMERG, and ERA5 
data could effectively simulate streamflow at daily and monthly 
timescales in the UBNB. CHIRPS and IMERG, which perform well 
on daily and monthly scales, are particularly useful for short-term 
flood forecasting and daily reservoir operations. ERA5, despite 
moderate errors, may be suitable for seasonal forecasts and long-term 
water planning. Notably, IMERG excelled with a much lower relative 
error (RE), averaging −0.94% on a daily scale and −0.85% on a 
monthly scale, highlighting its reliability for water management 
applications. In contrast, ERA5-Land’s pronounced tendency to 
overestimate rainfall significantly hindered its hydrologic 
performance, particularly in daily and monthly streamflow 
predictions. These findings underscore the suitability of CHIRPS, 
IMERG, and ERA5 datasets for hydrologic modeling in this region, 
confirming the model’s alignment with past studies on the UBNB.

Table 4 also shows that ground-based measurements provide better 
results than satellite estimates. While ground-based measurements 
provide the most direct and accurate observations, their sparse 
distribution limits their use in large-scale hydrological studies. A 
combination of satellite and ground-based data remains the best approach 
for comprehensive hydrological assessments (Polanco et al., 2017).

4 Conclusion

This study provides a comprehensive evaluation of the CHIRPS, 
IMERG, ERA5, and ERA5-Land satellite rainfall products for the 
UBNB, comparing their performance against ground-based 
measurements from 75 rain gauge stations. By examining daily, 
dekadal, monthly, and annual scales over the period from 2001 to 
2019, we assessed the suitability of these datasets in capturing rainfall 
patterns and variability within the basin.

CHIRPS, IMERG, and ERA5 consistently aligned more closely 
with observed rainfall data across various timescales, exhibiting strong 
correlations and lower errors compared to ERA5-Land, which 
demonstrated significant overestimations, especially for higher rainfall 
values. At the daily scale, CHIRPS, ERA5, and IMERG had mean RE 
values of 2.68, 3.14, and 4.56%, respectively, compared to 66.06% for 
ERA5-Land. On the monthly scale, IMERG, CHIRPS, and ERA5 
performed well, achieving NSE values of 0.83, 0.80, and 0.76, 
respectively, whereas ERA5-Land averaged −0.84.

The annual rainfall averages revealed that CHIRPS, ERA5, and 
IMERG closely matched station measurements, while ERA5-Land 
consistently overestimated rainfall, with some regions in the UBNB 
exceeding 5,000 mm annually. CHIRPS and IMERG exhibited similar 
spatial rainfall patterns, with the highest concentrations in the 
southwestern and central basin, aligning well with observed data. At 
the dekadal scale, scatter plot analysis showed that CHIRPS, IMERG, 
and ERA5 achieved higher correlation coefficients (0.97, 0.98, and 
0.96, respectively) compared to ERA5-Land, which overestimated 
heavy rainfall events.

Following this evaluation, we  implemented the WASA-SED 
model, a physically-based distributed hydrological model, to simulate 
streamflow using each of the rainfall datasets. The hydrological 
simulations demonstrated that CHIRPS, IMERG and ERA5 were 
capable of generating streamflow estimates that closely matched 
observed discharge data at both daily and monthly scales. ERA5-Land, 
however, produced less reliable results, with substantial discrepancies 
due to its rainfall overestimation. The calibration and validation 
processes confirmed the effectiveness of CHIRPS, IMERG and 
ERA5  in hydrological modeling for the UBNB, with acceptable 
different statistical parameters such as Nash-Sutcliffe Efficiency (NSE), 
Relative error (RE) and correlation values for these datasets, while 
ERA5-Land showed significantly lower performance.

In conclusion, this study highlights the potentials, uncertainties 
and limitations of CHIRPS, IMERG, and ERA5 as satellite-derived 
rainfall information products for hydrological modeling in the 
UBNB. We have shown that such an evaluation is key for a subsequent 
modeling of the hydrological cycle and water resources options in 
such a regional context. One must not rely on such products for any 
type of environmental modeling without a prior sincere check of the 

TABLE 4 Statistical analysis for the hydrologic evaluation at daily and monthly timescales over the El Deim station.

Rainfall 
products

Timescale Calibration Validation

RMSE 
(m3/s)

MAE 
(m3/s)

ME 
(m3/s)

RE % R NSE RMSE 
(m3/s)

MAE 
(m3/s)

ME 
(m3/s)

RE 
%

R NSE

Station data Daily 835 426 −159 −10.32 0.9 0.8 989 502 −115 −6.82 0.89 0.77

CHIRPS Daily 1,000 485 −172 −11.21 0.87 0.72 885 489 −152 −9.02 0.91 0.81

IMERG Daily 955 516 −15 −0.94 0.88 0.74 911 911 −129 −7.61 0.9 0.8

ERA5 Daily 1,094 555 208 13.5 0.87 0.66 1,166 595 189 11.1 0.86 0.68

ERA5-Land Daily 4,934 2,855 2,846 185.16 0.89 −5.88 4,504 2,510 2,462 145.8 0.91 −3.8

Station data Monthly 433 257 −157 −10.29 0.98 0.94 574 302 −113 −6.71 0.96 0.91

CHIRPS Monthly 558 327 −171 −11.18 0.95 0.9 586 382 −150 −8.93 0.96 0.91

IMERG Monthly 632 401 −13 −0.85 0.94 0.87 663 435 −126 −7.49 0.94 0.88

ERA5 Monthly 552 327 206 13.5 0.96 0.9 718 415 190 11.3 0.94 0.86

ERA5-Land Monthly 4,735 2,835 2,835 185.6 0.93 −6.03 4,344 2,489 2,455 146.2 0.94 −3.97
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product’s reliability. We  have shown that IMERG, in particular, 
excelled with a much lower relative error, emphasizing its utility for 
water management applications. In case one wants to use the globally 
available products, a bias correction method, suitable and adapted for 
the particular regions, is strongly recommended.

The WASA-SED model demonstrated its capability to simulate 
streamflow in this large complex tropical catchment. The usage of 
satellite-derived rainfall can be appropriate after the before mentioned 
sincere evaluation. In this regard, it shows an important value for 
water resource planning and management in such a regional scale and 
tropical environment. Future research should focus on refining 
satellite rainfall products like ERA5-Land and enhancing bias 
correction techniques to improve their applicability for hydrological 
modeling in complex, data-scarce regions.
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